Stability criteria for largescale timedelay systems: the LMI approach and the Genetic Algorithms


 William Sullivan
 1 years ago
 Views:
Transcription
1 Control and Cybernetics vol 35 (2006) No 2 Stability criteria for largescale timedelay systems: the LMI approach and the Genetic Algorithms by JenqDer Chen Department of Electronic Engineering National Kinmen Institute of Technology Jinning, Kinmen, Taiwan, 892, ROC Abstract: This paper addresses the asymptotic stability analysis problem for a class of linear largescale systems with time delay in the state of each subsystem as well as in the interconnections Based on the Lyapunov stability theory, a delaydependent criterion for stability analysis of the systems is derived in terms of a linear matri inequality (LMI) Finally, a numerical eample is given to demonstrate the validity of the proposed result Keywords: delaydependent criterion, largescale systems, linear matri inequality, genetic algorithms 1 Introduction Time delay naturally arises in the processing of information transmission between subsystems and its eistence is frequently the main source of instability and oscillation in many important systems Many practical control applications are encountered, involving the phenomena in question, including electrical power systems, nuclear reactors, chemical process control systems, transportation systems, computer communication, economic systems, etc Hence, the stability analysis problem for timedelay systems has received considerable attention (Kim, 2001; Kolmanovskii and Myshkis, 1992; Kwon and Park, 2004; Li and De Souza, 1997; Niculescu, 2001; Park, 1999; Richard, 2003; Su et al, 2001) In the recent years, the problem of stability analysis for largescale systems with or without time delay has been etensively studied by a number of authors Moreover, depending on whether the stability criterion itself contains the delay argument as a parameter, stability criteria for systems can be usually classified into two categories, namely the delayindependent criteria (Hmamed, 1986; Huang et al, 1995; Lyou et al, 1984; Michel and Miller, 1977; Schoen and Geering, 1995; Siljak, 1978; Wang et al, 1991) and the delaydependent criterion (Tsay et al, 1996) In general, the latter ones are less conservative than
2 292 JD CHEN the former ones, but the former ones are also important when the effect of time delay is small However, there are few papers to derive the delaydependent and delayindependent stability criteria for a class of largescale systems with time delays, to my knowledge This has motivated my study In this paper, delayindependent and delaydependent criteria for such systems can be derived to guarantee the asymptotic stability for largescale systems with timedelays in the state of each subsystem as well as in the interconnections Appropriate model transformation of original systems is useful for the stability analysis of such systems, and some tuning parameters, which satisfy the constraint on an LMI can be easily obtained by the GAs technique A numerical eample is given to illustrate that the proposed result is useful The notation used throughout this paper is as follows We denote the set of all nonnegative real numbers by R, the set of all continuous functions from [ H, 0 to R n by C 0, the transpose of matri A (respectively, vector ) by A T (respectively T ), the symmetric positive (respectively, negative) definite by A>0 (respectively A<0) We denote identity matri by I and the set {1, 2,, N} by N 2 Main results Consider the following largescale timedelay systems, which is composed of N interconnected subsystems S i, i N Each subsystem S i, i N is described as ẋ i (t) =A i i (t) A ij j (t h ij ), t 0, (1a) where i (t) is the state of each subsystem S i, i N, then, A i, A ij, i,j N are known constant matrices of appropriate dimensions, and h ij, i, j N, are nonnegative time delays in the state of each subsystems as well as in the interconnections The initial condition for each subsystem is given by i (t) =θ i (t), t [ H, 0, H=ma {h ij}, i,j N, (1b) i,j where θ i (t), i N is a continuous function on [ H, 0 A model transformation is constructed for the largescale timedelay systems of the form: d [ [ i (t) B ij j (s)ds = A i i (t) B ij j (t) dt (A ij B ij ) j (t h ij ), (2) where B ij R ni nj, i, j N are some matrices that can be chosen by GAs such that the matri Āi = A i B ij, i, j H is Hurwitz
3 Stability criteria for largescale timedelay systems 293 Now, we present a delaydependent criterion for asymptotic stability of system (1) Theorem 21 The system (1) is asymptotically stable for any constant time delays h ij satisfying 0 h ij h ij, i, j N under the condition that Ā i are Hurwitz and there eist symmetric positive definite matrices P i, R ij, T ij, V ij, and W ijk, i, j, k N such that the following LMI condition holds: Ξ 11 Ξ12 Ξ13 Ξ14 Ξ15 Ξ T 12 Ξ Ξ = Ξ T 13 0 Ξ < 0 (3) Ξ T Ξ 44 0 Ξ T Ξ 55 where Ψ 1 B21 T P 2 P 1 B 12 BN1 T P N P 1 B 1N P 2 B 21 B12P T 1 Ψ2 BN2 T Ξ 11 = P N P 2 B 2N P M B N1 B1N T P 1 P N B N2 B2N T P 2 ΨN Ψ i = ĀT i P i P i Ā i [ hji R ji V ij h ki (T kji W kji ), ˇΞ 12 = diag(γ 1,, Γ N ), Γ i =[ hi1 A T i P i B i1 hin A T i P i B in,, ˇΞ 22 = diag(ˆγ 1,, ˆΓ N ), ˆΓi = diag(r i1,,r in ), ˇΞ 13 = diag(π 1,, Π N ), Π i =[Π i1 Π in, Π ki =[ hi1 Bik T P ib i1 hin Bik T P ib in, ˇΞ 33 = diag(ˆπ 1,, ˆΠ N ), ˆΠi = diag(ˆπ i1 ˆΠ in ), ˆΠ ki = diag(t ik1,,t ikn ), ˇΞ 14 = diag(λ 1,, Λ N ), Λ i =[(A 1i B 1i ) T P 1 (A Ni B Ni ) T P N, ˇΞ 44 = diag(ˆλ 1,, ˆΛ N ), ˆΛi = diag(v 1i,,V Ni ), ˇΞ 15 = diag(ω 1,, Ω N ), Ω i =[Ω i1 Ω in, Ω ki =[ hi1 (A ik B ik ) T P i B i1 hin (A ik B ik ) T P i B in, ˇΞ 55 = diag(ˆω 1,, ˆΩ N ), ˆΩi = diag(ˆω i1 ˆΩ in ), ˆΩ ki = diag(w ik1,,w ikn )
4 294 JD CHEN Proof From the Schur Complements of Boyd et al (1994), the condition (3) is equivalent to the following inequality: Ξ( h, P i,r ij,t ijk,v ij,w ijk )= φ 1 ( h) B21 T P 2 P 1 B 12 BN1 T P N P 1 B 1N P 2 B 21 B12P T 1 φ 2 ( h) BN2 T P N P 2 B 2N P M B N1 B1N T P 1 P N B N2 B2N T P 2 φ N ( h) < 0 (4) where h denotes { h ij,i,j N}, and φ i ( h) =ĀT i P i P i Ā i [ hij A T i P ib ij Rij 1 BT ij P ia i h ji R ji (A ji B ji ) T P j V 1 ji P j (A ji B ji )V ij [ hjk Bjk T P jb jk T 1 jik BT jk P jb ji h ki T kji h jk (A ji B ji ) T P j B jk W 1 jik BT jk P j(a ji B ji ) h ki W kji The Lyapunov functional is given by V ( t )=V 1 ( t )V 2 ( t )V 3 ( t ), (5a) where V 1 ( t )= V 2 ( t )= L i ( t ) T P L i ( t ),L i ( t ) i=1 = i (t) B ij j (s)ds, i N (A ij B ij ) T P i (V 1 ij V 3 ( t )= T j (s)[(s t h ij) R ij (5b) h ik B ik W 1 ijk BT ik)p i (A ij B ij ) j (s)ds, (5c) t h ik (s t h ik ) T k (s)(t ijk W ijk ) k (s)ds, (5d)
5 Stability criteria for largescale timedelay systems 295 are the legitimate Lyapunov functional candidates The time derivatives of V i ( t ), i = 3, along the trajectories of the system (2) are given by V 1 ( t )= T i (t)(at i P i P i A i ) i (t) i=1 2 T i (t)a T i P i B ij j (s)ds 2 T j (t)bijp T i i (t) 2 T j (t)bt ij P ib ik k (s)ds t h ik 2 T j (t h ij )(A ij B ij ) T P i i (t) 2 T j (t h ij)(a ij B ij ) T P i B ik k (s)ds It is known fact that for any, y R n and Z R n n 2 T y T Z y T Z 1 y being true, we have > 0, the inequality V 1 ( t ) T i (t)(at i P i P i A i ) i (t) i=1 [ hij T i (t)a T i P i B ij R 1 ij BT ijp i A i i (t) [ T i (t)(bii T P i P i B ii ) i (t)2 i=1,j i T i (s)r ij j (s)ds T j (t)bt ij P i i (t) [ t hik T j (t)bijp T i B ik T 1 ijk BT ikp i B ij j (t) T k (s)t ijk k (s)ds t h ik [ T j ()(A ij B ij ) T P i V 1 P i (A ij B ij ) j ( ) T i (t)v ij i (t) ij [ hik T j ( )(A ij B ij ) T P i B ik W 1 ijk BT ikp i (A ij B ij ) j ( ) t h ik T k (s)w ijk k (s)ds
6 296 JD CHEN V 2 ( t )= V 3 ( t )= { T j (t) [ h ij R ij (A ij B ij ) T P i (V 1 ij h ik B ik W 1 ijk BT ik)p i (A ij B ij ) j (t) T j (s)r ij j (s)ds T j (t h ij)[(a ij B ij ) T P i (V 1 ij h ik B ik W 1 ijk BT ik )P i(a ij B ij ) j (t h ij ) }, [ hik T k (t)(t ijk W ijk ) k (t) t h jk T k (s)(t ijk W ijk ) k (s)ds Now, considering that T j (t) [ h ij R ij (A ij B ij ) T P i V 1 ij P i (A ij B ij ) h ik B T ij P ib ik T 1 ijk BT ik P ib ij h ik (A ij B ij ) T P i B ik W 1 ijk BT ikp i (A ij B ij ) j (t) = T j (t)[h ji R ji (A ji B ji ) T P j V 1 ji P j (A ji B ji ) h jk B T jip j B jk T 1 jik BT jkp j B ji h jk (A ji B ji ) T P j B jk W 1 jik BT jkp j (A ji B ji ) i (t) H ik T k (t)(t ijk W ijk ) k (t) = h ki T i (t)(t kji W kji ) i (t)
7 Stability criteria for largescale timedelay systems 297 Then, the derivative of V ( t ) satisfies V ( t )= V 1 ( t ) V 2 ( t ) V 3 ( t ) [ T i (t)φ i(h) i (t)2 i=1,j i T j (t)bt ij P i i (t) X T (t)ξ( h, P i,r ij,t ijk,v ij,w ijk )X(t), (6) where X(t) =[ T 1 (t) T N (t)t Hence, by Theorem 981 of Hale and Verduyn Lunel (1993) with (4)(6), we conclude that systems (1) and (2) are both asymptotically stable for any constant time delays h ij satisfying 0 h ij h ij, i, j N Remark 21 Notice that for fied h ij,andb ij, i, j N, theentriesof Ξ in (3) are affine in P i, R ij, T ijk, V ij,andw ijk, i, j, k N, so that the asymptotic stability problem for the largescale timedelay systems can be converted into a strictly feasible LMI problem Remark 22 Notice that for any chosen matri B ij =0, i, j N it means that the delay terms B ij j (s)ds, i, j N have not been converted to the left side of the system (2) By the above Theorem 21, the corresponding matrices R ij, T ijk, U ijk,andw ijk, i, j, k N could be chosen as zero matrices, and the LMI condition in (3) is reduced by it s corresponding elements Letting B ij =0, i, j N in Theorem 21, we achieve the following result that does not depend on delay arguments Corollary 21 The system (1) is asymptotically stable with h ij R, i,j N, provided that A i is Hurwitz, and there eist P i, and V ij, i, j N, such that the following LMI condition holds: ˆΞ11 ˆΞ12 < 0 (7) ˆΞ T 11 ˆΞ 22 where Ψ Ψ2 0 ˆΞ 11 =, Ψi = A T i P i P i A i V ij, 0 0 ΨN Ψ 12 = diag(λ 1,, Λ N ), Λ i =[A T 1iP 1 A T NiP N, Ψ 22 = diag(ˆλ 1,, ˆΛ N ), ˆΛi = diag(v 1i,,V Ni )
8 298 JD CHEN Remark 23 Suppose that for any chosen matri B ij = A ij, i, j N we have that the delay term A ij j (s)ds, i, j N, have been converted to the left side of the system (2) By the proof of Theorem 21, the corresponding matrices V ij,andw ijk, i, j, k N, could be chosen as zero matrices, and the LMI condition in (3) is reduced by its corresponding elements Choosing B ij = A ij, i, j N in Theorem 21 we achieve the following result that depends on delay arguments Corollary 22 The system (1) is asymptotically stable for any constant time delays h ij satisfying 0 h ij h ij, i, j N, provided that Â i = A i A ii is Hurwitz and there eist symmetric positive definite matrices P i, R ij,andt ij, i, j N satisfying the following LMI condition: Ξ 11 Ξ12 Ξ13 Ξ T 12 Ξ 22 0 Ξ T 13 0 Ξ 33 < 0 (8) where Ψ 1 A T 21 P 2 P 1 A 12 A T N1 P N P 1 A 1N P 2 A 21 A T 12 Ξ 11 = P 1 Ψ2 A T N2 P N P 2 A 2N, P N A N1 A T 1N P 1 P N A N2 A T 2N P 2 ΨN Ψ 1 = ÂT i P i P i Â i ( h ji R ji h ki T kji ), Ξ 12 = diag(γ 1,, Γ N ), Γ i =[ hi1 A T i P i A i1 hin A T i P i A in, Ξ 22 = diag(ˆγ 1,, ˆΓ N ), ˆΓi = diag(r i1,,r in ), Ξ 13 = diag(π 1,, Π N ), Π i =[Π i1 Π in, Π ki =[ hi1 A T ik P ia i1 hin A T ik P ia in, Ξ 33 = diag(ˆπ 1,, ˆΠ N ), ˆΠi = diag(ˆπ i1 ˆΠ in ), ˆΠ ki = diag(t ik1,,t ikn ) Now, we provide a procedure for testing the asymptotic stability of the system (1) Step 1 Choosing all B ij =0, i, j N the delayindependent criterion in Corollary 21 is applied to test the stability of the system (1) Step 2 If the condition in Corollary 21 cannot be satisfied, we choose all B ij = A ij, i, j N and the delaydependent criterion in Corollary 22 is applied to test the stability of the system (1)
9 Stability criteria for largescale timedelay systems 299 Step 3 By employing the method of GAs (Chen, 1998; Eshelman and Schaffer, 1993; Michalewicz, 1994; Gen and Cheng, 1997), the matri parameters B ij, i, j N that maimize the fitness function h ij, i, j N and Theorem 21 will be search in this algorithm Continue this algorithm until finding optimal matri parameters B ij =0, i, j N such that the system (1) and (2) are both asymptotically stable for any constant timedelays h ij satisfying 0 h ij h ij, i, j N 3 Eample Eample 31 Largescale systems with time delays: Subsystem 1: ẋ 1 (t) = [ Subsystem 2: ẋ 2 (t) = [ (t) 2 (t) (t h 11 ) (t h 12 ), (t h 21 ) (t h 22 ) (9) Comparison of system (1) with system [ (9), we have N =2 By Theorem and GAs with h11 =21143, B 11 =,andb = B 21 = B 22 =, the LMI (3) is satisfied with P 00 1 =, P = , R =, V =, V 21 =, V =, V =, [ T 111 =, W =, W = Hence, we conclude that system (9) is asymptotically stable for 0 h , andh 12,h 21,h 22 R The delayindependent criteria in Hmamed (1986), Huang et al (1995), Lyou et al (1984), Schoen and Geering (1995), Wang et al (1991) cannot be satisfied The delaydependent stability criteria of Tsay et al (1996) cannot be applied for sufficiently large time delays, h 12,h 21,h 22 R 4 Conclusions In this paper, asymptotic stability analysis problem for a class of largescale neutral timedelay systems has been considered A model transformation and
10 300 JD CHEN the Lyapunov stability theorem have been applied to obtain some stability criteria for such systems Furthermore, the computational programming LMI with GAs has been used to improve the proposed results Finally, it has been shown using a numerical eample that the result shown in this paper is fleible and sharp Acknowledgement The author would like to thank anonymous reviewers for their helpful comments The research reported here was supported by the National Science Council of Taiwan, ROC under grant NSC E References Boyd,S,Ghaoui,LEl,Feron,Eand Balakrishnan, V (1994) Linear Matri Inequalities In System And Control Theory SIAM, Philadelphia Chen, ZM, Lin, HS and Hung, CM (1998) The Design and Application of a GeneticBased Fuzzy Gray Prediction Controller The Journal of Grey System 1, Eshelman, LJ and Schaffer, JD (1993) RealCoded Genetic Algorithms and Interval Schemata In: LD Whitley, ed, Foundation of Genetic Algorithms2, Morgan Kaufmann Publishers Gen, M and Cheng, RW (1997) Genetic Algorithms and Engineering Design John Wiley and Sons, New York Hale, JK and Verduyn Lunel, SM (1993) Introduction to functional differential equations SpringerVerlag, New York Hmamed, A (1986) Note on the stability of large scale systems with delays International Journal of Systems Science 17, Huang, SN, Shao, HH and Zhang, ZJ (1995) Stability analysis of largescale systems with delays Systems & Control Letters 25, Kim, J H (2001) Delay and its timederivative dependent robust stability of timedelayed linear systems with uncertainty IEEE Transaction Automatic Control 46, Kolmanovskii, VB, and Myshkis, A (1992) Applied Theory of Functional Differential Equations Kluwer Academic Publishers, Dordrecht, Netherlands Kwon, OM, and Park, JH (2004) On improved delaydependent robust control for uncertain timedelay systems IEEE Transaction Automatic Control 49, Li, X, and De Souza, CE (1997) Delaydependent robust stability and stabilization of uncertain linear delay systems: a linear matri inequality approach IEEE Transaction Automatic Control 42,
11 Stability criteria for largescale timedelay systems 301 Lyou, J, Kim, YS and Bien, Z (1984) A note on the stability of a class of interconnected dynamic systems International Journal of Control 39, Michalewicz, Z (1994) Genetic Algorithm Data Structures = Evolution Programs SpringerVerlag, New York Michel, AN and Miller, RK (1977) Qualitative Analysis of Large Scale Dynamic Systems Academic Press, New York Niculescu, SI (2001) Delay Effects on Stability A Robust Control Approach SpringerVerlag Park, P (1999) A delay dependent stability criterion for systems with uncertain timeinvariant delays IEEE Transactions on Automatic Control 44, Richard, JP (2003) Timedelay systems: an verview of some recent advances and open problems Automatica 39, Schoen, GM and Geering, HP (1995) A note on robustness bounds for largescale timedelay systems International Journal of Systems Science 26, Siljak, DD (1978) LargeScale Dynamic Systems: Stability and Structure Elsevier NorthHolland, New York Su, TJ, Lu, CY, and Tsai, JSH (2001) LMI approach to delay dependent robust stability for uncertain timedelay systems IEE Proceeding Control Theory Applications 148, Tsay, JT, Liu, PL and Su, TJ (1996) Robust stability for perturbed largescale timedelay systems IEE Proceedings Control Theory Applications 143, Wang, WJ, Song, CC and Kao, CC (1991) Robustness bounds for largescale timedelay systems with structured and unstructured uncertainties International Journal of Systems Science 22,
Example 4.1 (nonlinear pendulum dynamics with friction) Figure 4.1: Pendulum. asin. k, a, and b. We study stability of the origin x
Lecture 4. LaSalle s Invariance Principle We begin with a motivating eample. Eample 4.1 (nonlinear pendulum dynamics with friction) Figure 4.1: Pendulum Dynamics of a pendulum with friction can be written
More informationOn the DStability of Linear and Nonlinear Positive Switched Systems
On the DStability of Linear and Nonlinear Positive Switched Systems V. S. Bokharaie, O. Mason and F. Wirth Abstract We present a number of results on Dstability of positive switched systems. Different
More informationLecture 7: Finding Lyapunov Functions 1
Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.243j (Fall 2003): DYNAMICS OF NONLINEAR SYSTEMS by A. Megretski Lecture 7: Finding Lyapunov Functions 1
More informationLecture 13 Linear quadratic Lyapunov theory
EE363 Winter 289 Lecture 13 Linear quadratic Lyapunov theory the Lyapunov equation Lyapunov stability conditions the Lyapunov operator and integral evaluating quadratic integrals analysis of ARE discretetime
More informationState Observer Design for a Class of TakagiSugeno DiscreteTime Descriptor Systems
Applied Mathematical Sciences, Vol. 9, 2015, no. 118, 58715885 HIKARI Ltd, www.mhikari.com http://dx.doi.org/10.12988/ams.2015.54288 State Observer Design for a Class of TakagiSugeno DiscreteTime Descriptor
More informationAn interval linear programming contractor
An interval linear programming contractor Introduction Milan Hladík Abstract. We consider linear programming with interval data. One of the most challenging problems in this topic is to determine or tight
More informationSTABILITY GUARANTEED ACTIVE FAULT TOLERANT CONTROL OF NETWORKED CONTROL SYSTEMS. Shanbin Li, Dominique Sauter, Christophe Aubrun, Joseph Yamé
SABILIY GUARANEED ACIVE FAUL OLERAN CONROL OF NEWORKED CONROL SYSEMS Shanbin Li, Dominique Sauter, Christophe Aubrun, Joseph Yamé Centre de Recherche en Automatique de Nancy Université Henri Poincaré,
More informationA Passivity Measure Of Systems In Cascade Based On Passivity Indices
49th IEEE Conference on Decision and Control December 57, Hilton Atlanta Hotel, Atlanta, GA, USA A Passivity Measure Of Systems In Cascade Based On Passivity Indices Han Yu and Panos J Antsaklis Abstract
More informationMinimizing the Number of Machines in a UnitTime Scheduling Problem
Minimizing the Number of Machines in a UnitTime Scheduling Problem Svetlana A. Kravchenko 1 United Institute of Informatics Problems, Surganova St. 6, 220012 Minsk, Belarus kravch@newman.basnet.by Frank
More informationNonlinear Systems of Ordinary Differential Equations
Differential Equations Massoud Malek Nonlinear Systems of Ordinary Differential Equations Dynamical System. A dynamical system has a state determined by a collection of real numbers, or more generally
More informationA New Natureinspired Algorithm for Load Balancing
A New Natureinspired Algorithm for Load Balancing Xiang Feng East China University of Science and Technology Shanghai, China 200237 Email: xfeng{@ecusteducn, @cshkuhk} Francis CM Lau The University of
More informationCONTROLLABILITY. Chapter 2. 2.1 Reachable Set and Controllability. Suppose we have a linear system described by the state equation
Chapter 2 CONTROLLABILITY 2 Reachable Set and Controllability Suppose we have a linear system described by the state equation ẋ Ax + Bu (2) x() x Consider the following problem For a given vector x in
More informationPortfolio selection based on upper and lower exponential possibility distributions
European Journal of Operational Research 114 (1999) 115±126 Theory and Methodology Portfolio selection based on upper and lower exponential possibility distributions Hideo Tanaka *, Peijun Guo Department
More informationHackingproofness and Stability in a Model of Information Security Networks
Hackingproofness and Stability in a Model of Information Security Networks Sunghoon Hong Preliminary draft, not for citation. March 1, 2008 Abstract We introduce a model of information security networks.
More informationOptimal PID Controller Design for AVR System
Tamkang Journal of Science and Engineering, Vol. 2, No. 3, pp. 259 270 (2009) 259 Optimal PID Controller Design for AVR System ChingChang Wong*, ShihAn Li and HouYi Wang Department of Electrical Engineering,
More informationOPTIMAL SELECTION BASED ON RELATIVE RANK* (the "Secretary Problem")
OPTIMAL SELECTION BASED ON RELATIVE RANK* (the "Secretary Problem") BY Y. S. CHOW, S. MORIGUTI, H. ROBBINS AND S. M. SAMUELS ABSTRACT n rankable persons appear sequentially in random order. At the ith
More informationR mp nq. (13.1) a m1 B a mn B
This electronic version is for personal use and may not be duplicated or distributed Chapter 13 Kronecker Products 131 Definition and Examples Definition 131 Let A R m n, B R p q Then the Kronecker product
More informationBrief Paper. of discretetime linear systems. www.ietdl.org
Published in IET Control Theory and Applications Received on 28th August 2012 Accepted on 26th October 2012 Brief Paper ISSN 17518644 Temporal and onestep stabilisability and detectability of discretetime
More information4. MATRICES Matrices
4. MATRICES 170 4. Matrices 4.1. Definitions. Definition 4.1.1. A matrix is a rectangular array of numbers. A matrix with m rows and n columns is said to have dimension m n and may be represented as follows:
More informationMathematics Course 111: Algebra I Part IV: Vector Spaces
Mathematics Course 111: Algebra I Part IV: Vector Spaces D. R. Wilkins Academic Year 19967 9 Vector Spaces A vector space over some field K is an algebraic structure consisting of a set V on which are
More informationAN EVALUATION METHOD FOR ENTERPRISE RESOURCE PLANNING SYSTEMS
Journal of the Operations Research Society of Japan 2008, Vol. 51, No. 4, 299309 AN EVALUATION METHOD FOR ENTERPRISE RESOURCE PLANNING SYSTEMS ShinGuang Chen Tungnan University YiKuei Lin National Taiwan
More informationAn improved online algorithm for scheduling on two unrestrictive parallel batch processing machines
This is the PrePublished Version. An improved online algorithm for scheduling on two unrestrictive parallel batch processing machines Q.Q. Nong, T.C.E. Cheng, C.T. Ng Department of Mathematics, Ocean
More informationMining changes in customer behavior in retail marketing
Expert Systems with Applications 28 (2005) 773 781 www.elsevier.com/locate/eswa Mining changes in customer behavior in retail marketing MuChen Chen a, *, AiLun Chiu b, HsuHwa Chang c a Department of
More informationOn closedform solutions of a resource allocation problem in parallel funding of R&D projects
Operations Research Letters 27 (2000) 229 234 www.elsevier.com/locate/dsw On closedform solutions of a resource allocation problem in parallel funding of R&D proects Ulku Gurler, Mustafa. C. Pnar, Mohamed
More informationSystems with Persistent Memory: the Observation Inequality Problems and Solutions
Chapter 6 Systems with Persistent Memory: the Observation Inequality Problems and Solutions Facts that are recalled in the problems wt) = ut) + 1 c A 1 s ] R c t s)) hws) + Ks r)wr)dr ds. 6.1) w = w +
More informationMinimizing Probing Cost and Achieving Identifiability in Probe Based Network Link Monitoring
Minimizing Probing Cost and Achieving Identifiability in Probe Based Network Link Monitoring Qiang Zheng, Student Member, IEEE, and Guohong Cao, Fellow, IEEE Department of Computer Science and Engineering
More informationOPTIMAl PREMIUM CONTROl IN A NONliFE INSURANCE BUSINESS
ONDERZOEKSRAPPORT NR 8904 OPTIMAl PREMIUM CONTROl IN A NONliFE INSURANCE BUSINESS BY M. VANDEBROEK & J. DHAENE D/1989/2376/5 1 IN A OPTIMAl PREMIUM CONTROl NONliFE INSURANCE BUSINESS By Martina Vandebroek
More informationDATA ANALYSIS II. Matrix Algorithms
DATA ANALYSIS II Matrix Algorithms Similarity Matrix Given a dataset D = {x i }, i=1,..,n consisting of n points in R d, let A denote the n n symmetric similarity matrix between the points, given as where
More informationNOTES ON LINEAR TRANSFORMATIONS
NOTES ON LINEAR TRANSFORMATIONS Definition 1. Let V and W be vector spaces. A function T : V W is a linear transformation from V to W if the following two properties hold. i T v + v = T v + T v for all
More informationSome Research Problems in Uncertainty Theory
Journal of Uncertain Systems Vol.3, No.1, pp.310, 2009 Online at: www.jus.org.uk Some Research Problems in Uncertainty Theory aoding Liu Uncertainty Theory Laboratory, Department of Mathematical Sciences
More informationSection 6.1  Inner Products and Norms
Section 6.1  Inner Products and Norms Definition. Let V be a vector space over F {R, C}. An inner product on V is a function that assigns, to every ordered pair of vectors x and y in V, a scalar in F,
More informationTwo classes of ternary codes and their weight distributions
Two classes of ternary codes and their weight distributions Cunsheng Ding, Torleiv Kløve, and Francesco Sica Abstract In this paper we describe two classes of ternary codes, determine their minimum weight
More informationOptimization under fuzzy ifthen rules
Optimization under fuzzy ifthen rules Christer Carlsson christer.carlsson@abo.fi Robert Fullér rfuller@abo.fi Abstract The aim of this paper is to introduce a novel statement of fuzzy mathematical programming
More informationLecture 5: Conic Optimization: Overview
EE 227A: Conve Optimization and Applications January 31, 2012 Lecture 5: Conic Optimization: Overview Lecturer: Laurent El Ghaoui Reading assignment: Chapter 4 of BV. Sections 3.13.6 of WTB. 5.1 Linear
More information4 Lyapunov Stability Theory
4 Lyapunov Stability Theory In this section we review the tools of Lyapunov stability theory. These tools will be used in the next section to analyze the stability properties of a robot controller. We
More informationDirect Methods for Solving Linear Systems. Matrix Factorization
Direct Methods for Solving Linear Systems Matrix Factorization Numerical Analysis (9th Edition) R L Burden & J D Faires Beamer Presentation Slides prepared by John Carroll Dublin City University c 2011
More informationGenerating Valid 4 4 Correlation Matrices
Applied Mathematics ENotes, 7(2007), 5359 c ISSN 16072510 Available free at mirror sites of http://www.math.nthu.edu.tw/ amen/ Generating Valid 4 4 Correlation Matrices Mark Budden, Paul Hadavas, Lorrie
More informationHierarchical Facility Location for the Reverse Logistics Network Design under Uncertainty
Journal of Uncertain Systems Vol.8, No.4, pp.5570, 04 Online at: www.jus.org.uk Hierarchical Facility Location for the Reverse Logistics Network Design under Uncertainty Ke Wang, Quan Yang School of Management,
More informationPredictive Control Algorithms: Stability despite Shortened Optimization Horizons
Predictive Control Algorithms: Stability despite Shortened Optimization Horizons Philipp Braun Jürgen Pannek Karl Worthmann University of Bayreuth, 9544 Bayreuth, Germany University of the Federal Armed
More informationLyapunov Stability Analysis of Energy Constraint for Intelligent Home Energy Management System
JAIST Reposi https://dspace.j Title Lyapunov stability analysis for intelligent home energy of energ manageme Author(s)Umer, Saher; Tan, Yasuo; Lim, Azman Citation IEICE Technical Report on Ubiquitous
More information7 Gaussian Elimination and LU Factorization
7 Gaussian Elimination and LU Factorization In this final section on matrix factorization methods for solving Ax = b we want to take a closer look at Gaussian elimination (probably the best known method
More informationNetwork Traffic Modelling
University of York Dissertation submitted for the MSc in Mathematics with Modern Applications, Department of Mathematics, University of York, UK. August 009 Network Traffic Modelling Author: David Slade
More informationAN ITERATIVE METHOD FOR THE HERMITIANGENERALIZED HAMILTONIAN SOLUTIONS TO THE INVERSE PROBLEM AX = B WITH A SUBMATRIX CONSTRAINT
Bulletin of the Iranian Mathematical Society Vol. 39 No. 6 (2013), pp 1291260. AN ITERATIVE METHOD FOR THE HERMITIANGENERALIZED HAMILTONIAN SOLUTIONS TO THE INVERSE PROBLEM AX = B WITH A SUBMATRIX CONSTRAINT
More informationEquilibria and Dynamics of. Supply Chain Network Competition with Information Asymmetry. and Minimum Quality Standards
Equilibria and Dynamics of Supply Chain Network Competition with Information Asymmetry in Quality and Minimum Quality Standards Anna Nagurney John F. Smith Memorial Professor and Dong (Michelle) Li Doctoral
More informationDemand Forecasting Optimization in Supply Chain
2011 International Conference on Information Management and Engineering (ICIME 2011) IPCSIT vol. 52 (2012) (2012) IACSIT Press, Singapore DOI: 10.7763/IPCSIT.2012.V52.12 Demand Forecasting Optimization
More informationUsing Congestion Graphs to Analyze the Stability of Network Congestion Control
INTERNATIONAL JOURNAL OF INTELLIGENT CONTROL AND SYSTEMS VOL. 14, NO. 2, JUNE 29, 125133 Using Congestion Graphs to Analyze the Stability of Network Congestion Control Damian HobsonGarcia and Tomohisa
More informationFurther Study on Strong Lagrangian Duality Property for Invex Programs via Penalty Functions 1
Further Study on Strong Lagrangian Duality Property for Invex Programs via Penalty Functions 1 J. Zhang Institute of Applied Mathematics, Chongqing University of Posts and Telecommunications, Chongqing
More informationThe Conference Call Search Problem in Wireless Networks
The Conference Call Search Problem in Wireless Networks Leah Epstein 1, and Asaf Levin 2 1 Department of Mathematics, University of Haifa, 31905 Haifa, Israel. lea@math.haifa.ac.il 2 Department of Statistics,
More information15 Limit sets. Lyapunov functions
15 Limit sets. Lyapunov functions At this point, considering the solutions to ẋ = f(x), x U R 2, (1) we were most interested in the behavior of solutions when t (sometimes, this is called asymptotic behavior
More informationA New Method for MultiObjective Linear Programming Models with Fuzzy Random Variables
383838383813 Journal of Uncertain Systems Vol.6, No.1, pp.3850, 2012 Online at: www.jus.org.uk A New Method for MultiObjective Linear Programming Models with Fuzzy Random Variables Javad Nematian * Department
More informationA simple criterion on degree sequences of graphs
Discrete Applied Mathematics 156 (2008) 3513 3517 Contents lists available at ScienceDirect Discrete Applied Mathematics journal homepage: www.elsevier.com/locate/dam Note A simple criterion on degree
More informationThe HenstockKurzweilStieltjes type integral for real functions on a fractal subset of the real line
The HenstockKurzweilStieltjes type integral for real functions on a fractal subset of the real line D. Bongiorno, G. Corrao Dipartimento di Ingegneria lettrica, lettronica e delle Telecomunicazioni,
More informationFuzzy regression model with fuzzy input and output data for manpower forecasting
Fuzzy Sets and Systems 9 (200) 205 23 www.elsevier.com/locate/fss Fuzzy regression model with fuzzy input and output data for manpower forecasting Hong Tau Lee, Sheu Hua Chen Department of Industrial Engineering
More informationBackground: State Estimation
State Estimation Cyber Security of the Smart Grid Dr. Deepa Kundur Background: State Estimation University of Toronto Dr. Deepa Kundur (University of Toronto) Cyber Security of the Smart Grid 1 / 81 Dr.
More informationOPTIMAL CONTROL OF A COMMERCIAL LOAN REPAYMENT PLAN. E.V. Grigorieva. E.N. Khailov
DISCRETE AND CONTINUOUS Website: http://aimsciences.org DYNAMICAL SYSTEMS Supplement Volume 2005 pp. 345 354 OPTIMAL CONTROL OF A COMMERCIAL LOAN REPAYMENT PLAN E.V. Grigorieva Department of Mathematics
More informationClosedloop Load Balancing: Comparison of a Discrete Event Simulation with Experiments
25 American Control Conference June 8, 25. Portland, OR, USA ThB4.2 Closedloop Load Balancing: Comparison of a Discrete Event Simulation with Experiments Zhong Tang, John White, John Chiasson, J. Douglas
More informationBy choosing to view this document, you agree to all provisions of the copyright laws protecting it.
This material is posted here with permission of the IEEE Such permission of the IEEE does not in any way imply IEEE endorsement of any of Helsinki University of Technology's products or services Internal
More informationMatrix Differentiation
1 Introduction Matrix Differentiation ( and some other stuff ) Randal J. Barnes Department of Civil Engineering, University of Minnesota Minneapolis, Minnesota, USA Throughout this presentation I have
More informationCONTROL SYSTEMS, ROBOTICS AND AUTOMATION Vol. XVI  Fault Accomodation Using Model Predictive Methods  Jovan D. Bošković and Raman K.
FAULT ACCOMMODATION USING MODEL PREDICTIVE METHODS Scientific Systems Company, Inc., Woburn, Massachusetts, USA. Keywords: Fault accommodation, Model Predictive Control (MPC), Failure Detection, Identification
More informationLecture 3: Linear Programming Relaxations and Rounding
Lecture 3: Linear Programming Relaxations and Rounding 1 Approximation Algorithms and Linear Relaxations For the time being, suppose we have a minimization problem. Many times, the problem at hand can
More informationINPUTTOSTATE STABILITY FOR DISCRETETIME NONLINEAR SYSTEMS
INPUTTOSTATE STABILITY FOR DISCRETETIME NONLINEAR SYSTEMS ZhongPing Jiang Eduardo Sontag,1 Yuan Wang,2 Department of Electrical Engineering, Polytechnic University, Six Metrotech Center, Brooklyn,
More informationClassification of Cartan matrices
Chapter 7 Classification of Cartan matrices In this chapter we describe a classification of generalised Cartan matrices This classification can be compared as the rough classification of varieties in terms
More informationDynamic Eigenvalues for Scalar Linear TimeVarying Systems
Dynamic Eigenvalues for Scalar Linear TimeVarying Systems P. van der Kloet and F.L. Neerhoff Department of Electrical Engineering Delft University of Technology Mekelweg 4 2628 CD Delft The Netherlands
More informationApproximability of TwoMachine NoWait Flowshop Scheduling with Availability Constraints
Approximability of TwoMachine NoWait Flowshop Scheduling with Availability Constraints T.C. Edwin Cheng 1, and Zhaohui Liu 1,2 1 Department of Management, The Hong Kong Polytechnic University Kowloon,
More informationClosed Loop Control of a Load Balancing Network with Time Delays and Processor Resource Constraints
1 Closed Loop Control of a Load Balancing Network with Time Delays and Processor Resource Constraints Zhong Tang 1, J. Douglas Birdwell 1, John Chiasson 1, Chaouki T. Abdallah 2 and Majeed M. Hayat 2 1
More informationA new complex network model and convergence dynamics for reputation computation in virtual organizations
Physics Letters A 356 (26) 414 425 www.elsevier.com/locate/pla A new complex network model and convergence dynamics for reputation computation in virtual organizations Jinde Cao a Wenwu Yu a Yuzhong Qu
More informationFactorization Theorems
Chapter 7 Factorization Theorems This chapter highlights a few of the many factorization theorems for matrices While some factorization results are relatively direct, others are iterative While some factorization
More informationInner Product Spaces and Orthogonality
Inner Product Spaces and Orthogonality week 34 Fall 2006 Dot product of R n The inner product or dot product of R n is a function, defined by u, v a b + a 2 b 2 + + a n b n for u a, a 2,, a n T, v b,
More informationTHE problems of characterizing the fundamental limits
Beamforming and Aligned Interference Neutralization Achieve the Degrees of Freedom Region of the 2 2 2 MIMO Interference Network (Invited Paper) Chinmay S. Vaze and Mahesh K. Varanasi Abstract We study
More informationPÓLYA URN MODELS UNDER GENERAL REPLACEMENT SCHEMES
J. Japan Statist. Soc. Vol. 31 No. 2 2001 193 205 PÓLYA URN MODELS UNDER GENERAL REPLACEMENT SCHEMES Kiyoshi Inoue* and Sigeo Aki* In this paper, we consider a Pólya urn model containing balls of m different
More informationThe Australian Journal of Mathematical Analysis and Applications
The Australian Journal of Mathematical Analysis and Applications Volume 7, Issue, Article 11, pp. 114, 011 SOME HOMOGENEOUS CYCLIC INEQUALITIES OF THREE VARIABLES OF DEGREE THREE AND FOUR TETSUYA ANDO
More informationVictims Compensation Claim Status of All Pending Claims and Claims Decided Within the Last Three Years
Claim#:021914174 Initials: J.T. Last4SSN: 6996 DOB: 5/3/1970 Crime Date: 4/30/2013 Status: Claim is currently under review. Decision expected within 7 days Claim#:041715334 Initials: M.S. Last4SSN: 2957
More informationApplications of improved grey prediction model for power demand forecasting
Energy Conversion and Management 44 (2003) 2241 2249 www.elsevier.com/locate/enconman Applications of improved grey prediction model for power demand forecasting CheChiang Hsu a, *, ChiaYon Chen b a
More informationNotes V General Equilibrium: Positive Theory. 1 Walrasian Equilibrium and Excess Demand
Notes V General Equilibrium: Positive Theory In this lecture we go on considering a general equilibrium model of a private ownership economy. In contrast to the Notes IV, we focus on positive issues such
More informationScalar Valued Functions of Several Variables; the Gradient Vector
Scalar Valued Functions of Several Variables; the Gradient Vector Scalar Valued Functions vector valued function of n variables: Let us consider a scalar (i.e., numerical, rather than y = φ(x = φ(x 1,
More informationSimilarity and Diagonalization. Similar Matrices
MATH022 Linear Algebra Brief lecture notes 48 Similarity and Diagonalization Similar Matrices Let A and B be n n matrices. We say that A is similar to B if there is an invertible n n matrix P such that
More informationLinear Maps. Isaiah Lankham, Bruno Nachtergaele, Anne Schilling (February 5, 2007)
MAT067 University of California, Davis Winter 2007 Linear Maps Isaiah Lankham, Bruno Nachtergaele, Anne Schilling (February 5, 2007) As we have discussed in the lecture on What is Linear Algebra? one of
More informationA Quality of Service Scheduling Technique for Optical LANs
A Quality of Service Scheduling Technique for Optical LANs Panagiotis G. Sarigiannidis, Member, IEEE, Sophia G. Petridou, Member, IEEE, Georgios I. Papadimitriou, Senior Member, IEEE Department of Informatics
More informationMATH 304 Linear Algebra Lecture 18: Rank and nullity of a matrix.
MATH 304 Linear Algebra Lecture 18: Rank and nullity of a matrix. Nullspace Let A = (a ij ) be an m n matrix. Definition. The nullspace of the matrix A, denoted N(A), is the set of all ndimensional column
More informationSampleddata iterative learning control for nonlinear systems with arbitrary relative degree
Automatica 37 (2001) 283}289 Brief Paper Sampleddata iterative learning control for nonlinear systems with arbitrary relative degree Mingxuan Sun, Danwei Wang* School of Electrical and Electronic Engineering,
More informationDecisionmaking with the AHP: Why is the principal eigenvector necessary
European Journal of Operational Research 145 (2003) 85 91 Decision Aiding Decisionmaking with the AHP: Why is the principal eigenvector necessary Thomas L. Saaty * University of Pittsburgh, Pittsburgh,
More information3. Reaction Diffusion Equations Consider the following ODE model for population growth
3. Reaction Diffusion Equations Consider the following ODE model for population growth u t a u t u t, u 0 u 0 where u t denotes the population size at time t, and a u plays the role of the population dependent
More informationContinuity of the Perron Root
Linear and Multilinear Algebra http://dx.doi.org/10.1080/03081087.2014.934233 ArXiv: 1407.7564 (http://arxiv.org/abs/1407.7564) Continuity of the Perron Root Carl D. Meyer Department of Mathematics, North
More informationAdaptive Control Using Combined Online and Background Learning Neural Network
Adaptive Control Using Combined Online and Background Learning Neural Network Eric N. Johnson and SeungMin Oh Abstract A new adaptive neural network (NN control concept is proposed with proof of stability
More informationRobust Geometric Programming is conp hard
Robust Geometric Programming is conp hard André Chassein and Marc Goerigk Fachbereich Mathematik, Technische Universität Kaiserslautern, Germany Abstract Geometric Programming is a useful tool with a
More informationLoad Balancing with Migration Penalties
Load Balancing with Migration Penalties Vivek F Farias, Ciamac C Moallemi, and Balaji Prabhakar Electrical Engineering, Stanford University, Stanford, CA 9435, USA Emails: {vivekf,ciamac,balaji}@stanfordedu
More information2.3 Convex Constrained Optimization Problems
42 CHAPTER 2. FUNDAMENTAL CONCEPTS IN CONVEX OPTIMIZATION Theorem 15 Let f : R n R and h : R R. Consider g(x) = h(f(x)) for all x R n. The function g is convex if either of the following two conditions
More informationLOOP TRANSFER RECOVERY FOR SAMPLEDDATA SYSTEMS 1
LOOP TRANSFER RECOVERY FOR SAMPLEDDATA SYSTEMS 1 Henrik Niemann Jakob Stoustrup Mike Lind Rank Bahram Shafai Dept. of Automation, Technical University of Denmark, Building 326, DK2800 Lyngby, Denmark
More informationDimension Theory for Ordinary Differential Equations
Vladimir A. Boichenko, Gennadij A. Leonov, Volker Reitmann Dimension Theory for Ordinary Differential Equations Teubner Contents Singular values, exterior calculus and Lozinskiinorms 15 1 Singular values
More informationThe Matrix Elements of a 3 3 Orthogonal Matrix Revisited
Physics 116A Winter 2011 The Matrix Elements of a 3 3 Orthogonal Matrix Revisited 1. Introduction In a class handout entitled, ThreeDimensional Proper and Improper Rotation Matrices, I provided a derivation
More informationSYSTEMS WITH LARGE FLEXIBLE SERVER POOLS: INSTABILITY OF NATURAL LOAD BALANCING
SYSTEMS WITH LARGE FLEXIBLE SERVER POOLS: INSTABILITY OF NATURAL LOAD BALANCING ALEXANDER L. STOLYAR AND ELENA YUDOVINA Abstract. We consider general largescale service systems with multiple customer
More informationSystems of Linear Equations
Systems of Linear Equations Beifang Chen Systems of linear equations Linear systems A linear equation in variables x, x,, x n is an equation of the form a x + a x + + a n x n = b, where a, a,, a n and
More informationOn the Interaction and Competition among Internet Service Providers
On the Interaction and Competition among Internet Service Providers Sam C.M. Lee John C.S. Lui + Abstract The current Internet architecture comprises of different privately owned Internet service providers
More information1 Introduction to Matrices
1 Introduction to Matrices In this section, important definitions and results from matrix algebra that are useful in regression analysis are introduced. While all statements below regarding the columns
More informationIBM Research Report. A Pricing Problem under Monge Property
RC23823 (W0512010) December 2, 2005 Mathematics IBM Research Report A Pricing Problem under Monge Property Oktay Günlük IBM Research Division Thomas J. Watson Research Center P.O. Box 218 Yorktown Heights,
More informationOn the Oscillation of Nonlinear Fractional Difference Equations
Mathematica Aeterna, Vol. 4, 2014, no. 1, 9199 On the Oscillation of Nonlinear Fractional Difference Equations M. Reni Sagayaraj, A.George Maria Selvam Sacred Heart College, Tirupattur  635 601, S.India
More information3. Linear Programming and Polyhedral Combinatorics
Massachusetts Institute of Technology Handout 6 18.433: Combinatorial Optimization February 20th, 2009 Michel X. Goemans 3. Linear Programming and Polyhedral Combinatorics Summary of what was seen in the
More informationSection 5: The Jacobian matrix and applications. S1: Motivation S2: Jacobian matrix + differentiability S3: The chain rule S4: Inverse functions
Section 5: The Jacobian matri and applications. S1: Motivation S2: Jacobian matri + differentiabilit S3: The chain rule S4: Inverse functions Images from Thomas calculus b Thomas, Wier, Hass & Giordano,
More informationMathematical finance and linear programming (optimization)
Mathematical finance and linear programming (optimization) Geir Dahl September 15, 2009 1 Introduction The purpose of this short note is to explain how linear programming (LP) (=linear optimization) may
More informationStability Analysis of Intelligent Home Energy Management System(HEMS)
Stability Analysis of Intelligent Home Energy Management System(HEMS) Saher Umer s1120201 saher@jaist.ac.jp 2010 Cisco Systems, Inc. All rights reserved. 1 Presentation Outline 1 1 Introduction 1.1 Home
More information