Iterative Rounding and Relaxation


 Ralf Barber
 10 months ago
 Views:
Transcription
1 Iterative Rounding and Relaxation 1 / 58 Iterative Rounding and Relaxation James Davis Department of Computer Science Rutgers University Camden February 12, 2010
2 Iterative Rounding and Relaxation 2 / 58 Iterative Rounding and Relaxation Ingredients: Linear Program Theorem about individual variable values in LP solution Technique: Solve LP Round some variables Remove variables, relax constraints Iterate
3 Iterative Rounding and Relaxation 3 / 58 Brief History Survivable Network Design Jain (1998) MBDST Goemans (2006) Singh and Lau (2007, 2008) Bansal, Khandekar, Nagarajan (2008)
4 Iterative Rounding and Relaxation 4 / 58 Introduction: Vertex Cover Outline 1 Introduction: Vertex Cover 2 LP Formulation 3 Algorithm 4 Analysis Bounding Cost Bounding Degrees 5 Main Theorem Laminar Lemma Proof 6 Improvement
5 Iterative Rounding and Relaxation 5 / 58 Introduction: Vertex Cover Vertex Cover Input: A graph G = (V, E) Nonnegative costs on vertices c v Output: A minimumcost collection of vertices so that each edge in G is incident on at least one vertex in the collection
6 Iterative Rounding and Relaxation 6 / 58 Introduction: Vertex Cover Vertex Cover min v V c v x v x u + x v 1 e = (u, v) x v 0 v V
7 Iterative Rounding and Relaxation 7 / 58 Introduction: Vertex Cover Vertex Cover: Main Theorem Theorem (NemhauserTrotter) In a basic optimal LP solution, each x v { 1 2, 1, 0} Simple 2appx algorithm: Solve the Vertex Cover LP Include all vertices with x v 0 in our cover
8 Iterative Rounding and Relaxation 8 / 58 Introduction: Vertex Cover MBDST: Problem Statement Input: Output: A graph G = (V, E) Costs c e 0 for all e E A set W V Degree bounds b v for all v W Find a mincost spanning tree (V, F) that doesn t violate degree bounds.
9 Iterative Rounding and Relaxation 9 / 58 Introduction: Vertex Cover Example MST MBDST Cost = 3 Cost = 7
10 Iterative Rounding and Relaxation 10 / 58 LP Formulation Outline 1 Introduction: Vertex Cover 2 LP Formulation 3 Algorithm 4 Analysis Bounding Cost Bounding Degrees 5 Main Theorem Laminar Lemma Proof 6 Improvement
11 Iterative Rounding and Relaxation 11 / 58 LP Formulation MBDST Properties Notation: S: any subset of vertices E(S): edges with both endpoints in S F: set of edges in MBDST Properties: Spanning: Acyclic: Degree Bounds: Exactly V 1 edges in F For S 2, at most S 1 edges of F in E(S) At most b v edges of F incident on v
12 Iterative Rounding and Relaxation 12 / 58 LP Formulation Integer Program x e = 1 if e F and x e = 0 otherwise min c e x e (Objective) e E x e = V 1 (1) e E e E(S) e δ(v) x e S 1 S V, S 2 (2) x e b v v W (3) x e {0, 1} e E
13 Iterative Rounding and Relaxation 13 / 58 LP Formulation Linear Program x e = 1 if e F and x e = 0 otherwise min c e x e (Objective) e E x e = V 1 (1) e E e E(S) e δ(v) x e S 1 S V, S 2 (2) x e b v v W (3) x e 0 e E
14 Iterative Rounding and Relaxation 14 / 58 LP Formulation LP Properties There are exponentially many constraints (2) Ellipsoid method Separation oracle (1) and (3) are easy to check (2) requires work Skip Oracle
15 Iterative Rounding and Relaxation 15 / 58 LP Formulation Separation Oracle: Flow Network
16 Iterative Rounding and Relaxation 15 / 58 LP Formulation Separation Oracle: Flow Network s t
17 Iterative Rounding and Relaxation 15 / 58 LP Formulation Separation Oracle: Flow Network s t
18 Iterative Rounding and Relaxation 15 / 58 LP Formulation Separation Oracle: Flow Network s 1/2 1/2 1/2 3/ t
19 Iterative Rounding and Relaxation 15 / 58 LP Formulation Separation Oracle: Flow Network s 1/2 1/2 1/2 3/2 0 1\2 1/2 0 1/2 t
20 Iterative Rounding and Relaxation 15 / 58 LP Formulation Separation Oracle: Flow Network s 1/2 1/2 1/2 3/2 0 1\2 1/2 0 1/ t
21 Iterative Rounding and Relaxation 16 / 58 LP Formulation Separation Oracle:st cut Capacity =
22 Iterative Rounding and Relaxation 17 / 58 LP Formulation Separation Oracle The capacity across S is V + ( S 1) The capacity across S is at least V iff x e e E(S) e E(S) The maxflow from s to t is V iff (2) are satisfied x e S 1
23 Iterative Rounding and Relaxation 18 / 58 Algorithm Outline 1 Introduction: Vertex Cover 2 LP Formulation 3 Algorithm 4 Analysis Bounding Cost Bounding Degrees 5 Main Theorem Laminar Lemma Proof 6 Improvement
24 Iterative Rounding and Relaxation 19 / 58 Algorithm Main Theorem x =< x 1, x 2,..., x E >: solution to LP Support( x): set of edges s.t. x e > 0 Theorem For any basic solution x to the linear program either: 1 v with exactly one incident edge e Support( x) x e = 1 2 v W with at most 3 edges of Support( x) incident on v Condition 1 identifies a leaf in the tree Condition 2 identifies a vertex with sufficiently small number of nonzero incident edges
25 Iterative Rounding and Relaxation 20 / 58 Algorithm Algorithm F = While V > 1 x LP solution on < G, W > Remove all edges e with x e = 0 If condition 1 is satisfied by x Add (u, v) to F Remove v and (u, v) from G If u W reduce b u by 1 If condition 2 is satisfied by x Remove v from W
26 Iterative Rounding and Relaxation 21 / 58 Algorithm Linear Program min c e x e (Objective) e E x e = V 1 (1) e E e E(S) e δ(v) x e S 1 S V, S 2 (2) x e b v v W (3) x e 0 e E
27 Iterative Rounding and Relaxation 22 / 58 Algorithm LP Relationships In each iteration LP is in the same family Same separation oracle The Main Theorem applies to each LP If condition 1 is satisfied LP is incrementally modified: Delete an x e variable Modify (1) constraint Remove some (2) constraints Modify some (3) constraints If condition 2 is satisfied LP is incrementally modified: Remove a (3) constraint
28 Iterative Rounding and Relaxation 23 / 58 Analysis Outline 1 Introduction: Vertex Cover 2 LP Formulation 3 Algorithm 4 Analysis Bounding Cost Bounding Degrees 5 Main Theorem Laminar Lemma Proof 6 Improvement
29 Iterative Rounding and Relaxation 24 / 58 Analysis Bounding Cost Outline 1 Introduction: Vertex Cover 2 LP Formulation 3 Algorithm 4 Analysis Bounding Cost Bounding Degrees 5 Main Theorem Laminar Lemma Proof 6 Improvement
30 Iterative Rounding and Relaxation 25 / 58 Analysis Bounding Cost Bounding Cost Theorem The tree returned by our algorithm has cost at most LP OPT G' e 1 v IH: cost(f ) LP (G ) cost(f ) + c e LP (G ) + c e x e LP(G ) + c e x e LP: current lin. prog. LP : new lin. prog. F : MBDST in G = LP(G)
31 Iterative Rounding and Relaxation 26 / 58 Analysis Bounding Cost Bounding Cost Lemma LP(G ) is a feasible solution to LP (G ) Changes: 1 1 on RHS, 1 on LHS 2 Remove constraints 3 1 on RHS, 1 on LHS; Remove constraints x e = V 1 (1) e E e E(S) e δ(v) x e S 1 (2) x e b v (3)
32 Iterative Rounding and Relaxation 27 / 58 Analysis Bounding Cost MinCost Spanning Trees Recap: Spanning tree has optimal cost Degree bounds? Implications: Theorem For any basic solution x to the linear program either: 1 v with exactly one incident edge e Support( x) x e = 1 2 v W with at most 3 edges of Support( x) incident on v
33 Iterative Rounding and Relaxation 27 / 58 Analysis Bounding Cost MinCost Spanning Trees Recap: Spanning tree has optimal cost Degree bounds? Implications: Theorem For any basic solution x to the linear program either: 1 v with exactly one incident edge e Support( x) x e = 1 2 v W with at most 3 edges of Support( x) incident on v When W = we have OPT
34 Iterative Rounding and Relaxation 28 / 58 Analysis Bounding Degrees Outline 1 Introduction: Vertex Cover 2 LP Formulation 3 Algorithm 4 Analysis Bounding Cost Bounding Degrees 5 Main Theorem Laminar Lemma Proof 6 Improvement
35 Iterative Rounding and Relaxation 29 / 58 Analysis Bounding Degrees Degree Bounds u 1 b v, b u 1 b v never violated b u adjusted v Algorithm x LP solution on < G, W > Remove e / Support( x) If condition 1 is satisfied by x Add (u, v) to F Remove v and (u, v) from G If u W reduce b u by 1 If condition 2 is satisfied by x Remove v from W
36 Iterative Rounding and Relaxation 29 / 58 Analysis Bounding Degrees Degree Bounds 1 u b v, b u 1 b v never violated b u adjusted v Algorithm x LP solution on < G, W > Remove e / Support( x) If condition 1 is satisfied by x Add (u, v) to F Remove v and (u, v) from G If u W reduce b u by 1 If condition 2 is satisfied by x Remove v from W
37 Iterative Rounding and Relaxation 29 / 58 Analysis Bounding Degrees Degree Bounds 1/2 1/4 0 v 0 1/4 Algorithm x LP solution on < G, W > Remove e / Support( x) If condition 1 is satisfied by x Add (u, v) to F Remove v and (u, v) from G b v 1 All 3 edges may be in F b v violated by at most 2 If u W reduce b u by 1 If condition 2 is satisfied by x Remove v from W
38 Iterative Rounding and Relaxation 29 / 58 Analysis Bounding Degrees Degree Bounds 1/2 1/4 0 v 0 1/4 Algorithm x LP solution on < G, W > Remove e / Support( x) If condition 1 is satisfied by x Add (u, v) to F Remove v and (u, v) from G b v 1 All 3 edges may be in F b v violated by at most 2 If u W reduce b u by 1 If condition 2 is satisfied by x Remove v from W
39 Iterative Rounding and Relaxation 29 / 58 Analysis Bounding Degrees Degree Bounds v 0 1 Algorithm x LP solution on < G, W > Remove e / Support( x) If condition 1 is satisfied by x Add (u, v) to F Remove v and (u, v) from G b v 1 All 3 edges may be in F b v violated by at most 2 If u W reduce b u by 1 If condition 2 is satisfied by x Remove v from W
40 Iterative Rounding and Relaxation 30 / 58 Analysis Bounding Degrees Analysis Summary Cost: Tree has cost no more than OPT Degree Bounds: No degree bound violated by more than 2 Theorem (Goemans) The algorithm for MBDST produces a spanning tree in which the degree of v is at most b v + 2 for v W and has cost no greater than OPT
41 Iterative Rounding and Relaxation 31 / 58 Main Theorem Outline 1 Introduction: Vertex Cover 2 LP Formulation 3 Algorithm 4 Analysis Bounding Cost Bounding Degrees 5 Main Theorem Laminar Lemma Proof 6 Improvement
42 Iterative Rounding and Relaxation 32 / 58 Main Theorem Main Theorem Theorem For any basic solution x to the linear program either: 1 v with exactly one incident edge e Support( x) x e = 1 2 v W with at most 3 edges of Support( x) incident on v
43 Iterative Rounding and Relaxation 33 / 58 Main Theorem Linear Program min c e x e (Objective) e E x e = V 1 (1) e E e E(S) e δ(v) x e S 1 S V, S 2 (2) x e b v v W (3) x e 0 e E
44 Iterative Rounding and Relaxation 34 / 58 Main Theorem Laminar Lemma Lemma For any basic LP solution x there is a Z W and a collection L of S V where: 1 S L, S is tight; v Z, v is tight 2 The vectors χ E(S) and χ δ(v) are independent 3 L + Z = Support( x) 4 L is laminar
45 Iterative Rounding and Relaxation 35 / 58 Main Theorem Characteristic Vector χ E(S) =< 1, 1, 1, 0, 0, 0, 0 > 6 χ δ(v) =< 0, 1, 1, 0, 1, 0, 0 >
46 Iterative Rounding and Relaxation 36 / 58 Main Theorem Laminar Sets Intersecting Sets A B Laminar Sets No intersecting sets A B A B B A
47 Iterative Rounding and Relaxation 37 / 58 Main Theorem Laminar Lemma Lemma For any basic LP solution x there is a Z W and a collection L of S V where: 1 S L, S is tight; v Z, v is tight 2 The vectors χ E(S) and χ δ(v) are independent 3 L + Z = Support( x) 4 L is laminar
48 Iterative Rounding and Relaxation 38 / 58 Main Theorem Property of L Lemma If all S L contain at least 2 vertices then L V 1 Use induction on V Base case: V = 2 Induction step Shrink smallest set to vertex Generates L and V L is laminar L = L 1 V V 1 L V 1 L V 1
49 Iterative Rounding and Relaxation 38 / 58 Main Theorem Property of L Lemma If all S L contain at least 2 vertices then L V 1 Use induction on V Base case: V = 2 Induction step Shrink smallest set to vertex Generates L and V L is laminar L = L 1 V V 1 L V 1 L V 1
50 Iterative Rounding and Relaxation 39 / 58 Main Theorem Property of Support( x) Lemma Support( x) < V + W Recall property 3 of Laminar Lemma: L + Z = Support( x) Support( x) = L + Z L + W < V + W (Previous Lemma)
51 Iterative Rounding and Relaxation 40 / 58 Main Theorem From Laminar Lemma to Main Theorem Theorem For any basic solution x to the linear program either: 1 v with exactly one incident edge e Support( x) x e = 1 2 v W with at most 3 edges of Support( x) incident on v Suppose Main Theorem wasn t true: For every v V there are at least 2 edges incident on it For every v W there are at least 4 edges incident on it Support( x) 1 2 (2( V W ) + 4( W )) = V + W (Contradiction!)
52 Iterative Rounding and Relaxation 40 / 58 Main Theorem From Laminar Lemma to Main Theorem Theorem For any basic solution x to the linear program either: 1 v with exactly one incident edge e Support( x) x e = 1 2 v W with at most 3 edges of Support( x) incident on v Suppose Main Theorem wasn t true: For every v V there are at least 2 edges incident on it For every v W there are at least 4 edges incident on it Support( x) 1 2 (2( V W ) + 4( W )) = V + W (Contradiction!)
53 Iterative Rounding and Relaxation 40 / 58 Main Theorem From Laminar Lemma to Main Theorem Theorem For any basic solution x to the linear program either: 1 v with exactly one incident edge e Support( x) x e = 1 2 v W with at most 3 edges of Support( x) incident on v Suppose Main Theorem wasn t true: For every v V there are at least 2 edges incident on it For every v W there are at least 4 edges incident on it Support( x) 1 2 (2( V W ) + 4( W )) = V + W (Contradiction!)
54 Iterative Rounding and Relaxation 41 / 58 Main Theorem From Laminar Lemma to Main Theorem Theorem For any basic solution x to the linear program either: 1 v with exactly one incident edge e Support( x) x e = 1 2 v W with at most 3 edges of Support( x) incident on v v S=Vv e E(S) x e V 2 e E x e = V 1 e δ(v) x e 1 x e 1 x e 1 x e = 1
55 Iterative Rounding and Relaxation 41 / 58 Main Theorem From Laminar Lemma to Main Theorem Theorem For any basic solution x to the linear program either: 1 v with exactly one incident edge e Support( x) x e = 1 2 v W with at most 3 edges of Support( x) incident on v v S=Vv e E(S) x e V 2 e E x e = V 1 e δ(v) x e 1 x e 1 x e 1 x e = 1
56 Iterative Rounding and Relaxation 41 / 58 Main Theorem From Laminar Lemma to Main Theorem Theorem For any basic solution x to the linear program either: 1 v with exactly one incident edge e Support( x) x e = 1 2 v W with at most 3 edges of Support( x) incident on v v S=Vv e E(S) x e V 2 e E x e = V 1 e δ(v) x e 1 x e 1 x e 1 x e = 1
57 Iterative Rounding and Relaxation 41 / 58 Main Theorem From Laminar Lemma to Main Theorem Theorem For any basic solution x to the linear program either: 1 v with exactly one incident edge e Support( x) x e = 1 2 v W with at most 3 edges of Support( x) incident on v v S=Vv e E(S) x e V 2 e E x e = V 1 e δ(v) x e 1 x e 1 x e 1 x e = 1
58 Iterative Rounding and Relaxation 41 / 58 Main Theorem From Laminar Lemma to Main Theorem Theorem For any basic solution x to the linear program either: 1 v with exactly one incident edge e Support( x) x e = 1 2 v W with at most 3 edges of Support( x) incident on v u v S={u,v} e E(S) x e V 2 e E x e = V 1 e δ(v) x e 1 x e 1 x e 1 x e = 1
59 Iterative Rounding and Relaxation 42 / 58 Main Theorem Laminar Lemma Proof Outline 1 Introduction: Vertex Cover 2 LP Formulation 3 Algorithm 4 Analysis Bounding Cost Bounding Degrees 5 Main Theorem Laminar Lemma Proof 6 Improvement
60 Iterative Rounding and Relaxation 43 / 58 Main Theorem Laminar Lemma Proof Laminar Lemma Lemma For any basic LP solution x there is a Z W and a collection L of S V where: 1 S L, S is tight; v Z, v is tight 2 The vectors χ E(S) and χ δ(v) are independent 3 L + Z = Support( x) 4 L is laminar
61 Iterative Rounding and Relaxation 44 / 58 Main Theorem Laminar Lemma Proof LP Background min c i x i (Objective) a 11 x 1 + a 12 x a 1n x n b 1 (1) a 21 x 1 + a 22 x a 2n x n b 2 (2)... =... a m1 x 1 + a m2 x a mn x n b m (m) x i 0 (NonNegative)
62 Iterative Rounding and Relaxation 45 / 58 Main Theorem Laminar Lemma Proof LP Background Linear Program Constraints define halfspaces Objective is a hyperplane Solution always a corner n tight constraints Constraints lin. ind. min c i x i a 11 x 1 + a 12 x a 1n x n b 1 (1) a 21 x 1 + a 22 x a 2n x n b 2 (2)... =... a m1 x 1 + a m2 x a mnx n b m (m) x i 0
63 Iterative Rounding and Relaxation 45 / 58 Main Theorem Laminar Lemma Proof LP Background MBDST LP Constraints define halfspaces Objective is a hyperplane Solution always a corner E tight constraints Constraints lin. ind. min c ex e e E x e = V 1 (1) e E x e S 1 (2) e E(S) x e b v (3) e δ(v) x e 0
64 Iterative Rounding and Relaxation 46 / 58 Main Theorem Laminar Lemma Proof Laminar Lemma Lemma For any basic LP solution x there is a Z W and a collection L of S V where: 1 S L, S is tight; v Z, v is tight 2 The vectors χ E(S) and χ δ(v) are independent 3 L + Z = Support( x) 4 L is laminar
65 Iterative Rounding and Relaxation 46 / 58 Main Theorem Laminar Lemma Proof Laminar Lemma Lemma For any basic LP solution x there is a Z W and a collection L of S V where: 1 S L, S is tight; v Z, v is tight 2 The vectors χ E(S) and χ δ(v) are independent 3 L + Z = Support( x) 4 L is laminar
66 Iterative Rounding and Relaxation 47 / 58 Main Theorem Laminar Lemma Proof Laminar Lemma Proof Lemma e E(S) x e is supermodular e E(S) x e + e E(T ) x e e E(S T ) x e + e E(S T ) x e S T
67 Iterative Rounding and Relaxation 48 / 58 Main Theorem Laminar Lemma Proof Laminar Lemma Proof Lemma S, T are tight, S and T cross, then S T, S T are tight and χ E(S) + χ E(T ) = χ E(S T ) + χ E(S T ) ( S 1) + ( T 1) = ( S T 1) + ( S T 1) x e + (feasibility) E(S T ) E(S T ) x e x e + x e (supermodularity) E(S) E(T ) Since S and T are tight, these are all equalities
68 Iterative Rounding and Relaxation 49 / 58 Main Theorem Laminar Lemma Proof Laminar Lemma Proof: Finding L Lemma L that is laminar and Span(T ) Span(L), where T contains all tight sets Let L be a maximal laminar collection of T Recall that χ E(S) + χ E(T ) = χ E(S T ) + χ E(S T ) S T Span(T ) Span(L) S (least int. in L) T (int. S) S T and S T S T and S T S T S T S T S T
69 Iterative Rounding and Relaxation 49 / 58 Main Theorem Laminar Lemma Proof Laminar Lemma Proof: Finding L Lemma L that is laminar and Span(T ) Span(L), where T contains all tight sets Let L be a maximal laminar collection of T Recall that χ E(S) + χ E(T ) = χ E(S T ) + χ E(S T ) S T Span(T ) Span(L) S (least int. in L) T (int. S) S T and S T S T and S T S T S T S T S T
70 Iterative Rounding and Relaxation 49 / 58 Main Theorem Laminar Lemma Proof Laminar Lemma Proof: Finding L Lemma L that is laminar and Span(T ) Span(L), where T contains all tight sets Let L be a maximal laminar collection of T Recall that χ E(S) + χ E(T ) = χ E(S T ) + χ E(S T ) S T Span(T ) Span(L) S (least int. in L) T (int. S) S T and S T S T and S T S T S T S T S T
71 Iterative Rounding and Relaxation 49 / 58 Main Theorem Laminar Lemma Proof Laminar Lemma Proof: Finding L Lemma L that is laminar and Span(T ) Span(L), where T contains all tight sets Let L be a maximal laminar collection of T Recall that χ E(S) + χ E(T ) = χ E(S T ) + χ E(S T ) S T Span(T ) Span(L) S (least int. in L) T (int. S) S T and S T S T and S T S T S T S T S T
72 Iterative Rounding and Relaxation 49 / 58 Main Theorem Laminar Lemma Proof Laminar Lemma Proof: Finding L Lemma L that is laminar and Span(T ) Span(L), where T contains all tight sets Let L be a maximal laminar collection of T Recall that χ E(S) + χ E(T ) = χ E(S T ) + χ E(S T ) T Span(T ) Span(L) S (least int. in L) T (int. S) S T and S T S T and S T S T S T S T S T
73 Iterative Rounding and Relaxation 49 / 58 Main Theorem Laminar Lemma Proof Laminar Lemma Proof: Finding L Lemma L that is laminar and Span(T ) Span(L), where T contains all tight sets Let L be a maximal laminar collection of T Recall that χ E(S) + χ E(T ) = χ E(S T ) + χ E(S T ) T Span(T ) Span(L) S (least int. in L) T (int. S) S T and S T S T and S T S T S T S T S T
74 Iterative Rounding and Relaxation 50 / 58 Main Theorem Laminar Lemma Proof Laminar Lemma Proof: Finding Z Lemma For any basic LP solution x there is a Z W and a collection L of S V where: 1 S L, S is tight; v Z, v is tight 2 The vectors χ E(S) and χ δ(v) are independent 3 L + Z = Support( x) 4 L is laminar (T, Y ) spans R Support( x) (L, Y ) spans R Support( x) To obtain (L, Z ) remove v Y that are dependent
75 Iterative Rounding and Relaxation 51 / 58 Main Theorem Laminar Lemma Proof Recap LP formulation Main Theorem Algorithm Cost no more than OPT Degree bounds violated by at most 2 Main Theorem Proof Laminar Lemma Proof
76 Iterative Rounding and Relaxation 52 / 58 Improvement Outline 1 Introduction: Vertex Cover 2 LP Formulation 3 Algorithm 4 Analysis Bounding Cost Bounding Degrees 5 Main Theorem Laminar Lemma Proof 6 Improvement
77 Iterative Rounding and Relaxation 53 / 58 Improvement Improved Main Theorem Theorem If x is a basic solution to LP where W then there is a v, s.t. δ(v) Support( x) b v + 1
78 Iterative Rounding and Relaxation 54 / 58 Improvement Algorithm Phase 1: While W x LP solution on < G, W > For all x e = 0, remove e from E Remove v from W if there are at most b v + 1 edges of δ(v) in Support( x) Phase 2: Run algorithm on < G, >
79 Iterative Rounding and Relaxation 55 / 58 Improvement Analysis Theorem (Singh and Lau) The improved algorithm for MBDST produces a spanning tree in which the degree of v is at most b v + 1 for v W and has cost no greater than OPT
80 Iterative Rounding and Relaxation 56 / 58 Improvement References Kamal Jain. A factor 2 approximation algorithm for the generalized Steiner network problem. Combinatorica, 21:3960, Michel X. Goemans. Minimum boundeddegree spanning trees. FOCS 06 Mohit Singh and Lap Chi Lau. Approximating minimum bounded degree spanning trees to within one of optimal. STOC 07.
81 Iterative Rounding and Relaxation 57 / 58 Improvement Acknowledgements Thanks to David Shmoys and David Williamson for letting us use the manuscript of their forthcoming book, The Design of Approximation Algorithms.
82 Iterative Rounding and Relaxation 58 / 58 Improvement Thank You! Return to Oracle
Lecture 9 and 10: Iterative rounding II
Approximation Algorithms and Hardness of Approximation March 19, 013 Lecture 9 and 10: Iterative rounding II Lecturer: Ola Svensson Scribes: Olivier Blanvillain In the last lecture we saw a framework for
More informationLecture 18&19: Iterative relaxation
CMPUT 675: Topics in Algorithms and Combinatorial Optimization (Fall 2009) Lecture 18&19: Iterative relaxation Lecturer: Mohammad R. Salavatipour Date: Nov 5, 2009 Scriber: Zhong Li 1 Spanning Tree Polytope
More informationCollege of Computer & Information Science Fall 2007 Northeastern University 9 October 2007
College of Computer & Information Science Fall 2007 Northeastern University 9 October 2007 CS G399: Algorithmic Power Tools I Scribe: Laura Poplawski Lecture Outline: Network Design Steiner Forest (primaldual
More information2 Approximation Results for Group Steiner Tree
Advanced Approximation Algorithms (CMU 15854B, Spring 2008) Lecture 10: Group Steiner Tree problem 14 February, 2008 Lecturer: Anupam Gupta Scribe: Amitabh Basu 1 Problem Definition We will be studying
More informationApproximating Minimum Bounded Degree Spanning Trees to within One of Optimal
Approximating Minimum Bounded Degree Spanning Trees to within One of Optimal ABSTACT Mohit Singh Tepper School of Business Carnegie Mellon University Pittsburgh, PA USA mohits@andrew.cmu.edu In the MINIMUM
More informationTopic: PrimalDual Method: Steiner Forest and Facility Location Date: 3/8/2007
CS880: Approximations Algorithms Scribe: Chi Man Liu Lecturer: Shuchi Chawla Topic: PrimalDual Method: Steiner Forest and Facility Location Date: 3/8/2007 Last time we discussed how LPduality can be
More informationVertex Cover. Linear Progamming and Approximation Algorithms. Joshua Wetzel
Linear Progamming and Approximation Algorithms Joshua Wetzel Department of Computer Science Rutgers University Camden wetzeljo@camden.rutgers.edu March 24, 29 Joshua Wetzel / 52 What is Linear Programming?
More information1 The Minimum Spanning Tree (MST) Problem
IEOR269: Lecture 3 1 Integer Programming and Combinatorial Optimization Lecture #3 IEOR 269 Feb 5, 2010 Lecturer: Dorit Hochbaum Scribe: Dogan Bilguvar Handouts: Game of Fiver and Fire Station Problems
More informationLecture 6: Approximation via LP Rounding
Lecture 6: Approximation via LP Rounding Let G = (V, E) be an (undirected) graph. A subset C V is called a vertex cover for G if for every edge (v i, v j ) E we have v i C or v j C (or both). In other
More information7. Lecture notes on the ellipsoid algorithm
Massachusetts Institute of Technology Handout 19 18.433: Combinatorial Optimization May 4th, 009 Michel X. Goemans 7. Lecture notes on the ellipsoid algorithm The simplex algorithm was the first algorithm
More informationFigure 1: Example Matching: Matching consists of edges in bold.
CS 6505: Computability & Algorithms Lectures 3 & 4, January 20 & 22, 2010 Greedy Algorithms In this lecture we will examine a couple of famous greedy algorithms and then look at matroids, which are a class
More informationChapter 11. Approximation Algorithms. Slides by Kevin Wayne PearsonAddison Wesley. All rights reserved.
Chapter 11 Approximation Algorithms Slides by Kevin Wayne. Copyright @ 2005 PearsonAddison Wesley. All rights reserved. 1 Approximation Algorithms Q. Suppose I need to solve an NPhard problem. What should
More informationLecture 7: Approximation via Randomized Rounding
Lecture 7: Approximation via Randomized Rounding Often LPs return a fractional solution where the solution x, which is supposed to be in {0, } n, is in [0, ] n instead. There is a generic way of obtaining
More informationLecture 3: Linear Programming Relaxations and Rounding
Lecture 3: Linear Programming Relaxations and Rounding 1 Approximation Algorithms and Linear Relaxations For the time being, suppose we have a minimization problem. Many times, the problem at hand can
More informationCS599: Convex and Combinatorial Optimization Fall 2013 Lecture 20: Consequences of the Ellipsoid Algorithm. Instructor: Shaddin Dughmi
CS599: Convex and Combinatorial Optimization Fall 2013 Lecture 20: Consequences of the Ellipsoid Algorithm Instructor: Shaddin Dughmi Announcements Outline 1 Recapping the Ellipsoid Method 2 Complexity
More informationGeneralizing Vertex Cover, an Introduction to LPs
CS5234: Combinatorial and Graph Algorithms Lecture 2 Generalizing Vertex Cover, an Introduction to LPs Lecturer: Seth Gilbert August 19, 2014 Abstract Today we consider two generalizations of vertex cover:
More informationDefinition A tree is a connected, acyclic graph. Alternately, a tree is a graph in which any two vertices are connected by exactly one simple path.
11.5 Trees Examples Definitions Definition A tree is a connected, acyclic graph. Alternately, a tree is a graph in which any two vertices are connected by exactly one simple path. Definition In an undirected
More information(where C, X R and are column vectors)
CS 05: Algorithms (Grad) What is a Linear Programming Problem? A linear program (LP) is a minimization problem where we are asked to minimize a given linear function subject to one or more linear inequality
More informationWeek 10. c T x + d T y. Ax + Dy = b. x integer.
Week 10 1 Integer Linear Programg So far we considered LP s with continuous variables. However sometimes decisions are intrinsically restricted to integer numbers. E.g., in the long term planning, decision
More information11. APPROXIMATION ALGORITHMS
Coping with NPcompleteness 11. APPROXIMATION ALGORITHMS load balancing center selection pricing method: vertex cover LP rounding: vertex cover generalized load balancing knapsack problem Q. Suppose I
More informationChapter 4. Trees. 4.1 Basics
Chapter 4 Trees 4.1 Basics A tree is a connected graph with no cycles. A forest is a collection of trees. A vertex of degree one, particularly in a tree, is called a leaf. Trees arise in a variety of applications.
More informationDelegate and Conquer: On Minimum Degree Minimum Cost Spanning Tree
Delegate and Conquer: On Minimum Degree Minimum Cost Spanning Tree R. Ravi Carnegie Mellon University Joint Work with Mohit Singh 10/5/2006 1 Minimum Degree MST problem Given an undirected graph G, cost
More information10.1 Integer Programming and LP relaxation
CS787: Advanced Algorithms Lecture 10: LP Relaxation and Rounding In this lecture we will design approximation algorithms using linear programming. The key insight behind this approach is that the closely
More informationCSC Linear Programming and Combinatorial Optimization Lecture 12: Approximation Algorithms using Tools from LP
S2411  Linear Programming and ombinatorial Optimization Lecture 12: Approximation Algorithms using Tools from LP Notes taken by Matei David April 12, 2005 Summary: In this lecture, we give three example
More information4. Lecture notes on matroid optimization
Massachusetts Institute of Technology Handout 9 18.433: Combinatorial Optimization March 20th, 2009 Michel X. Goemans 4. Lecture notes on matroid optimization 4.1 Definition of a Matroid Matroids are combinatorial
More information! Solve problem to optimality. ! Solve problem in polytime. ! Solve arbitrary instances of the problem. !approximation algorithm.
Approximation Algorithms Chapter Approximation Algorithms Q Suppose I need to solve an NPhard problem What should I do? A Theory says you're unlikely to find a polytime algorithm Must sacrifice one of
More information1 NPCompleteness (continued)
Mathematical Programming Lecture 27 OR 630 Fall 2006 November 30, 2006 adapted from notes by Omer Hancer 1 NPCompleteness (continued) Before starting on complexity theory, we talked about running times,
More information! Solve problem to optimality. ! Solve problem in polytime. ! Solve arbitrary instances of the problem. #approximation algorithm.
Approximation Algorithms 11 Approximation Algorithms Q Suppose I need to solve an NPhard problem What should I do? A Theory says you're unlikely to find a polytime algorithm Must sacrifice one of three
More informationDefinition 11.1. Given a graph G on n vertices, we define the following quantities:
Lecture 11 The Lovász ϑ Function 11.1 Perfect graphs We begin with some background on perfect graphs. graphs. First, we define some quantities on Definition 11.1. Given a graph G on n vertices, we define
More informationChapter 6: Random rounding of semidefinite programs
Chapter 6: Random rounding of semidefinite programs Section 6.1: Semidefinite Programming Section 6.: Finding large cuts Extra (not in book): The max sat problem. Section 6.5: Coloring 3colorabale graphs.
More informationLPbased solution methods for the asymmetric TSP
LPbased solution methods for the asymmetric TSP Vardges Melkonian Department of Mathematics, Ohio Universtiy, Athens, Ohio 45701, USA vardges@math.ohiou.edu Abstract We consider an LP relaxation for ATSP.
More informationTotally Unimodular Matrices
Totally Unimodular Matrices m constraints, n variables Vertex solution: unique solution of n linearly independent tight inequalities Can be rewritten as: That is: Totally Unimodular Matrices Assuming all
More informationLecture 5. Combinatorial Algorithm for maximum cardinality matching (König s Theorem and Hall s Theorem)
Topics in Theoretical Computer Science March 16, 2015 Lecture 5 Lecturer: Ola Svensson Scribes: Mateusz Golebiewski, Maciej Duleba These lecture notes are partly based on http://theory.epfl.ch/courses/topicstcs/lecture10.pdf
More informationCS 583: Approximation Algorithms Lecture date: February 3, 2016 Instructor: Chandra Chekuri
CS 583: Approximation Algorithms Lecture date: February 3, 2016 Instructor: Chandra Chekuri Scribe: CC Notes updated from Spring 2011. In the previous lecture we discussed the Knapsack problem. In this
More information5.1 Bipartite Matching
CS787: Advanced Algorithms Lecture 5: Applications of Network Flow In the last lecture, we looked at the problem of finding the maximum flow in a graph, and how it can be efficiently solved using the FordFulkerson
More information1. Lecture notes on bipartite matching
Massachusetts Institute of Technology Handout 3 18.433: Combinatorial Optimization February 9th, 2009 Michel X. Goemans 1. Lecture notes on bipartite matching Matching problems are among the fundamental
More informationApproximation Algorithms for Weighted Vertex Cover
Approximation Algorithms for Weighted Vertex Cover CS 511 Iowa State University November 7, 2010 CS 511 (Iowa State University) Approximation Algorithms for Weighted Vertex Cover November 7, 2010 1 / 14
More informationCMPSCI611: Greedy Algorithms and Matroids Lecture 4
CMPSCI611: Greedy Algorithms and Matroids Lecture 4 Our next algorithmic paradigm is greedy algorithms. A greedy algorithm tries to solve an optimization problem by always choosing a next step that is
More informationStanford University CS261: Optimization Handout 7 Luca Trevisan January 25, 2011
Stanford University CS261: Optimization Handout 7 Luca Trevisan January 25, 2011 Lecture 7 In which we show how to use linear programming to approximate the vertex cover problem. 1 Linear Programming Relaxations
More informationIntroduction to Operations Research
00 Introduction to Operations Research Peng Zhang June 7, 2015 School of Computer Science and Technology, Shandong University, Jinan, 250101, China. Email: algzhang@sdu.edu.cn. 1 Introduction 1 2 Overview
More informationApproximation Algorithms
Approximation Algorithms or: How I Learned to Stop Worrying and Deal with NPCompleteness Ong Jit Sheng, Jonathan (A0073924B) March, 2012 Overview Key Results (I) General techniques: Greedy algorithms
More informationRandomized Linear Time Algorithm to Find Minimum Spanning Trees. Given a connected, undirected graph, a spanning tree of that graph is a
MaoChi (Mike) Weng CS537, Prof. Homer 12/5/2013 Randomized Linear Time Algorithm to Find Minimum Spanning Trees Given a connected, undirected graph, a spanning tree of that graph is a subgraph that is
More informationInteger Programming Theory
Integer Programming Theory Laura Galli November 11, 2014 In the following we assume all functions are linear, hence we often drop the term linear. In discrete optimization, we seek to find a solution x
More informationLinear Programming. Widget Factory Example. Linear Programming: Standard Form. Widget Factory Example: Continued.
Linear Programming Widget Factory Example Learning Goals. Introduce Linear Programming Problems. Widget Example, Graphical Solution. Basic Theory:, Vertices, Existence of Solutions. Equivalent formulations.
More informationChapter 11. 11.1 Load Balancing. Approximation Algorithms. Load Balancing. Load Balancing on 2 Machines. Load Balancing: Greedy Scheduling
Approximation Algorithms Chapter Approximation Algorithms Q. Suppose I need to solve an NPhard problem. What should I do? A. Theory says you're unlikely to find a polytime algorithm. Must sacrifice one
More informationApplied Algorithm Design Lecture 5
Applied Algorithm Design Lecture 5 Pietro Michiardi Eurecom Pietro Michiardi (Eurecom) Applied Algorithm Design Lecture 5 1 / 86 Approximation Algorithms Pietro Michiardi (Eurecom) Applied Algorithm Design
More informationPartial Vertex Cover
Partial Vertex Cover Joshua Wetzel Department of Computer Science Rutgers University Camden wetzeljo@camden.rutgers.edu April 2, 2009 Joshua Wetzel Partial Vertex Cover / 48 Vertex Cover Input: Given G
More informationCS173 Lecture B, November 17, 2015
CS173 Lecture B, November 17, 2015 Tandy Warnow November 17, 2015 CS 173, Lecture B November 17, 2015 Tandy Warnow Today s material Adjacency matrices and adjacency lists (and a class exercise) Depthfirst
More informationQuadratic programming on graphs without long odd cycles
Quadratic programming on graphs without long odd cycles Marcin Kamiński Department of Computer Science Université Libre de Bruxelles, Belgium Marcin.Kaminski@ulb.ac.be Abstract We introduce a quadratic
More informationLecture 12: Steiner Tree Problems
Advanced Approximation Algorithms (CMU 15854B, Spring 008) Lecture 1: Steiner Tree Problems February 1, 008 Lecturer: Anupam Gupta Scribe: Michael Dinitz 1 Finishing up Group Steiner Tree Hardness Last
More information1 Unrelated Parallel Machine Scheduling
IIIS 014 Spring: ATCS  Selected Topics in Optimization Lecture date: Mar 13, 014 Instructor: Jian Li TA: Lingxiao Huang Scribe: Yifei Jin (Polishing not finished yet.) 1 Unrelated Parallel Machine Scheduling
More information3.3 Easy ILP problems and totally unimodular matrices
3.3 Easy ILP problems and totally unimodular matrices Consider a generic ILP problem expressed in standard form where A Z m n with n m, and b Z m. min{c t x : Ax = b, x Z n +} (1) P(b) = {x R n : Ax =
More information1 Bipartite matching and vertex covers
ORF 523 Lecture 6 Spring 2016, Princeton University Instructor: A.A. Ahmadi Scribe: G. Hall Thursday, February 25, 2016 When in doubt on the accuracy of these notes, please cross check with the instructor
More informationApproximation Algorithms: LP Relaxation, Rounding, and Randomized Rounding Techniques. My T. Thai
Approximation Algorithms: LP Relaxation, Rounding, and Randomized Rounding Techniques My T. Thai 1 Overview An overview of LP relaxation and rounding method is as follows: 1. Formulate an optimization
More informationVertex Cover Problems
Rob van Stee: Approximations und OnlineAlgorithmen 1 Vertex Cover Problems Consider a graph G=(V,E) S V is a vertex cover if {u,v} E : u S v S minimum vertex cover (MINVCP): find a vertex cover S that
More informationMath 443/543 Graph Theory Notes 4: Connector Problems
Math 443/543 Graph Theory Notes 4: Connector Problems David Glickenstein September 19, 2012 1 Trees and the Minimal Connector Problem Here is the problem: Suppose we have a collection of cities which we
More informationGraph Theory. 1 Defining and representing graphs
Graph Theory 1 Defining and representing graphs A graph is an ordered pair G = (V, E), where V is a finite, nonempty set of objects called vertices, and E is a (possibly empty) set of unordered pairs
More informationAdvanced Combinatorial Optimization 8 October Lecture 8: Matroids
18.438 Advanced Combinatorial Optimization 8 October 2009 Lecture 8: Matroids Lecturer: Michel X. Goemans Scribe: Elette Boyle* (*Based on notes from Bridget Eileen Tenner and Nicole Immorlica.) 1 Matroids
More information1 Polyhedra and Linear Programming
CS 598CSC: Combinatorial Optimization Lecture date: January 21, 2009 Instructor: Chandra Chekuri Scribe: Sungjin Im 1 Polyhedra and Linear Programming In this lecture, we will cover some basic material
More informationSparsest Cut. Computational and Metric Geometry. Instructor: Yury Makarychev
Sparsest Cut Computational and Metric Geometry Instructor: Yury Makarychev 1 Overview 1.1 Sparsest Cut with Uniform Demands Today we will talk about applications of metric embeddings in combinatorial optimization.
More informationOn the Covering Steiner Problem
On the Covering Steiner Problem Anupam Gupta 1 and Aravind Srinivasan 2 1 Department of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15232, USA. anupamg@cs.cmu.edu 2 Department of Computer
More informationMinimum Makespan Scheduling
Minimum Makespan Scheduling Minimum makespan scheduling: Definition and variants Factor 2 algorithm for identical machines PTAS for identical machines Factor 2 algorithm for unrelated machines Martin Zachariasen,
More informationLinear Programming. Computer Science 511. Iowa State University. September 24, 2010
Linear Programming Computer Science 511 Iowa State University September 24, 2010 Computer Science 511 (Iowa State University) Linear Programming September 24, 2010 1 / 27 Example: Profit Maximization Joe
More information15451/651: Design & Analysis of Algorithms March 28, 2016 Lecture #19 last changed: March 31, 2016
15451/651: Design & Analysis of Algorithms March 28, 2016 Lecture #19 last changed: March 31, 2016 While we have good algorithms for many optimization problems, the previous lecture showed that many others
More informationGRAPH THEORY and APPLICATIONS. Trees
GRAPH THEORY and APPLICATIONS Trees Properties Tree: a connected graph with no cycle (acyclic) Forest: a graph with no cycle Paths are trees. Star: A tree consisting of one vertex adjacent to all the others.
More informationCSC Linear Programming and Combinatorial Optimization Lecture 7: von Neumann minimax theorem, Yao s minimax Principle, Ellipsoid Algorithm
D CSC2411  Linear Programming and Combinatorial Optimization Lecture : von Neumann minimax theorem, Yao s minimax Principle, Ellipsoid Algorithm Notes taken by Xuming He March 4, 200 Summary: In this
More informationGraph theory. PoShen Loh. June We begin by collecting some basic facts which can be proved via barehands techniques.
Graph theory PoShen Loh June 011 1 Wellknown results We begin by collecting some basic facts which can be proved via barehands techniques. 1. The sum of all of the degrees is equal to twice the number
More informationMinimum Spanning Trees. Based on Mahesh Viswanathan s notes
Minimum Spanning Trees Based on Mahesh Viswanathan s notes MST: the problem Input: Connected graph with edge costs Goal: find such that is connected and the total cost of all edges in is the smallest T
More informationOn Allocations that Maximize Fairness
On Allocations that Maximize Fairness Uriel Feige Abstract We consider a problem known as the restricted assignment version of the maxmin allocation problem with indivisible goods. There are n items of
More informationAlgorithm Design and Analysis
Algorithm Design and Analysis LECTURE 27 Approximation Algorithms Load Balancing Weighted Vertex Cover Reminder: Fill out SRTEs online Don t forget to click submit Sofya Raskhodnikova 12/6/2011 S. Raskhodnikova;
More informationDefinition of a Linear Program
Definition of a Linear Program Definition: A function f(x 1, x,..., x n ) of x 1, x,..., x n is a linear function if and only if for some set of constants c 1, c,..., c n, f(x 1, x,..., x n ) = c 1 x 1
More informationMachine Minimization for Scheduling Jobs with Interval Constraints
! Machine Minimization for Scheduling Jobs with Interval Constraints Julia Chuzhoy Sudipto Guha Sanjeev Khanna Joseph (Seffi) Naor Abstract The problem of scheduling jobs with interval constraints is a
More informationPractice Final Solutions
Introduction to Algorithms May 14, 2003 Massachusetts Institute of Technology 6.046J18.410J Professors Erik Demaine and Shafi Goldwasser Practice Final Solutions Practice Final Solutions Do not open this
More informationMinimum Spanning Trees
Minimum Spanning Trees Algorithms and 18.304 Presentation Outline 1 Graph Terminology Minimum Spanning Trees 2 3 Outline Graph Terminology Minimum Spanning Trees 1 Graph Terminology Minimum Spanning Trees
More informationLecture 11: Integer Linear Programs
Lecture 11: Integer Linear Programs 1 Integer Linear Programs Consider the following version of Woody s problem: x 1 = chairs per day, x 2 = tables per day max z = 35x 1 + 60x 2 profits 14x 1 + 26x 2 190
More informationTHE PRIMALDUAL METHOD FOR APPROXIMATION ALGORITHMS AND ITS APPLICATION TO NETWORK DESIGN PROBLEMS
C H A P T E R 4 THE PRIMALDUAL METHOD FOR APPROXIMATION ALGORITHMS AND ITS APPLICATION TO NETWORK DESIGN PROBLEMS Michel X. Goemans David P. Williamson Dedicated to the memory of Albert W. Tucker The
More informationTutteBerge Formula. EECS 495: Combinatorial Optimization Lecture 2 Matching: EdmondsGallai Decomposition, Edmonds Algorithm
EECS 495: Combinatorial Optimization Lecture Matching: EdmondsGallai Decomposition, Edmonds Algorithm Reading: Schrijver, Chapter 4 = ( V + U o(g U))/. TutteBerge Formula For graph G and U V, let G U
More informationApproximate MinMax Theorems for Steiner RootedOrientations of Graphs and Hypergraphs
Egerváry Research Group on Combinatorial Optimization Technical reports TR00613. Published by the Egerváry Research Group, Pázmány P. sétány 1/C, H 1117, Budapest, Hungary. Web site: www.cs.elte.hu/egres.
More information1 Total Dual Integrality
CS 598CSC: Combinatorial Optimization Lecture date: February 25, 2010 Instructor: Chandra Chekuri Scribe: Bill Kinnersley 1 Total Dual Integrality Recall that if A is TUM and b, c are integral vectors,
More informationLecture More common geometric view of the simplex method
18.409 The Behavior of Algorithms in Practice 9 Apr. 2002 Lecture 14 Lecturer: Dan Spielman Scribe: Brian Sutton In this lecture, we study the worstcase complexity of the simplex method. We conclude by
More informationLecture 7,8 (Sep 22 & 24, 2015):Facility Location, KCenter
,8 CMPUT 675: Approximation Algorithms Fall 2015 Lecture 7,8 (Sep 22 & 24, 2015):Facility Location, KCenter Lecturer: Mohammad R. Salavatipour Scribe: Based on older notes 7.1 Uncapacitated Facility Location
More informationAnalysis of Algorithms I: Minimum Spanning Tree
Analysis of Algorithms I: Minimum Spanning Tree Xi Chen Columbia University We discuss the Minimum Spanning Tree problem. The input of the problem is an undirected and connected weighted graph G = (V,
More informationGood luck, veel succes!
Final exam Advanced Linear Programming, May 7, 13.0016.00 Switch off your mobile phone, PDA and any other mobile device and put it far away. No books or other reading materials are allowed. This exam
More informationStanford University CS261: Optimization Handout 5 Luca Trevisan January 18, 2011
Stanford University CS261: Optimization Handout 5 Luca Trevisan January 18, 2011 Lecture 5 In which we introduce linear programming. 1 Linear Programming A linear program is an optimization problem in
More informationM AT H E M AT I C S O F O P  E R AT I O N S R E S E A R C H
A N D R E W T U L L O C H M AT H E M AT I C S O F O P  E R AT I O N S R E S E A R C H T R I N I T Y C O L L E G E T H E U N I V E R S I T Y O F C A M B R I D G E Contents 1 Generalities 5 2 Constrained
More information2.3 Scheduling jobs on identical parallel machines
2.3 Scheduling jobs on identical parallel machines There are jobs to be processed, and there are identical machines (running in parallel) to which each job may be assigned Each job = 1,,, must be processed
More informationMinimum Spanning Trees
Minimum Spanning Trees Yan Liu LDCSEE West Virginia University, Morgantown, WV {yanliu@csee.wvu.edu} 1 Statement of Problem Let G =< V, E > be a connected graph with realvalued edge weights: w : E R,
More information1 Introduction: Approximation Algorithms
Cornell University, Fall 01 CS 680: Algorithms Lecture notes on approximation algorithms October 10 15, 010 1 Introduction: Approximation Algorithms For many important optimization problems, there is no
More informationInteger Programming Formulations for Minimum Spanning Forest Problem
Integer Programming Formulations for Minimum Spanning Forest Problem Mehdi Golari Systems and Industrial Engineering Department The University of Arizona Math 543 November 19, 2015 Golari (SIE@UA) () IP
More informationThe geometry of LP solutions
The geometry of LP solutions Optimization  10725 Carlos Guestrin Carnegie Mellon University January 25 th, 2008 1 The Simplex alg walks from vertex to vertex. Why?? 2 1 Understanding the Geometry of LPs
More informationPolynomiality of Linear Programming
Chapter 10 Polynomiality of Linear Programming In the previous section, we presented the Simplex Method. This method turns out to be very efficient for solving linear programmes in practice. While it is
More information1 Approximation Algorithms: Vertex Cover
Approximation Algorithms: Vertex Cover. Introduction to Approximation Algorithms There are several optimization problems such as Minimum Spanning Tree (MST), MinCut, Maximum Matching, in which you can
More informationResource Minimization Job Scheduling
Resource Minimization Job Scheduling Julia Chuzhoy 1 and Paolo Codenotti 2 1 Toyota Technological Institute, Chicago, IL 60637 Supported in part by NSF CAREER award CCF0844872 cjulia@ttic.org 2 Department
More informationLINEAR PROGRAMMING. Vazirani Chapter 12 Introduction to LPDuality. George Alexandridis(NTUA)
LINEAR PROGRAMMING Vazirani Chapter 12 Introduction to LPDuality George Alexandridis(NTUA) gealexan@mail.ntua.gr 1 LINEAR PROGRAMMING What is it? A tool for optimal allocation of scarce resources, among
More informationStanford University CS261: Optimization Handout 13 Luca Trevisan February 17, 2011
Stanford University CS61: Optimization Handout 13 Luca Trevisan February 17, 011 Lecture 13 In which we describe a randomized algorithm for finding the minimum cut in an undirected graph. 1 Global MinCut
More information13.1 SemiDefinite Programming
CS787: Advanced Algorithms Lecture 13: Semidefinite programming In this lecture we will study an extension of linear programming, namely semidefinite programming. Semidefinite programs are much more
More informationOn the core and f nucleolus of flow games
On the core and f nucleolus of flow games Walter Kern Daniël Paulusma Univerisity of Twente Durham University Bristol Algorithms Days 2008 Introduction Game Theory: models and analyses situations of conflict
More informationLecture 20: Inapproximability of Minimum Vertex Cover
CS 880: Advanced Complexity Theory 3//008 Lecture 0: Inapproximability of Minimum Vertex Cover Instructor: Dieter van Melkebeek Scribe: Mark Liu Last time we examined a generic approach for inapproximability
More informationLecture notes on the mincut problem
Massachusetts Institute of Technology Handout 20 8.433: Combinatorial Optimization May 0th, 2007 Michel X. Goemans Lecture notes on the mincut problem Minimum Cuts In this lecture we will describe an algorithm
More informationMinimize subject to. x S R
Chapter 12 Lagrangian Relaxation This chapter is mostly inspired by Chapter 16 of [1]. In the previous chapters, we have succeeded to find efficient algorithms to solve several important problems such
More information