What is gene cloning and production of a recombinant molecule?

Size: px
Start display at page:

Download "What is gene cloning and production of a recombinant molecule?"

Transcription

1 Recombinant DNA o Recombinant DNA technology brought a huge boost to the study of genetics, because it allowed manipulation of the genetic material DNA. o The ability to directly analyse DNA and manipulate it has increased the power of Genetics immensely. The main problem is that any particular DNA sequence is only present at very low concentration in the total DNA of an organism. E. coli has a genome size of 4.6 Mb and a typical gene is around 1kb (i.e. about 0.02% of total DNA). The situation with the 3000 Mb human haploid genome is even worse. However, it is possible to purify some sorts of small DNA molecule e.g. plasmid or phage DNA. In a 5 kb plasmid, a 1 kb gene is 20% of total DNA and thus amenable to analysis. If a gene from another organism can be incorporated in a plasmid it will be amplified and can be analysed. o It is possible to transfer recombinant DNA into almost any organism and this is the basis for a lot of modern biotechnology. o Much of the insulin used now is produced from recombinant E. coli bacteria. Hepatitis B vaccine is a protein produced in recombinant yeast cells. In the last few years, almost all babies born in Germany have been injected with this vaccine, both to protect from the acute disease and from the chronic problems ending in liver cancer. Erythropoetin (EPO) has been in the headlines because of doping in sport, but is a major treatment for some sorts of anaemia. It is produced from recombinant animal cells. These products have important medical uses, which can not be met by other methods and do not seem to be very controversial now.

2 What is gene cloning and production of a recombinant molecule?! A fragment of DNA, containing the gene to be cloned, is inserted into a second DNA molecule called a vector, to produce a recombinant molecule. (Fig1)! The recombinant DNA molecule is introduced into a host cell.! Within the host cell the vector directs multiplication of the recombinant DNA molecule, producing numerous copies of the required gene.! Copies of the recombinant DNA are passed to the progeny during host cell division.! A large number of cell divisions results a clone formation. Requirements for gene cloning Vector A vector is the vehicle for the genes in gene cloning. It should display several features: " It must be capable of replication within the host cells. " It should be relatively small, ideally less than 10 kb in size. " It must contain at least one gene that facilitates the selection e.g. antibiotic resistance. " It must carry at least one specific recognition site for restriction endonucleases.

3 Fig 1 the basic steps in gene cloning

4 The most important type of vectors are plasmids (yeast or bacteria) and viruses (bacteria or mammalian) Plasmids - It is small, usually circular, extra-chromosomal DNA. - It is capable of autonomous replication as it possesses an origin of replication (ori). - Sometimes it carries antibiotic resistance genes, which can be used as selectable markers e.g. pbr322 and puc18 (fig2). Fig 2 a map of pbr322 showing the positions of the ampicillin resistance (amp r ) and tetracycline resistance (tet r ) genes, the origin of replication (ori) and some of the most important restriction sites. - Some plasmids can integrate into the bacterial chromosomal DNA and hence replicate with the bacterial chromosome. - Size and copy number are particularly important for cloning. Generally a good cloning vector should present in the cell in multiple copies, so that large quantities of the recombinant molecule can be recovered.

5 - Conjugative plasmids can promote sexual conjugation between bacterial cells, so it facilitate the transfer of a recombinant molecule from one bacterium to another. - Small vectors such as puc18 are very convenient for manipulating DNA, but are less convenient for constructing new gene banks of organisms. - COSMIDS are suitable vectors for this purpose. A cosmid is a plasmid that carries the cos sequence of phage λ. - Often vectors designed for cloning very large pieces of DNA are called BACTERIAL ARTIFICIAL CHROMOSOMES. They are capable of cloning inserts of larger than 100 kb. - Another vectors called yeast artificial chromosomes (YACs). These are vectors that are used in Saccharomyces cerevisiae. They allow the cloning of large inserts (100kb - 1 Mb) and are often used for cloning large genomes (e.g. the human genome). - Phages have also been used as vectors. They can carry kb inserts. However, nowadays such vectors are not used as much as earlier. - Another important class of vectors are EXPRESSION VECTORS. These are vectors in which the cloned gene is expressed from a strong promoter so that large quantities of protein are produced.

6 A cloning experiment needs several steps: 1. Purification of DNA from the organism of interest 2. Purification of DNA from a suitable vector (e.g. plasmid) 3. Cutting of the DNAs 4. Mixing of the DNAs 5. Ligation of the DNAs (i.e. sticking together) 6. Introduction of the ligated DNA into a suitable host (e.g. E. coli) 7. Selection of the desired clone as this procedure produces a gene bank in which random pieces of the organism's DNA are cloned Introduction of the ligated DNA into a suitable host It is now necessary to transform this DNA into a host cell. - E. coli does not have a natural transformation system, but if you incubate cells on ice in the presence of calcium ions (e.g. 0.1M), add the DNA and then give a short heat shock (e.g. 42 C, 90 s) some of the cells take up DNA. - Electroporation is another method of promoting transformation. In this method the cells are briefly shocked with an electric field of kv/cm which is thought to create holes in the cell membrane through which the plasmid DNA may enter. After

7 the electric shock the holes are rapidly closed by the cell's membrane-repair mechanisms. - It is also possible to introduce DNA into mammalian cells. One method is to use microinjection. The DNA usually integrates fairly randomly into the chromosome. If a fertilised egg is used, it is possible to get integration in the germ line so that the progeny carry the cloned genes. However, if there is a large region of homology it is also possible to get integration by homologous recombination. - Another possibility of introducing DNA is by encapsulating into membranes (liposomes), which are then fused with the cells. - In some cases viral vectors are used that introduce the DNA into cells via infection (e.g. retroviral vectors that allow integration into the chromosome have been used). Note that the term transformation is usually used for introduction of DNA into bacterial cells, however the term transfection is used for introduction of DNA into mammalian cells. 5. Selection of the desired clone (white/blue selection)

8 Vectors 1. Plasmids A plasmid is a small DNA molecule within a cell that is physically separated from a chromosomal DNA and can replicate independently. Plasmids as cloning vector Plasmids are the most-commonly used bacterial cloning vectors. These cloning vectors contains a site that allows DNA fragments to be inserted, for example a multiple cloning site or polylinker, which has several commonly-used restriction sites to which DNA fragments may be ligated. After the gene of interest is inserted, the plasmids are introduced into bacteria by a process called transformation. These plasmids contain a selectable marker, usually an antibiotic resistance gene, which confer on the bacteria an ability to survive and proliferate in a selective growth medium containing the particular antibiotics. The cells after transformation are exposed to the selective media, and only cells containing the plasmid may survive. In this way, the antibiotics act as a filter to select only the bacteria containing the plasmid DNA. The vector may also contain other marker genes or reporter genes to facilitate selection of plasmid with cloned insert. Bacteria containing the plasmid can then be grown in large amounts, harvested, and the plasmid of interest may then be isolated using various methods of plasmid preparation. A plasmid cloning vector is typically used to clone DNA fragments of up to 10 kbp.

9 To clone longer lengths of DNA, lambda phage with lysogeny genes deleted, cosmids, bacterial artificial chromosomes, or yeast artificial chromosomes are used. 2. Cosmids A cosmid is a type of hybrid plasmid that contains a Lambda phage cos sequence. Cosmids (cos sites + plasmid = cosmids) DNA sequences are originally from the lambda phage. They are often used as a cloning vector in genetic engineering. Cosmids can be used to build genomic libraries. Cosmids can contain 37 to 52 (normally 45) kb of DNA. 3. Bacterial artificial chromosome (BAC) A bacterial artificial chromosome (BAC) is a DNA construct, based on a functional fertility plasmid (or F-plasmid), used for transforming and cloning in bacteria, usually E. coli. F-plasmids play a crucial role because they contain partition genes that promote the even distribution of plasmids after bacterial cell division. The bacterial artificial chromosome's usual insert size is kbp. A similar cloning vector called a PAC has also been produced from the bacterial P1-plasmid. E. coli bacteriophage P1 is similar to phage lambda in that it can exist in E. coli in a prophage state. It exists in the E. coli cell as a plasmid, NOT integrated into the E. coli chromosome. P1 cloning vehicles have been constructed that permit cloning of large DNA fragments- few hundred kb of DNA. Cloning and propogation of the chimeric DNA as a P1 plasmid inside E. coli cells

10 BACs are often used to sequence the genome of organisms in genome projects, for example the Human Genome Project. A short piece of the organism's DNA is amplified as an insert in BACs, and then sequenced. Finally, the sequenced parts are rearranged in silico, resulting in the genomic sequence of the organism. BACs were replaced with faster and less laborious sequencing methods like whole genome shotgun sequencing and now more recently next-gen sequencing. 4. Yeast artificial chromosome Yeast artificial chromosomes (YACs) are genetically engineered chromosomes derived from the DNA of the yeast, Saccharomyces cerevisiae, which is then ligated into a bacterial plasmid. By inserting large fragments of DNA, from kb, the inserted sequences can be cloned and physically mapped using a process called chromosome walking. This is the process that was initially used for the Human Genome Project, however due to stability issues, YACs were abandoned for the use of Bacterial artificial chromosomes (BAC). The inherently fragile chromosome was stabilized by discovering the necessary autonomously replicating sequence (ARS); a refined YAC utilizing this data was described in 1983 by Murray et al. The primary components of a YAC are the ARS, centromere, and telomeres from S. cerevisiae. Additionally, selectable marker genes, such as antibiotic resistance and a visible marker, are utilized to select transformed yeast cells. Without these sequences, the chromosome will not be stable during extracellular replication, and would not be distinguishable from colonies without the vector.

11 Gel Electrophoresis Basic tool in molecular biology Use electric field to separate macromolecules: DNA, RNA and proteins Vertical electrophoresis for the separation of DNA and RNA. Horizontal electrophoresis for protein separation. Horizontal Gel Electrophoresis DNA and RNA Tris-EDTA (TE) buffer or Tris-Borate-EDTA (TBE) buffer. Agrose or polyacrylamide Molecules are negatively charged Separation according to size Vertical Gel Electrophoresis Separation according to size (SDS-PAGE) Separation according to size and charge (2D-electrophoresis) SDS PAGE Polyacrylamide matrix SDS for protein denaturation Separation according to Size Stain: Coomassie blue, Silver nitrate or fluorescent stain OR Western blotting

12 See related animation here: Two-dimensional electrophoresis Analysis of complex protein mixtures 2 methods: size and charge The first dimension: ph gradient separate proteins according to its charge (IP) Second dimension is typical SDS gel Proteomic research See related animation here:

restriction enzymes 350 Home R. Ward: Spring 2001

restriction enzymes 350 Home R. Ward: Spring 2001 restriction enzymes 350 Home Restriction Enzymes (endonucleases): molecular scissors that cut DNA Properties of widely used Type II restriction enzymes: recognize a single sequence of bases in dsdna, usually

More information

CHAPTER 6: RECOMBINANT DNA TECHNOLOGY YEAR III PHARM.D DR. V. CHITRA

CHAPTER 6: RECOMBINANT DNA TECHNOLOGY YEAR III PHARM.D DR. V. CHITRA CHAPTER 6: RECOMBINANT DNA TECHNOLOGY YEAR III PHARM.D DR. V. CHITRA INTRODUCTION DNA : DNA is deoxyribose nucleic acid. It is made up of a base consisting of sugar, phosphate and one nitrogen base.the

More information

Transfection-Transfer of non-viral genetic material into eukaryotic cells. Infection/ Transduction- Transfer of viral genetic material into cells.

Transfection-Transfer of non-viral genetic material into eukaryotic cells. Infection/ Transduction- Transfer of viral genetic material into cells. Transfection Key words: Transient transfection, Stable transfection, transfection methods, vector, plasmid, origin of replication, reporter gene/ protein, cloning site, promoter and enhancer, signal peptide,

More information

Expression and Purification of Recombinant Protein in bacteria and Yeast. Presented By: Puspa pandey, Mohit sachdeva & Ming yu

Expression and Purification of Recombinant Protein in bacteria and Yeast. Presented By: Puspa pandey, Mohit sachdeva & Ming yu Expression and Purification of Recombinant Protein in bacteria and Yeast Presented By: Puspa pandey, Mohit sachdeva & Ming yu DNA Vectors Molecular carriers which carry fragments of DNA into host cell.

More information

Recombinant DNA and Biotechnology

Recombinant DNA and Biotechnology Recombinant DNA and Biotechnology Chapter 18 Lecture Objectives What Is Recombinant DNA? How Are New Genes Inserted into Cells? What Sources of DNA Are Used in Cloning? What Other Tools Are Used to Study

More information

Biotechnology: DNA Technology & Genomics

Biotechnology: DNA Technology & Genomics Chapter 20. Biotechnology: DNA Technology & Genomics 2003-2004 The BIG Questions How can we use our knowledge of DNA to: diagnose disease or defect? cure disease or defect? change/improve organisms? What

More information

Recombinant DNA Technology

Recombinant DNA Technology Recombinant DNA Technology Dates in the Development of Gene Cloning: 1965 - plasmids 1967 - ligase 1970 - restriction endonucleases 1972 - first experiments in gene splicing 1974 - worldwide moratorium

More information

Gene Cloning. Reference. T.A. Brown, Gene Cloning, Chapman and Hall. S.B. Primrose, Molecular Biotechnology, Blackwell

Gene Cloning. Reference. T.A. Brown, Gene Cloning, Chapman and Hall. S.B. Primrose, Molecular Biotechnology, Blackwell Gene Cloning 2004 Seungwook Kim Chem. & Bio. Eng. Reference T.A. Brown, Gene Cloning, Chapman and Hall S.B. Primrose, Molecular Biotechnology, Blackwell Why Gene Cloning is Important? A century ago, Gregor

More information

Biotechnology and Recombinant DNA (Chapter 9) Lecture Materials for Amy Warenda Czura, Ph.D. Suffolk County Community College

Biotechnology and Recombinant DNA (Chapter 9) Lecture Materials for Amy Warenda Czura, Ph.D. Suffolk County Community College Biotechnology and Recombinant DNA (Chapter 9) Lecture Materials for Amy Warenda Czura, Ph.D. Suffolk County Community College Primary Source for figures and content: Eastern Campus Tortora, G.J. Microbiology

More information

HCS604.03 Exercise 1 Dr. Jones Spring 2005. Recombinant DNA (Molecular Cloning) exercise:

HCS604.03 Exercise 1 Dr. Jones Spring 2005. Recombinant DNA (Molecular Cloning) exercise: HCS604.03 Exercise 1 Dr. Jones Spring 2005 Recombinant DNA (Molecular Cloning) exercise: The purpose of this exercise is to learn techniques used to create recombinant DNA or clone genes. You will clone

More information

Recombinant DNA & Genetic Engineering. Tools for Genetic Manipulation

Recombinant DNA & Genetic Engineering. Tools for Genetic Manipulation Recombinant DNA & Genetic Engineering g Genetic Manipulation: Tools Kathleen Hill Associate Professor Department of Biology The University of Western Ontario Tools for Genetic Manipulation DNA, RNA, cdna

More information

The E. coli Insulin Factory

The E. coli Insulin Factory The E. coli Insulin Factory BACKGROUND Bacteria have not only their normal DNA, they also have pieces of circular DNA called plasmids. Plasmids are a wonderfully ally for biologists who desire to get bacteria

More information

Compiled and/or written by Amy B. Vento and David R. Gillum

Compiled and/or written by Amy B. Vento and David R. Gillum Fact Sheet Describing Recombinant DNA and Elements Utilizing Recombinant DNA Such as Plasmids and Viral Vectors, and the Application of Recombinant DNA Techniques in Molecular Biology Compiled and/or written

More information

Green Fluorescent Protein (GFP): Genetic Transformation, Synthesis and Purification of the Recombinant Protein

Green Fluorescent Protein (GFP): Genetic Transformation, Synthesis and Purification of the Recombinant Protein Green Fluorescent Protein (GFP): Genetic Transformation, Synthesis and Purification of the Recombinant Protein INTRODUCTION Green Fluorescent Protein (GFP) is a novel protein produced by the bioluminescent

More information

DNA Scissors: Introduction to Restriction Enzymes

DNA Scissors: Introduction to Restriction Enzymes DNA Scissors: Introduction to Restriction Enzymes Objectives At the end of this activity, students should be able to 1. Describe a typical restriction site as a 4- or 6-base- pair palindrome; 2. Describe

More information

Genetic Engineering and Biotechnology

Genetic Engineering and Biotechnology 1 So, what is biotechnology?? The use of living organisms to carry out defined chemical processes for industrial or commercial application. The office of Technology Assessment of the U.S. Congress defines

More information

Bacterial Transformation and Plasmid Purification. Chapter 5: Background

Bacterial Transformation and Plasmid Purification. Chapter 5: Background Bacterial Transformation and Plasmid Purification Chapter 5: Background History of Transformation and Plasmids Bacterial methods of DNA transfer Transformation: when bacteria take up DNA from their environment

More information

CCR Biology - Chapter 9 Practice Test - Summer 2012

CCR Biology - Chapter 9 Practice Test - Summer 2012 Name: Class: Date: CCR Biology - Chapter 9 Practice Test - Summer 2012 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Genetic engineering is possible

More information

Lecture 13: DNA Technology. DNA Sequencing. DNA Sequencing Genetic Markers - RFLPs polymerase chain reaction (PCR) products of biotechnology

Lecture 13: DNA Technology. DNA Sequencing. DNA Sequencing Genetic Markers - RFLPs polymerase chain reaction (PCR) products of biotechnology Lecture 13: DNA Technology DNA Sequencing Genetic Markers - RFLPs polymerase chain reaction (PCR) products of biotechnology DNA Sequencing determine order of nucleotides in a strand of DNA > bases = A,

More information

LAB 7 DNA RESTRICTION for CLONING

LAB 7 DNA RESTRICTION for CLONING BIOTECHNOLOGY I DNA RESTRICTION FOR CLONING LAB 7 DNA RESTRICTION for CLONING STUDENT GUIDE GOALS The goals of this lab are to provide the biotech student with experience in DNA digestion with restriction

More information

Gene Mapping Techniques

Gene Mapping Techniques Gene Mapping Techniques OBJECTIVES By the end of this session the student should be able to: Define genetic linkage and recombinant frequency State how genetic distance may be estimated State how restriction

More information

Milestones of bacterial genetic research:

Milestones of bacterial genetic research: Milestones of bacterial genetic research: 1944 Avery's pneumococcal transformation experiment shows that DNA is the hereditary material 1946 Lederberg & Tatum describes bacterial conjugation using biochemical

More information

DNA Fingerprinting. Unless they are identical twins, individuals have unique DNA

DNA Fingerprinting. Unless they are identical twins, individuals have unique DNA DNA Fingerprinting Unless they are identical twins, individuals have unique DNA DNA fingerprinting The name used for the unambiguous identifying technique that takes advantage of differences in DNA sequence

More information

AP BIOLOGY 2007 SCORING GUIDELINES

AP BIOLOGY 2007 SCORING GUIDELINES AP BIOLOGY 2007 SCORING GUIDELINES Question 4 A bacterial plasmid is 100 kb in length. The plasmid DNA was digested to completion with two restriction enzymes in three separate treatments: EcoRI, HaeIII,

More information

GENE CLONING AND RECOMBINANT DNA TECHNOLOGY

GENE CLONING AND RECOMBINANT DNA TECHNOLOGY GENE CLONING AND RECOMBINANT DNA TECHNOLOGY What is recombinant DNA? DNA from 2 different sources (often from 2 different species) are combined together in vitro. Recombinant DNA forms the basis of cloning.

More information

DNA Technology Mapping a plasmid digesting How do restriction enzymes work?

DNA Technology Mapping a plasmid digesting How do restriction enzymes work? DNA Technology Mapping a plasmid A first step in working with DNA is mapping the DNA molecule. One way to do this is to use restriction enzymes (restriction endonucleases) that are naturally found in bacteria

More information

DNA CLONING. DNA segment has been developed: polymerase chain reaction PCR. Viral DNA-s bacteriophage λ, filamentous bacteriophages

DNA CLONING. DNA segment has been developed: polymerase chain reaction PCR. Viral DNA-s bacteriophage λ, filamentous bacteriophages DNA CLONING - What is cloning? The isolation of discrete pieces of DNA from their host organism and their amplification through propagation in the same or a different host More recently an alternitive,

More information

Protein Expression. A Practical Approach J. HIGGIN S

Protein Expression. A Practical Approach J. HIGGIN S Protein Expression A Practical Approach S. J. HIGGIN S B. D. HAMES List of contributors Abbreviations xv Xvi i 1. Protein expression in mammalian cell s Marlies Otter-Nilsson and Tommy Nilsso n 1. Introduction

More information

Exploiting science for engineering: BRCA2 targeted therapies

Exploiting science for engineering: BRCA2 targeted therapies 20.109 MOD1 DNA ENGINEERING Fall 2010 Exploiting science for engineering: BRCA2 targeted therapies Orsi Kiraly Engelward lab Homologous recombination is important No HR chromosomal aberrations cell death

More information

Chapter 18: Applications of Immunology

Chapter 18: Applications of Immunology Chapter 18: Applications of Immunology 1. Vaccinations 2. Monoclonal vs Polyclonal Ab 3. Diagnostic Immunology 1. Vaccinations What is Vaccination? A method of inducing artificial immunity by exposing

More information

TransformAid Bacterial Transformation Kit

TransformAid Bacterial Transformation Kit Home Contacts Order Catalog Support Search Alphabetical Index Numerical Index Restriction Endonucleases Modifying Enzymes PCR Kits Markers Nucleic Acids Nucleotides & Oligonucleotides Media Transfection

More information

Basic Concepts Recombinant DNA Use with Chapter 13, Section 13.2

Basic Concepts Recombinant DNA Use with Chapter 13, Section 13.2 Name Date lass Master 19 Basic oncepts Recombinant DN Use with hapter, Section.2 Formation of Recombinant DN ut leavage Splicing opyright lencoe/mcraw-hill, a division of he Mcraw-Hill ompanies, Inc. Bacterial

More information

Recombinant DNA Unit Exam

Recombinant DNA Unit Exam Recombinant DNA Unit Exam Question 1 Restriction enzymes are extensively used in molecular biology. Below are the recognition sites of two of these enzymes, BamHI and BclI. a) BamHI, cleaves after the

More information

An Overview of DNA Sequencing

An Overview of DNA Sequencing An Overview of DNA Sequencing Prokaryotic DNA Plasmid http://en.wikipedia.org/wiki/image:prokaryote_cell_diagram.svg Eukaryotic DNA http://en.wikipedia.org/wiki/image:plant_cell_structure_svg.svg DNA Structure

More information

Cloning GFP into Mammalian cells

Cloning GFP into Mammalian cells Protocol for Cloning GFP into Mammalian cells Studiepraktik 2013 Molecular Biology and Molecular Medicine Aarhus University Produced by the instructors: Tobias Holm Bønnelykke, Rikke Mouridsen, Steffan

More information

4. DNA replication Pages: 979-984 Difficulty: 2 Ans: C Which one of the following statements about enzymes that interact with DNA is true?

4. DNA replication Pages: 979-984 Difficulty: 2 Ans: C Which one of the following statements about enzymes that interact with DNA is true? Chapter 25 DNA Metabolism Multiple Choice Questions 1. DNA replication Page: 977 Difficulty: 2 Ans: C The Meselson-Stahl experiment established that: A) DNA polymerase has a crucial role in DNA synthesis.

More information

Lab 10: Bacterial Transformation, part 2, DNA plasmid preps, Determining DNA Concentration and Purity

Lab 10: Bacterial Transformation, part 2, DNA plasmid preps, Determining DNA Concentration and Purity Lab 10: Bacterial Transformation, part 2, DNA plasmid preps, Determining DNA Concentration and Purity Today you analyze the results of your bacterial transformation from last week and determine the efficiency

More information

Genetics 301 Sample Final Examination Spring 2003

Genetics 301 Sample Final Examination Spring 2003 Genetics 301 Sample Final Examination Spring 2003 50 Multiple Choice Questions-(Choose the best answer) 1. A cross between two true breeding lines one with dark blue flowers and one with bright white flowers

More information

Cloning and Expression of Recombinant Proteins

Cloning and Expression of Recombinant Proteins Cloning and Expression of Recombinant Proteins Dr. Günther Woehlke Dept. Physics E22 (Biophysics) Technical University Munich James-Franck-Str. D-85748 Garching Germany guenther.woehlke@mytum.de 1 Created

More information

Genetic Technology. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question.

Genetic Technology. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question. Name: Class: Date: Genetic Technology Multiple Choice Identify the choice that best completes the statement or answers the question. 1. An application of using DNA technology to help environmental scientists

More information

Genetics Test Biology I

Genetics Test Biology I Genetics Test Biology I Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Avery s experiments showed that bacteria are transformed by a. RNA. c. proteins.

More information

Answer Key Problem Set 5

Answer Key Problem Set 5 7.03 Fall 2003 1 of 6 1. a) Genetic properties of gln2- and gln 3-: Answer Key Problem Set 5 Both are uninducible, as they give decreased glutamine synthetase (GS) activity. Both are recessive, as mating

More information

Chapter 23 Definitions of GMO/LMO and modern biotechnology. Three different definitions but the same legal interpretation?

Chapter 23 Definitions of GMO/LMO and modern biotechnology. Three different definitions but the same legal interpretation? Chapter 23 Definitions of GMO/LMO and modern biotechnology JAN HUSBY NORWEGIAN INSTITUTE OF GENE ECOLOGY (GENØK), TROMSØ, NORWAY Three different definitions but the same legal interpretation? There are

More information

2.1.2 Characterization of antiviral effect of cytokine expression on HBV replication in transduced mouse hepatocytes line

2.1.2 Characterization of antiviral effect of cytokine expression on HBV replication in transduced mouse hepatocytes line i 1 INTRODUCTION 1.1 Human Hepatitis B virus (HBV) 1 1.1.1 Pathogenesis of Hepatitis B 1 1.1.2 Genome organization of HBV 3 1.1.3 Structure of HBV virion 5 1.1.4 HBV life cycle 5 1.1.5 Experimental models

More information

Protein Expression and Analysis. Vijay Yajnik, MD, PhD GI Unit MGH

Protein Expression and Analysis. Vijay Yajnik, MD, PhD GI Unit MGH Protein Expression and Analysis Vijay Yajnik, MD, PhD GI Unit MGH Identify your needs Antigen production Biochemical studies Cell Biology Protein interaction studies including proteomics Structural studies

More information

Section 16.1 Producing DNA fragments

Section 16.1 Producing DNA fragments Section 16.1 Producing DNA fragments Recombinant DNA combined DNA of two different organisms The process of using DNA technology to make certain proteins is as follows: 1.) Isolation of the DNA fragments

More information

Arabidopsis. A Practical Approach. Edited by ZOE A. WILSON Plant Science Division, School of Biological Sciences, University of Nottingham

Arabidopsis. A Practical Approach. Edited by ZOE A. WILSON Plant Science Division, School of Biological Sciences, University of Nottingham Arabidopsis A Practical Approach Edited by ZOE A. WILSON Plant Science Division, School of Biological Sciences, University of Nottingham OXPORD UNIVERSITY PRESS List of Contributors Abbreviations xv xvu

More information

Bacterial Transformation with Green Fluorescent Protein. Table of Contents Fall 2012

Bacterial Transformation with Green Fluorescent Protein. Table of Contents Fall 2012 Bacterial Transformation with Green Fluorescent Protein pglo Version Table of Contents Bacterial Transformation Introduction..1 Laboratory Exercise...3 Important Laboratory Practices 3 Protocol...... 4

More information

Transformation of the bacterium E. coli. using a gene for Green Fluorescent Protein

Transformation of the bacterium E. coli. using a gene for Green Fluorescent Protein Transformation of the bacterium E. coli using a gene for Green Fluorescent Protein Background In molecular biology, transformation refers to a form of genetic exchange in which the genetic material carried

More information

A and B are not absolutely linked. They could be far enough apart on the chromosome that they assort independently.

A and B are not absolutely linked. They could be far enough apart on the chromosome that they assort independently. Name Section 7.014 Problem Set 5 Please print out this problem set and record your answers on the printed copy. Answers to this problem set are to be turned in to the box outside 68-120 by 5:00pm on Friday

More information

Microarray Technology

Microarray Technology Microarrays And Functional Genomics CPSC265 Matt Hudson Microarray Technology Relatively young technology Usually used like a Northern blot can determine the amount of mrna for a particular gene Except

More information

Transmission of genetic variation: conjugation. Transmission of genetic variation: conjugation

Transmission of genetic variation: conjugation. Transmission of genetic variation: conjugation Transmission of genetic variation: conjugation Transmission of genetic variation: conjugation Bacterial Conjugation is genetic recombination in which there is a transfer of DNA from a living donor bacterium

More information

The Techniques of Molecular Biology: Forensic DNA Fingerprinting

The Techniques of Molecular Biology: Forensic DNA Fingerprinting Revised Fall 2011 The Techniques of Molecular Biology: Forensic DNA Fingerprinting The techniques of molecular biology are used to manipulate the structure and function of molecules such as DNA and proteins

More information

INTERNATIONAL CONFERENCE ON HARMONISATION OF TECHNICAL REQUIREMENTS FOR REGISTRATION OF PHARMACEUTICALS FOR HUMAN USE Q5B

INTERNATIONAL CONFERENCE ON HARMONISATION OF TECHNICAL REQUIREMENTS FOR REGISTRATION OF PHARMACEUTICALS FOR HUMAN USE Q5B INTERNATIONAL CONFERENCE ON HARMONISATION OF TECHNICAL REQUIREMENTS FOR REGISTRATION OF PHARMACEUTICALS FOR HUMAN USE ICH HARMONISED TRIPARTITE GUIDELINE QUALITY OF BIOTECHNOLOGICAL PRODUCTS: ANALYSIS

More information

Investigating a Eukaryotic Genome: Cloning and Sequencing a Fragment of Yeast DNA

Investigating a Eukaryotic Genome: Cloning and Sequencing a Fragment of Yeast DNA Investigating a Eukaryotic Genome: Cloning and Sequencing a Fragment of Yeast DNA Credits: This lab was created by Sarah C.R. Elgin and developed and written by Kathleen Weston-Hafer. Specific protocols

More information

GENETIC TRANSFORMATION OF BACTERIA WITH THE GENE FOR GREEN FLUORESCENT PROTEIN (GFP)

GENETIC TRANSFORMATION OF BACTERIA WITH THE GENE FOR GREEN FLUORESCENT PROTEIN (GFP) GENETIC TRANSFORMATION OF BACTERIA WITH THE GENE FOR GREEN FLUORESCENT PROTEIN (GFP) LAB BAC3 Adapted from "Biotechnology Explorer pglo Bacterial Transformation Kit Instruction Manual". (Catalog No. 166-0003-EDU)

More information

The Biotechnology Education Company

The Biotechnology Education Company EDVTEK P.. Box 1232 West Bethesda, MD 20827-1232 The Biotechnology 106 EDV-Kit # Principles of DNA Sequencing Experiment bjective: The objective of this experiment is to develop an understanding of DNA

More information

SAMPLE. Bacterial Transformation. Lab 8 BACKGROUND INFORMATION. Neo/SCI Student s Guide Name... Teacher/Section...

SAMPLE. Bacterial Transformation. Lab 8 BACKGROUND INFORMATION. Neo/SCI Student s Guide Name... Teacher/Section... 1431489 REV 001 Neo/SCI Lab 8 Bacterial Transformation BACKGROUND INFORMATION What Is Biotechnology? Before you start doing biotechnology laboratory exercises, it is important to know exactly what biotechnology

More information

Forensic DNA Testing Terminology

Forensic DNA Testing Terminology Forensic DNA Testing Terminology ABI 310 Genetic Analyzer a capillary electrophoresis instrument used by forensic DNA laboratories to separate short tandem repeat (STR) loci on the basis of their size.

More information

Viruses. Viral components: Capsid. Chapter 10: Viruses. Viral components: Nucleic Acid. Viral components: Envelope

Viruses. Viral components: Capsid. Chapter 10: Viruses. Viral components: Nucleic Acid. Viral components: Envelope Viruses Chapter 10: Viruses Lecture Exam #3 Wednesday, November 22 nd (This lecture WILL be on Exam #3) Dr. Amy Rogers Office Hours: MW 9-10 AM Too small to see with a light microscope Visible with electron

More information

BaculoDirect Baculovirus Expression System Free your hands with the BaculoDirect Baculovirus Expression System

BaculoDirect Baculovirus Expression System Free your hands with the BaculoDirect Baculovirus Expression System BaculoDirect Baculovirus Expression System Free your hands with the BaculoDirect Baculovirus Expression System The BaculoDirect Baculovirus Expression System gives you: Unique speed and simplicity High-throughput

More information

How to construct transgenic mice

How to construct transgenic mice How to construct transgenic mice Sandra Beer-Hammer Autumn School 2010 Bad Schandau Methods additional genetic information transgenic mouse line gene inactivation gene-deficient knockout mouse line Jak2

More information

Genetics Lecture Notes 7.03 2005. Lectures 1 2

Genetics Lecture Notes 7.03 2005. Lectures 1 2 Genetics Lecture Notes 7.03 2005 Lectures 1 2 Lecture 1 We will begin this course with the question: What is a gene? This question will take us four lectures to answer because there are actually several

More information

An Overview of Cells and Cell Research

An Overview of Cells and Cell Research An Overview of Cells and Cell Research 1 An Overview of Cells and Cell Research Chapter Outline Model Species and Cell types Cell components Tools of Cell Biology Model Species E. Coli: simplest organism

More information

LAB 16 Rapid Colony Transformation of E. coli with Plasmid DNA

LAB 16 Rapid Colony Transformation of E. coli with Plasmid DNA LAB 16 Rapid Colony Transformation of E. coli with Plasmid DNA Objective: In this laboratory investigation, plasmids containing fragments of foreign DNA will be used to transform Escherichia coli cells,

More information

Why Gene Cloning and DNA Analysis are Important

Why Gene Cloning and DNA Analysis are Important Chapter 1 Why Gene Cloning and DNA Analysis are Important 3 What is per'i, 6 Why gene cloning and per are so chain reaction, 4 important, 8 What is gene.5 How to find your way through this book, 12 In

More information

Pharmaceutical Biotechnology. Recombinant DNA technology Western blotting and SDS-PAGE

Pharmaceutical Biotechnology. Recombinant DNA technology Western blotting and SDS-PAGE Pharmaceutical Biotechnology Recombinant DNA technology Western blotting and SDS-PAGE Recombinant DNA Technology Protein Synthesis Western Blot Western blots allow investigators to determine the molecular

More information

Troubleshooting Guide for DNA Electrophoresis

Troubleshooting Guide for DNA Electrophoresis Troubleshooting Guide for Electrophoresis. ELECTROPHORESIS Protocols and Recommendations for Electrophoresis electrophoresis problem 1 Low intensity of all or some bands 2 Smeared bands 3 Atypical banding

More information

Molecular Biology Techniques: A Classroom Laboratory Manual THIRD EDITION

Molecular Biology Techniques: A Classroom Laboratory Manual THIRD EDITION Molecular Biology Techniques: A Classroom Laboratory Manual THIRD EDITION Susan Carson Heather B. Miller D.Scott Witherow ELSEVIER AMSTERDAM BOSTON HEIDELBERG LONDON NEW YORK OXFORD PARIS SAN DIEGO SAN

More information

Trasposable elements: P elements

Trasposable elements: P elements Trasposable elements: P elements In 1938 Marcus Rhodes provided the first genetic description of an unstable mutation, an allele of a gene required for the production of pigment in maize. This instability

More information

Chapter 13: Meiosis and Sexual Life Cycles

Chapter 13: Meiosis and Sexual Life Cycles Name Period Chapter 13: Meiosis and Sexual Life Cycles Concept 13.1 Offspring acquire genes from parents by inheriting chromosomes 1. Let s begin with a review of several terms that you may already know.

More information

European Medicines Agency

European Medicines Agency European Medicines Agency July 1996 CPMP/ICH/139/95 ICH Topic Q 5 B Quality of Biotechnological Products: Analysis of the Expression Construct in Cell Lines Used for Production of r-dna Derived Protein

More information

CHAPTER 6 GRIFFITH/HERSHEY/CHASE: DNA IS THE GENETIC MATERIAL IDENTIFICATION OF DNA DNA AND HEREDITY DNA CAN GENETICALLY TRANSFORM CELLS

CHAPTER 6 GRIFFITH/HERSHEY/CHASE: DNA IS THE GENETIC MATERIAL IDENTIFICATION OF DNA DNA AND HEREDITY DNA CAN GENETICALLY TRANSFORM CELLS CHAPTER 6 GRIFFITH/HERSHEY/CHASE: DNA IS THE GENETIC MATERIAL In 1928, Frederick Griffith was able to transform harmless bacteria into virulent pathogens with an extract that Oswald Avery proved, in 1944,

More information

Nucleic Acid Techniques in Bacterial Systematics

Nucleic Acid Techniques in Bacterial Systematics Nucleic Acid Techniques in Bacterial Systematics Edited by Erko Stackebrandt Department of Microbiology University of Queensland St Lucia, Australia and Michael Goodfellow Department of Microbiology University

More information

Tribuna Académica. Overview of Metagenomics for Marine Biodiversity Research 1. Barton E. Slatko* Metagenomics defined

Tribuna Académica. Overview of Metagenomics for Marine Biodiversity Research 1. Barton E. Slatko* Metagenomics defined Tribuna Académica 117 Overview of Metagenomics for Marine Biodiversity Research 1 Barton E. Slatko* We are in the midst of the fastest growing revolution in molecular biology, perhaps in all of life science,

More information

Guidance. 2. Definitions. 1. Introduction

Guidance. 2. Definitions. 1. Introduction Work with naked DNA or RNA (including oligonucleotides, sirna, mirna, sequences that code for highly biologically active molecules and full length viral genomes) Guidance 1. Introduction The following

More information

How to construct transgenic mice

How to construct transgenic mice How to construct transgenic mice Sandra Beer-Hammer Autumn School 2011 Bad Schandau Pharmakologie und Experimentelle Therapie (APET) Overview History Generation of embryonic stem (ES) cell lines Generation

More information

HiPer RT-PCR Teaching Kit

HiPer RT-PCR Teaching Kit HiPer RT-PCR Teaching Kit Product Code: HTBM024 Number of experiments that can be performed: 5 Duration of Experiment: Protocol: 4 hours Agarose Gel Electrophoresis: 45 minutes Storage Instructions: The

More information

Cloning Blunt-End Pfu DNA Polymerase- Generated PCR Fragments into pgem -T Vector Systems

Cloning Blunt-End Pfu DNA Polymerase- Generated PCR Fragments into pgem -T Vector Systems Promega Notes Number 71, 1999, p. 10 Blunt-End Pfu DNA Polymerase- Generated PCR Fragments into pgem -T Vector Systems By Kimberly Knoche, Ph.D., and Dan Kephart, Ph.D. Promega Corporation Corresponding

More information

1 Mutation and Genetic Change

1 Mutation and Genetic Change CHAPTER 14 1 Mutation and Genetic Change SECTION Genes in Action KEY IDEAS As you read this section, keep these questions in mind: What is the origin of genetic differences among organisms? What kinds

More information

Introduction. Preparation of Template DNA

Introduction. Preparation of Template DNA Procedures and Recommendations for DNA Sequencing at the Plant-Microbe Genomics Facility Ohio State University Biological Sciences Building Room 420, 484 W. 12th Ave., Columbus OH 43210 Telephone: 614/247-6204;

More information

Why use passive immunity?

Why use passive immunity? Vaccines Active vs Passive Immunization Active is longer acting and makes memory and effector cells Passive is shorter acting, no memory and no effector cells Both can be obtained through natural processes:

More information

LECTURE 6 Gene Mutation (Chapter 16.1-16.2)

LECTURE 6 Gene Mutation (Chapter 16.1-16.2) LECTURE 6 Gene Mutation (Chapter 16.1-16.2) 1 Mutation: A permanent change in the genetic material that can be passed from parent to offspring. Mutant (genotype): An organism whose DNA differs from the

More information

Cystic Fibrosis Webquest Sarah Follenweider, The English High School 2009 Summer Research Internship Program

Cystic Fibrosis Webquest Sarah Follenweider, The English High School 2009 Summer Research Internship Program Cystic Fibrosis Webquest Sarah Follenweider, The English High School 2009 Summer Research Internship Program Introduction: Cystic fibrosis (CF) is an inherited chronic disease that affects the lungs and

More information

Objectives: Vocabulary:

Objectives: Vocabulary: Introduction to Agarose Gel Electrophoresis: A Precursor to Cornell Institute for Biology Teacher s lab Author: Jennifer Weiser and Laura Austen Date Created: 2010 Subject: Molecular Biology and Genetics

More information

Choosing a Cloning Vector

Choosing a Cloning Vector Cloning Vectors 19 2 Choosing a Cloning Vector Andrew Preston 1. Introduction Since the construction of the first generation of general cloning vectors in the early 1970s, the number of plasmids created

More information

STUDIES ON SEED STORAGE PROTEINS OF SOME ECONOMICALLY MINOR PLANTS

STUDIES ON SEED STORAGE PROTEINS OF SOME ECONOMICALLY MINOR PLANTS STUDIES ON SEED STORAGE PROTEINS OF SOME ECONOMICALLY MINOR PLANTS THESIS SUBMITTED FOR THE DEGREB OF DOCTOR OF PHILOSOPHY (SCIENCE) OF THE UNIVERSITY OF CALCUTTA 1996 NRISINHA DE, M.Sc DEPARTMENT OF BIOCHEMISTRY

More information

Molecular and Cell Biology Laboratory (BIOL-UA 223) Instructor: Ignatius Tan Phone: 212-998-8295 Office: 764 Brown Email: ignatius.tan@nyu.

Molecular and Cell Biology Laboratory (BIOL-UA 223) Instructor: Ignatius Tan Phone: 212-998-8295 Office: 764 Brown Email: ignatius.tan@nyu. Molecular and Cell Biology Laboratory (BIOL-UA 223) Instructor: Ignatius Tan Phone: 212-998-8295 Office: 764 Brown Email: ignatius.tan@nyu.edu Course Hours: Section 1: Mon: 12:30-3:15 Section 2: Wed: 12:30-3:15

More information

NIH Mammalian Gene Collection (MGC)

NIH Mammalian Gene Collection (MGC) USER GUIDE NIH Mammalian Gene Collection (MGC) Catalog number FL1002 Revision date 28 November 2011 Publication Part number 25-0610 MAN0000351 For Research Use Only. Not for diagnostic procedures. ii Table

More information

Integrated Protein Services

Integrated Protein Services Integrated Protein Services Custom protein expression & purification Version DC04-0012 Expression strategy The first step in the recombinant protein generation process is to design an appropriate expression

More information

Application Guide... 2

Application Guide... 2 Protocol for GenomePlex Whole Genome Amplification from Formalin-Fixed Parrafin-Embedded (FFPE) tissue Application Guide... 2 I. Description... 2 II. Product Components... 2 III. Materials to be Supplied

More information

Product: Expression Arrest TM egfp control shrna vector

Product: Expression Arrest TM egfp control shrna vector Product: Expression Arrest TM egfp control vector Catalog #: RHS1702 Product Description The laboratory of Dr. Greg Hannon at Cold Spring Harbor Laboratory (CSHL) has created an RNAi Clone Library comprised

More information

Biology for the Nanotechnology Classroom. Erinn Mee erinnmee@oakton.edu 10/9/2015

Biology for the Nanotechnology Classroom. Erinn Mee erinnmee@oakton.edu 10/9/2015 Biology for the Nanotechnology Classroom Erinn Mee erinnmee@oakton.edu 10/9/2015 Size and Scale http://learn.genetics.utah.edu/content/cells/scale/scale.html Visualizing Bacteria Escherichia coli LM 1000x

More information

Bio 102 Practice Problems Recombinant DNA and Biotechnology

Bio 102 Practice Problems Recombinant DNA and Biotechnology Bio 102 Practice Problems Recombinant DNA and Biotechnology Multiple choice: Unless otherwise directed, circle the one best answer: 1. Which of the following DNA sequences could be the recognition site

More information

How to construct transgenic mice

How to construct transgenic mice How to construct transgenic mice Sandra Beer-Hammer Autumn School 2012 Bad Schandau Pharmakologie und Experimentelle Therapie (APET) Overview History Generation of embryonic stem (ES) cell lines Generation

More information

Becker Muscular Dystrophy

Becker Muscular Dystrophy Muscular Dystrophy A Case Study of Positional Cloning Described by Benjamin Duchenne (1868) X-linked recessive disease causing severe muscular degeneration. 100 % penetrance X d Y affected male Frequency

More information

Design of conditional gene targeting vectors - a recombineering approach

Design of conditional gene targeting vectors - a recombineering approach Recombineering protocol #4 Design of conditional gene targeting vectors - a recombineering approach Søren Warming, Ph.D. The purpose of this protocol is to help you in the gene targeting vector design

More information

Understanding the immune response to bacterial infections

Understanding the immune response to bacterial infections Understanding the immune response to bacterial infections A Ph.D. (SCIENCE) DISSERTATION SUBMITTED TO JADAVPUR UNIVERSITY SUSHIL KUMAR PATHAK DEPARTMENT OF CHEMISTRY BOSE INSTITUTE 2008 CONTENTS Page SUMMARY

More information

CLONING IN ESCHERICHIA COLI

CLONING IN ESCHERICHIA COLI CLONING IN ESCHERICHIA COLI Introduction: In this laboratory, you will carry out a simple cloning experiment in E. coli. Specifically, you will first create a recombinant DNA molecule by carrying out a

More information

Structure and Function of DNA

Structure and Function of DNA Structure and Function of DNA DNA and RNA Structure DNA and RNA are nucleic acids. They consist of chemical units called nucleotides. The nucleotides are joined by a sugar-phosphate backbone. The four

More information