Achilles a platform for exploring and visualizing clinical data summary statistics

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Achilles a platform for exploring and visualizing clinical data summary statistics"

Transcription

1 Biomedical Informatics discovery and impact Achilles a platform for exploring and visualizing clinical data summary statistics Mark Velez, MA Ning "Sunny" Shang, PhD Department of Biomedical Informatics, Columbia University NIH BD2K biocaddie webinar, August 13 th, 2015

2 Outline OHDSI ACHILLES demo Applications of ACHILLES 2

3 What is OHDSI The Observational Health Data Sciences and Informatics (OHDSI) program is a multistakeholder, interdisciplinary collaborative To bring out the value of observational health data through large-scale analytics and evidence generation Clinical characterization Population-level estimation Patient-level prediction 3

4 What is OHDSI Single observational data source is unlikely to be sufficient for research analysis needs Analyze multiple data sources concurrently Using a common data model and the foundational infrastructure to enable observational research By 2014, 58 databases in CDM > 250 million patients covered 4

5 What is OHDSI Mission To transform medical decision making by creating reliable scientific evidence about disease natural history, healthcare delivery, and the effects of medical interventions through large-scale analysis of observational health database for populationlevel estimation and patient-level predictions 5

6 OHDSI Infrastructure Data Source 1 Data Source 2 Data Source 3 Observational Medical Outcomes Partnership (OMOP) Common Data Model (CDM) statistical analysis e.g. Treatment pathway Analytic tools ACHILLES CIRCE Others 6

7 OMOP Common Data Model (CDM) V 5 7

8 Data transform in CDM Extracting, transforming, and loading (ETL) process WhiteRabbit: analyzes the structure and content of a database RabbitInAHat: connects and maps tables and columns from the raw dataset to the CDM dataset ETL-CDMBuilder: transform raw data to CDM 8

9 ACHILLES (Automated Characterization of Health Information at Large-scale Longitudinal Evidence Systems) An open source analytics framework Interactively explore population-level summary statistics for the data stored in CDM Profile your CDM data Explore population-level summaries Review data quality assessment Data in CDM Summary statistics Web visualization of statistics 9

10 ACHILLES implementation ACHILLES R package Oracle / SQL Server / Postgres / Redshift Summary statistics export into Json to prepare data for visualization Visualization by AchillesWeb (HTML5 / JavaScript) create strata tables Data quality queries (Heel) Export to JSON Visualization (AchillesWeb) 10

11 ACHILLES Summary Statistics 1 Summary of data set / clinical database Size of the database First /Continuous observation 11

12 Dashboard Summary of clinical dataset 12

13 ACHILLES Summary Statistics 2 Person demographic information and demographic information over death 13

14 Person 14

15 Death 15

16 ACHILLES Summary Statistics 3 Metadata (e.g. observation periods, data density) Observation periods document time intervals during which health care information captured Data density describes the unit quantity of records and concepts pertains in each database 16

17 Observation Periods 17

18 Data Density 18

19 ACHILLES Summary Statistics 3 Prevalence of condition/condition era/ observation/drug exposure/drug era/procedure/visit Treemap view Table view Drill down view 19

20 Condition Treemap view 20

21 Condition Table view 21

22 Condition Drill down view 1 22

23 Condition Drill down view 2 23

24 ACHILLES Summary Statistics 4 Achilles HEEL Data quality control component 24

25 Achilles Heel Data quality tool 25

26 ACHILLES Heel Error Types Error Type Clinical facts Example Illogical change Monthly change of count of condition is more than 100% Invalid ids Improper value based on norm Improper value based on inter-relationship Terminology Not standard vocabulary Non-mapped concept Wrong mapping concept Person has invalid provider_id Year of birth is less than 1800 Negative payment A condition is recorded after the patient is dead a concept is not a standard OMOP vocabulary concept Data with unmapped concepts Drug is not coded with RxNorm 26

27 Applications of ACHILLES Explore summary statistics about the clinical data Public domain (de-identified information) Integrate with clinical systems Achilles integrating other OHDSI tools Framework for other applications 27

28 ACHILLES collaborating with other OHDSI tools ACHILLES Database profiling CIRCE Cohort definition HERACLES Cohort characterization 28

29 ACHILLES Framework for other applications biocaddie DDI Suitability Framework 29

30 Suitability General definition the quality or state of being especially suitable or fitting [Merriam-Webster] In our project The extent to which a clinical dataset to meet the research needs for observational studies Data suitability is how suitable the data are for a specific research purpose 30

31 Research methods EHR characteristics lit review Suitability conceptual framework Web-based survey Metrics with Columbia EHR Hybrid Approach Categories Measures Implementation by Customizing ACHILLES Observa tional studyderived submeasur e Desider ata studyderived submeasur e 31

32 Can I access? User -- Researcher What s inside? (content) Suitability of Clinical Database for Observational Study Are data usable? Policy and Administration Data policy documentat ion Administrati ve platform Technical accessibility Relevance Healthcare organization description Data organization documentation Research data inventory Available and retrievable temporal information Descriptive metadata and provenance documentation Data provenance Database content synopsis Usability Data representatio n Usefulness Cohort availability Database linkability Quality Data quality control Database data quality Research sample data quality Accessibility Representation Intrinsic Contextual Data (data characteristics)

33 Suitability Survey 33

34 Implementation 34

35 Important websites OHDSI Main GitHub Page: Forum: ACHILLES R Package for Generating Statistics for ACHILLES: Web Application for Viewing ACHILLES Results: Demo ple%20database/dashboard 35

An Open Science Approach to Medical Evidence Generation: Introducing Observational Health Data Sciences and Informatics

An Open Science Approach to Medical Evidence Generation: Introducing Observational Health Data Sciences and Informatics An Open Science Approach to Medical Evidence Generation: Introducing Observational Health Data Sciences and Informatics Jon Duke, MD MS Regenstrief Institute Academy Heath June 14 2015 Slide Credits: Patrick

More information

How to extract transform and load observational data?

How to extract transform and load observational data? How to extract transform and load observational data? Martijn Schuemie Janssen Research & Development Department of Pharmacology & Pharmacy, The University of Hong Kong Outline Observational data & research

More information

Next-generation Phenotyping Using Interoperable Big Data

Next-generation Phenotyping Using Interoperable Big Data Biomedical Informatics discovery and impact Next-generation Phenotyping Using Interoperable Big Data George Hripcsak, Chunhua Weng Columbia University Medical Center Collab with Mount Sinai Medical Center

More information

Learning from observational databases: Lessons from OMOP and OHDSI

Learning from observational databases: Lessons from OMOP and OHDSI Learning from observational databases: Lessons from OMOP and OHDSI Patrick Ryan Janssen Research and Development David Madigan Columbia University http://www.omop.org http://www.ohdsi.org The sole cause

More information

Connecting Basic Research and Healthcare Big Data

Connecting Basic Research and Healthcare Big Data Elsevier Health Analytics WHS 2015 Big Data in Health Connecting Basic Research and Healthcare Big Data Olaf Lodbrok Managing Director Elsevier Health Analytics o.lodbrok@elsevier.com t +49 89 5383 600

More information

Utility of Common Data Models for EHR and Registry Data Integration: Use in Automated Surveillance

Utility of Common Data Models for EHR and Registry Data Integration: Use in Automated Surveillance Utility of Common Data Models for EHR and Registry Data Integration: Use in Automated Surveillance Frederic S. Resnic, MS, MSc Chairman, Department of Cardiovascular Medicine Co-Director, Comparative Effectiveness

More information

Sisense. Product Highlights. www.sisense.com

Sisense. Product Highlights. www.sisense.com Sisense Product Highlights Introduction Sisense is a business intelligence solution that simplifies analytics for complex data by offering an end-to-end platform that lets users easily prepare and analyze

More information

to Advance Discovery NAS Committee on Use of Emerging Science for Allen Dearry, Ph.D., NIEHS

to Advance Discovery NAS Committee on Use of Emerging Science for Allen Dearry, Ph.D., NIEHS Integrating Environmental Health Data to Advance Discovery NAS Committee on Use of Emerging Science for Environmental Health Decisions January 10-11, 2013 Allen Dearry, Ph.D., NIEHS Outline Is there a

More information

Open-Source Big Data Analytics in Healthcare

Open-Source Big Data Analytics in Healthcare Open-Source Big Data Analytics in Healthcare Jon Duke, George Hripcsak, Patrick Ryan www.ohdsi.org/medinfo-2015-tutorial Introduction Introducing OHDSI The Observational Health Data Sciences and Informatics

More information

Theodoros. N. Arvanitis, RT, DPhil, CEng, MIET, MIEEE, AMIA, FRSM

Theodoros. N. Arvanitis, RT, DPhil, CEng, MIET, MIEEE, AMIA, FRSM TRANSFoRm Theodoros. N. Arvanitis, RT, DPhil, CEng, MIET, MIEEE, AMIA, FRSM Biomedical Informatics, Signals & Systems Research Laboratory School of Electronic, Electrical & Computer Engineering College

More information

Distributed Networking

Distributed Networking Distributed Networking Millions of people. Strong collaborations. Privacy first. Jeffrey Brown, Lesley Curtis, Richard Platt Harvard Pilgrim Health Care Institute and Harvard Medical School Duke Medical

More information

Enabling the Big Data Commons through indexing of data and their interactions

Enabling the Big Data Commons through indexing of data and their interactions biomedical and healthcare Data Discovery Index Ecosystem Enabling the Big Data Commons through indexing of and their interactions 2 nd BD2K all-hands meeting Bethesda 11/12/15 Aims 1. Help users find accessible

More information

Searching biomedical data sets. Hua Xu, PhD The University of Texas Health Science Center at Houston

Searching biomedical data sets. Hua Xu, PhD The University of Texas Health Science Center at Houston Searching biomedical data sets Hua Xu, PhD The University of Texas Health Science Center at Houston Motivations for biomedical data re-use Improve reproducibility Minimize duplicated efforts on creating

More information

Preparing Electronic Health Records for Multi-Site CER Studies

Preparing Electronic Health Records for Multi-Site CER Studies Preparing Electronic Health Records for Multi-Site CER Studies Michael G. Kahn 1,3,4, Lisa Schilling 2 1 Department of Pediatrics, University of Colorado, Denver 2 Department of Medicine, University of

More information

Classifying Adverse Events From Clinical Trials

Classifying Adverse Events From Clinical Trials Classifying Adverse Events From Clinical Trials Bernard LaSalle, Richard Bradshaw University of Utah, Biomedical Informatics, Salt Lake City, UT USA bernie.lasalle@hsc.utah.edu Abstract The use of adverse

More information

An EVIDENCE-ENHANCED HEALTHCARE ECOSYSTEM for Cancer: I/T perspectives

An EVIDENCE-ENHANCED HEALTHCARE ECOSYSTEM for Cancer: I/T perspectives An EVIDENCE-ENHANCED HEALTHCARE ECOSYSTEM for Cancer: I/T perspectives Chalapathy Neti, Ph.D. Associate Director, Healthcare Transformation, Shahram Ebadollahi, Ph.D. Research Staff Memeber IBM Research,

More information

Lost in Space? Methodology for a Guided Drill-Through Analysis Out of the Wormhole

Lost in Space? Methodology for a Guided Drill-Through Analysis Out of the Wormhole Paper BB-01 Lost in Space? Methodology for a Guided Drill-Through Analysis Out of the Wormhole ABSTRACT Stephen Overton, Overton Technologies, LLC, Raleigh, NC Business information can be consumed many

More information

Find the signal in the noise

Find the signal in the noise Find the signal in the noise Electronic Health Records: The challenge The adoption of Electronic Health Records (EHRs) in the USA is rapidly increasing, due to the Health Information Technology and Clinical

More information

Real-Time Market Monitoring using SAS BI Tools

Real-Time Market Monitoring using SAS BI Tools Paper 1835-2014 Real-Time Market Monitoring using SAS BI Tools Amol Deshmukh, CA ISO Corporation, Folsom Jeff McDonald, CA ISO Corporation, Folsom Abstract The Department of Market Monitoring at California

More information

Integrated Enterprise Reporting

Integrated Enterprise Reporting Integrated Enterprise Reporting July 2013 Don McNatty Abstract Integrated Reporting can be accomplished by using reporting and dashboard tools that support accessing multiple data sources directly or through

More information

In this presentation, you will be introduced to data mining and the relationship with meaningful use.

In this presentation, you will be introduced to data mining and the relationship with meaningful use. In this presentation, you will be introduced to data mining and the relationship with meaningful use. Data mining refers to the art and science of intelligent data analysis. It is the application of machine

More information

Environmental Health Science. Brian S. Schwartz, MD, MS

Environmental Health Science. Brian S. Schwartz, MD, MS Environmental Health Science Data Streams Health Data Brian S. Schwartz, MD, MS January 10, 2013 When is a data stream not a data stream? When it is health data. EHR data = PHI of health system Data stream

More information

From Fishing to Attracting Chicks

From Fishing to Attracting Chicks The Greater Plains Collaborative: a PCORNet Clinical Data Research Network s Strategies for Creating an Interoperable Architecture From Fishing to Attracting Chicks Russ Waitman, PhD Associate Professor,

More information

Summary of Responses to the Request for Information (RFI): Input on Development of a NIH Data Catalog (NOT-HG-13-011)

Summary of Responses to the Request for Information (RFI): Input on Development of a NIH Data Catalog (NOT-HG-13-011) Summary of Responses to the Request for Information (RFI): Input on Development of a NIH Data Catalog (NOT-HG-13-011) Key Dates Release Date: June 6, 2013 Response Date: June 25, 2013 Purpose This Request

More information

Workshop Schedule 2015 4 th Quarter

Workshop Schedule 2015 4 th Quarter Workshop Schedule 2015 4 th Quarter October: 10/6 PDS DASH 10/15 Understanding the IBM Cognos 7 Toolset 10/20 Understanding the IBM Cognos 10 Web Toolset 10/29 PDS Producer November: 11/5 PDS DASH Advanced

More information

The NYC Macroscope: Harnessing Data from Electronic Health Records for Population Health Surveillance in NYC

The NYC Macroscope: Harnessing Data from Electronic Health Records for Population Health Surveillance in NYC The NYC Macroscope: Harnessing Data from Electronic Health Records for Population Health Surveillance in NYC Remle Newton-Dame, MPH Senior Epidemiologist, Primary Care Information Project Tiffany G. Harris,

More information

An interdisciplinary model for analytics education

An interdisciplinary model for analytics education An interdisciplinary model for analytics education Raffaella Settimi, PhD School of Computing, DePaul University Drew Conway s Data Science Venn Diagram http://drewconway.com/zia/2013/3/26/the-data-science-venn-diagram

More information

Medical Decision Logic, Inc.

Medical Decision Logic, Inc. Medical Decision Logic, Inc. mdlogix Registries and Health Science: Applied Health Informatics Presentation Plan Mission, Goals, and Vision Theoretical Foundation (models) Pragmatic Foundation (cases)

More information

MED 2400 MEDICAL INFORMATICS FUNDAMENTALS

MED 2400 MEDICAL INFORMATICS FUNDAMENTALS MED 2400 MEDICAL INFORMATICS FUNDAMENTALS NEW YORK CITY COLLEGE OF TECHNOLOGY The City University Of New York School of Arts and Sciences Biological Sciences Department Course title: Course code: MED 2400

More information

Karl Lum Partner, LabKey Software klum@labkey.com. Evolution of Connectivity in LabKey Server

Karl Lum Partner, LabKey Software klum@labkey.com. Evolution of Connectivity in LabKey Server Karl Lum Partner, LabKey Software klum@labkey.com Evolution of Connectivity in LabKey Server Connecting Data to LabKey Server Lowering the barrier to connect scientific data to LabKey Server Increased

More information

Visual Analytics to Enhance Personalized Healthcare Delivery

Visual Analytics to Enhance Personalized Healthcare Delivery Visual Analytics to Enhance Personalized Healthcare Delivery A RENCI WHITE PAPER A data-driven approach to augment clinical decision making CONTACT INFORMATION Ketan Mane, PhD kmane@renci,org 919.445.9703

More information

Exploration and Visualization of Post-Market Data

Exploration and Visualization of Post-Market Data Exploration and Visualization of Post-Market Data Jianying Hu, PhD Joint work with David Gotz, Shahram Ebadollahi, Jimeng Sun, Fei Wang, Marianthi Markatou Healthcare Analytics Research IBM T.J. Watson

More information

Enterprise Healthcare BI

Enterprise Healthcare BI Enterprise Healthcare BI Fresenius Medical Care North America The comments in this presentation are the personal thoughts of the presenter, and not those expressed by FMCNA, its directors or shareholders.

More information

MEDICAL DATA MINING. Timothy Hays, PhD. Health IT Strategy Executive Dynamics Research Corporation (DRC) December 13, 2012

MEDICAL DATA MINING. Timothy Hays, PhD. Health IT Strategy Executive Dynamics Research Corporation (DRC) December 13, 2012 MEDICAL DATA MINING Timothy Hays, PhD Health IT Strategy Executive Dynamics Research Corporation (DRC) December 13, 2012 2 Healthcare in America Is a VERY Large Domain with Enormous Opportunities for Data

More information

Business Intelligence & Product Analytics

Business Intelligence & Product Analytics 2010 International Conference Business Intelligence & Product Analytics Rob McAveney www. 300 Brickstone Square Suite 904 Andover, MA 01810 [978] 691 8900 www. Copyright 2010 Aras All Rights Reserved.

More information

Uncovering Value in Healthcare Data with Cognitive Analytics. Christine Livingston, Perficient Ken Dugan, IBM

Uncovering Value in Healthcare Data with Cognitive Analytics. Christine Livingston, Perficient Ken Dugan, IBM Uncovering Value in Healthcare Data with Cognitive Analytics Christine Livingston, Perficient Ken Dugan, IBM Conflict of Interest Christine Livingston Ken Dugan Has no real or apparent conflicts of interest

More information

School of Nursing University of Minnesota Informatics Competencies across the Curriculum

School of Nursing University of Minnesota Informatics Competencies across the Curriculum Informatics Competencies across the Curriculum Data - basic elements & related standards BSN DNP PhD Resources Course Assignment Describe the value of using standardized terminologies and messaging standards

More information

Meaningful use. Meaningful data. Meaningful care. The 3M Healthcare Data Dictionary (HDD): Implemented with a data warehouse

Meaningful use. Meaningful data. Meaningful care. The 3M Healthcare Data Dictionary (HDD): Implemented with a data warehouse Meaningful use. Meaningful data. Meaningful care. The 3M Healthcare Data Dictionary (HDD): Implemented with a data warehouse Executive summary A large academic research institution uses the 3M Healthcare

More information

fédération de données et de ConnaissancEs Distribuées en Imagerie BiomédicaLE Data fusion, semantic alignment, distributed queries

fédération de données et de ConnaissancEs Distribuées en Imagerie BiomédicaLE Data fusion, semantic alignment, distributed queries fédération de données et de ConnaissancEs Distribuées en Imagerie BiomédicaLE Data fusion, semantic alignment, distributed queries Johan Montagnat CNRS, I3S lab, Modalis team on behalf of the CrEDIBLE

More information

Navigate Nursing Webinars

Navigate Nursing Webinars Navigate Nursing Webinars Navigating Meaningful Use: What it Means for Your Practice June 18, 2014 Thank you for joining us. The webinar will begin shortly! Judith J. Warren, PhD, RN, FAAN, FACMI Consultant,

More information

HIT Educational Programs Inventory Analysis Report 2014... 4. Executive Summary... 4. Background... 4. Key findings... 4. Introduction/Context...

HIT Educational Programs Inventory Analysis Report 2014... 4. Executive Summary... 4. Background... 4. Key findings... 4. Introduction/Context... 2 Contents HIT Educational Programs Inventory Analysis Report 2014... 4 Executive Summary... 4 Background... 4 Key findings... 4 Introduction/Context... 5 Analysis Method... 5 Datasets:... 5 Data Capture/Aggregation:...

More information

Adam Wilcox, PhD PhD Columbia University

Adam Wilcox, PhD PhD Columbia University Adam Wilcox, PhD Adam Wilcox, PhD Columbia University Intermountain Healthcare Columbia University Medical Center/ NewYork Presbyterian Hospital Evolving EHR Data Needs for Research, Business Intelligence

More information

The course will run simultaneously with the MSCI students.

The course will run simultaneously with the MSCI students. Introduction to Medical Informatics for Informaticians Fall 2015 BMSC-GA 4455 Course Description: This course will serve as an introduction to Biomedical Informatics, which is the interdisciplinary science

More information

ATP Initiatives in Healthcare Informatics

ATP Initiatives in Healthcare Informatics ATP Initiatives in Healthcare Informatics Richard N. Spivack, Ph.D. Economic Assessment Office (tel.) 301-975 975-50635063 (fax) 301-975 975-4776 richard.spivack spivack@nist.gov www.atp atp.nist.gov Advanced

More information

Enterprise Reporting Solution

Enterprise Reporting Solution Background Current Reporting Challenges: Difficulty extracting various levels of data from AgLearn Limited ability to translate data into presentable formats Complex reporting requires the technical staff

More information

Natural Language Processing Supporting Clinical Decision Support

Natural Language Processing Supporting Clinical Decision Support Natural Language Processing Supporting Clinical Decision Support Applications for Enhancing Clinical Decision Making NIH Worksop; Bethesda, MD, April 24, 2012 Stephane M. Meystre, MD, PhD Department of

More information

NATIONAL CENTER FOR PUBLIC HEALTH INFORMATICS (CPE)

NATIONAL CENTER FOR PUBLIC HEALTH INFORMATICS (CPE) NATIONAL CENTER FOR PUBLIC HEALTH INFORMATICS (CPE) The National Center for Public Health Informatics (NCPHI) protects and improves the public s health through discovery, innovation, and service in health

More information

Secondary Uses of Data for Comparative Effectiveness Research

Secondary Uses of Data for Comparative Effectiveness Research Secondary Uses of Data for Comparative Effectiveness Research Paul Wallace MD Director, Center for Comparative Effectiveness Research The Lewin Group Paul.Wallace@lewin.com Disclosure/Perspectives Training:

More information

Oracle Big Data SQL Technical Update

Oracle Big Data SQL Technical Update Oracle Big Data SQL Technical Update Jean-Pierre Dijcks Oracle Redwood City, CA, USA Keywords: Big Data, Hadoop, NoSQL Databases, Relational Databases, SQL, Security, Performance Introduction This technical

More information

Building patient-level predictive models Martijn J. Schuemie, Marc A. Suchard and Patrick Ryan 2015-11-01

Building patient-level predictive models Martijn J. Schuemie, Marc A. Suchard and Patrick Ryan 2015-11-01 Building patient-level predictive models Martijn J. Schuemie, Marc A. Suchard and Patrick Ryan 2015-11-01 Contents 1 Introduction 1 1.1 Specifying the cohort of interest and outcomes..........................

More information

Big Data R&D Initiative

Big Data R&D Initiative Big Data R&D Initiative Howard Wactlar CISE Directorate National Science Foundation NIST Big Data Meeting June, 2012 Image Credit: Exploratorium. The Landscape: Smart Sensing, Reasoning and Decision Environment

More information

Know more Act Better: Launching KPI Reporting & Benchmarking Framework

Know more Act Better: Launching KPI Reporting & Benchmarking Framework Know more Act Better: Launching KPI Reporting & Benchmarking Framework JANUARY 2012 Abstract In today s competitive scenario of commoditization of products and services, technology is no longer a differentiator.

More information

Geodatabase Programming with SQL

Geodatabase Programming with SQL DevSummit DC February 11, 2015 Washington, DC Geodatabase Programming with SQL Craig Gillgrass Assumptions Basic knowledge of SQL and relational databases Basic knowledge of the Geodatabase We ll hold

More information

Frequently Asked Questions

Frequently Asked Questions Frequently Asked Questions Business Office: 598 Airport Boulevard Suite 1400 Morrisville NC 27560 Contact: support@cognitrax.com Phone: 888.750.6941 Fax: 888.650.6795 www.cognitrax.com Diseases of the

More information

3M Health Information Systems

3M Health Information Systems 3M Health Information Systems 1 Data Governance Disparate Systems Interoperability Information Exchange Reporting Public Health Quality Metrics Research Data Warehousing Data Standards What is the 3M Healthcare

More information

Disrupting The Market: Predictive Analytics As A Service

Disrupting The Market: Predictive Analytics As A Service Disrupting The Market: Predictive Analytics As A Service 0 Problem 8.7 Billion Connected Devices 1 Growing 25% Annually What Does This Data Tell Us About Sensor Use? 1 Study conducted by Cisco 1 Solution

More information

Data Analytics and Reporting

Data Analytics and Reporting 2012 Health IT Survey Data Analytics and Reporting trend report #8 This Trend Report is part of a series that analyzes the results of the third bi-annual Health IT Survey sponsored by several leading health

More information

The Risks and Promises of Cloud Computing for Genomics

The Risks and Promises of Cloud Computing for Genomics The Risks and Promises of Cloud Computing for Genomics Laura Lyman Rodriguez, Ph.D. National Human Genome Research Institute P3G Privacy Summit: Data Sharing and Cloud Computing May 3, 2013 Key Elements

More information

<Insert Picture Here> The Evolution Of Clinical Data Warehousing

<Insert Picture Here> The Evolution Of Clinical Data Warehousing The Evolution Of Clinical Data Warehousing Srinivas Karri Principal Consultant Agenda Value of Clinical Data Clinical Data warehousing & The Big Data Challenge

More information

HIT AND HSR FOR ACTIONABLE KNOWLEDGE: HEALTH SYSTEM SUMMARY. PARTNER: Veterans Health Administration (VHA) Organization and IT Infrastructure

HIT AND HSR FOR ACTIONABLE KNOWLEDGE: HEALTH SYSTEM SUMMARY. PARTNER: Veterans Health Administration (VHA) Organization and IT Infrastructure HIT AND HSR FOR ACTIONABLE KNOWLEDGE: HEALTH SYSTEM SUMMARY PARTNER: Veterans Health Administration (VHA) Organizational Description And History Organization and IT Infrastructure The U.S. Department of

More information

Medical Informatics: A Fishing Story

Medical Informatics: A Fishing Story Medical Informatics: A Fishing Story Russ Waitman, PhD Director of Medical Informatics, Associate Professor, Department of Biostatistics Director, Frontiers Biomedical Informatics Assistant Vice Chancellor,

More information

Big Data Architecture & Analytics A comprehensive approach to harness big data architecture and analytics for growth

Big Data Architecture & Analytics A comprehensive approach to harness big data architecture and analytics for growth MAKING BIG DATA COME ALIVE Big Data Architecture & Analytics A comprehensive approach to harness big data architecture and analytics for growth Steve Gonzales, Principal Manager steve.gonzales@thinkbiganalytics.com

More information

Asian Data Resources. October 24, 2014 8:30-12:30 Using pharmacoepidemiology database resources to address drug safety research

Asian Data Resources. October 24, 2014 8:30-12:30 Using pharmacoepidemiology database resources to address drug safety research Draft Asian Data Resources October 24, 2014 8:30-12:30 Using pharmacoepidemiology database resources to address drug safety research Kiyoshi Kubota MD PhD FISPE NPO Drug Safety Research Unit Japan Multiple

More information

QAD Business Intelligence Data Warehouse Demonstration Guide. May 2015 BI 3.11

QAD Business Intelligence Data Warehouse Demonstration Guide. May 2015 BI 3.11 QAD Business Intelligence Data Warehouse Demonstration Guide May 2015 BI 3.11 Overview This demonstration focuses on the foundation of QAD Business Intelligence the Data Warehouse and shows how this functionality

More information

Building a BI/Analytics Foundation

Building a BI/Analytics Foundation Building a BI/Analytics Foundation for Effective Population Health in the Era of Value-Based Care Bill O Connor, Vice President, Consulting Services, Orion Health and Akshay Srivastava, Implementation

More information

Adam Rauch Partner, LabKey Software adam@labkey.com. Extending LabKey Server Part 1: Retrieving and Presenting Data

Adam Rauch Partner, LabKey Software adam@labkey.com. Extending LabKey Server Part 1: Retrieving and Presenting Data Adam Rauch Partner, LabKey Software adam@labkey.com Extending LabKey Server Part 1: Retrieving and Presenting Data Extending LabKey Server LabKey Server is a large system that combines an extensive set

More information

Laura Anderson Product Manager: HQM, Dashboard, Business Intelligence

Laura Anderson Product Manager: HQM, Dashboard, Business Intelligence Laura Anderson Product Manager: HQM, Dashboard, Business Intelligence Agenda What is HQM? How HQM works Dashboard Overview What s next? Q&A 3/2/2012 2 HQMOVERVIEW 3/2/2012 3 HQM is A data warehouse framework

More information

Master of Science in Healthcare Informatics and Analytics Program Overview

Master of Science in Healthcare Informatics and Analytics Program Overview Master of Science in Healthcare Informatics and Analytics Program Overview The program is a 60 credit, 100 week course of study that is designed to graduate students who: Understand and can apply the appropriate

More information

Use of Electronic Health Records in Clinical Research: Core Research Data Element Exchange Detailed Use Case April 23 rd, 2009

Use of Electronic Health Records in Clinical Research: Core Research Data Element Exchange Detailed Use Case April 23 rd, 2009 Use of Electronic Health Records in Clinical Research: Core Research Data Element Exchange Detailed Use Case April 23 rd, 2009 Table of Contents 1.0 Preface...4 2.0 Introduction and Scope...6 3.0 Use Case

More information

Data Management for Large Studies Robert R. Kelley, PhD. Thursday, September 27, 2012

Data Management for Large Studies Robert R. Kelley, PhD. Thursday, September 27, 2012 Robert R. Kelley, PhD Thursday, September 27, 2012 Agenda Provide an overview of several tools for data management in large studies Present an extended Case Study in using REDCap to manage study data Offer

More information

Enterprise Data Solution (EDS)

Enterprise Data Solution (EDS) RFP Number EDS-DCHRFP1602 Enterprise Data Solution (EDS) Appendix E EDS Representative User Stories Organization of the Documents in the (EDS) RFP 1 INTRODUCTION The purpose of this document is to provide

More information

Big Data Analytics in Health Care

Big Data Analytics in Health Care Big Data Analytics in Health Care S. G. Nandhini 1, V. Lavanya 2, K.Vasantha Kokilam 3 1 13mss032, 2 13mss025, III. M.Sc (software systems), SRI KRISHNA ARTS AND SCIENCE COLLEGE, 3 Assistant Professor,

More information

CRM Customer Relationship Management

CRM Customer Relationship Management July 2011 What is CRM? CRM Customer Relationship Management CRM is a widely implemented strategy for managing a company s interactions with customers, clients and sales prospects. CRM involves using technology

More information

Eliminating Complexity to Ensure Fastest Time to Big Data Value

Eliminating Complexity to Ensure Fastest Time to Big Data Value Eliminating Complexity to Ensure Fastest Time to Big Data Value Copyright 2013 Pentaho Corporation. Redistribution permitted. All trademarks are the property of their respective owners. For the latest

More information

Emerging Computational Approaches to Interoperability the Key to Long Term Preservation of EHR Data

Emerging Computational Approaches to Interoperability the Key to Long Term Preservation of EHR Data Emerging Computational Approaches to Interoperability the Key to Long Term Preservation of EHR Data William W. Stead, M.D. Associate Vice Chancellor for Health Affairs Chief Strategy & Information Officer

More information

HETEROGENEOUS DATA INTEGRATION FOR CLINICAL DECISION SUPPORT SYSTEM. Aniket Bochare - aniketb1@umbc.edu. CMSC 601 - Presentation

HETEROGENEOUS DATA INTEGRATION FOR CLINICAL DECISION SUPPORT SYSTEM. Aniket Bochare - aniketb1@umbc.edu. CMSC 601 - Presentation HETEROGENEOUS DATA INTEGRATION FOR CLINICAL DECISION SUPPORT SYSTEM Aniket Bochare - aniketb1@umbc.edu CMSC 601 - Presentation Date-04/25/2011 AGENDA Introduction and Background Framework Heterogeneous

More information

NIH BD2K Think Tank. Session 2: Multiple Providers/EHRs for Single Participant; Multiple Other Data Sources

NIH BD2K Think Tank. Session 2: Multiple Providers/EHRs for Single Participant; Multiple Other Data Sources NIH BD2K Think Tank Session 2: Multiple Providers/EHRs for Single Participant; Multiple Other Data Sources Jeffery Talbert, PhD University of Kentucky Agenda KDOC Project Example Background Strategy Lessons

More information

Ernesto Ongaro BI Consultant February 19, 2013. The 5 Levels of Embedded BI

Ernesto Ongaro BI Consultant February 19, 2013. The 5 Levels of Embedded BI Ernesto Ongaro BI Consultant February 19, 2013 The 5 Levels of Embedded BI Saleforce.com CRM 2013 Jaspersoft Corporation. 2 Blogger 2013 Jaspersoft Corporation. 3 Linked In 2013 Jaspersoft Corporation.

More information

Associate Professor, Department of CSE, Shri Vishnu Engineering College for Women, Andhra Pradesh, India 2

Associate Professor, Department of CSE, Shri Vishnu Engineering College for Women, Andhra Pradesh, India 2 Volume 6, Issue 3, March 2016 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com Special Issue

More information

From Research to Practice: New Models for Data-sharing and Collaboration to Improve Health and Healthcare

From Research to Practice: New Models for Data-sharing and Collaboration to Improve Health and Healthcare From Research to Practice: New Models for Data-sharing and Collaboration to Improve Health and Healthcare Joe Selby, MD, MPH, Executive Director, PCORI Francis Collins, MD, PhD, Director, National Institutes

More information

U.S. Department of Health and Human Services (HHS) The Office of the National Coordinator for Health Information Technology (ONC)

U.S. Department of Health and Human Services (HHS) The Office of the National Coordinator for Health Information Technology (ONC) U.S. Department of Health and Human Services (HHS) The Office of the National Coordinator for Health Information Technology (ONC) econsent Trial Project Architectural Analysis & Technical Standards Produced

More information

Quality Measure Definitions Overview

Quality Measure Definitions Overview Quality Measure Definitions Overview pophealth is a open source software tool that automates population health reporting quality measures. pophealth integrates with a healthcare provider's electronic health

More information

The clinical data pipeline Fueling analytics for researchers and physicians from a single source

The clinical data pipeline Fueling analytics for researchers and physicians from a single source The clinical data pipeline Fueling analytics for researchers and physicians from a single source Contents Introduction 4 Enabling access to data 6 The data trust for clinical operations 8 The data trust

More information

Improving EHR Functionality

Improving EHR Functionality Date: Thursday, July 18, 2013; 1 pm Improving EHR Functionality Location: National Institute of Standards and Technology (NIST) Bldg. 101, Lecture Room B, Gaithersburg, MD Speaker: James Cimino, MD, Chief,

More information

Leading Genomics. Diagnostic. Discove. Collab. harma. Shanghai Cambridge, MA Reykjavik

Leading Genomics. Diagnostic. Discove. Collab. harma. Shanghai Cambridge, MA Reykjavik Leading Genomics Diagnostic harma Discove Collab Shanghai Cambridge, MA Reykjavik Global leadership for using the genome to create better medicine WuXi NextCODE provides a uniquely proven and integrated

More information

Scanfree Professional Edition 1/ Deliver timely and accurate reports Reports can be exported to EXCEL, WORD, XML, HTML, PDF

Scanfree Professional Edition 1/ Deliver timely and accurate reports Reports can be exported to EXCEL, WORD, XML, HTML, PDF Scanfree Professional Edition 1/ Deliver timely and accurate reports Reports can be exported to EXCEL, WORD, XML, HTML, PDF From any list in Scanfree Professional Edition, select columns and export to

More information

Achieving Value from Diverse Healthcare Data

Achieving Value from Diverse Healthcare Data Achieving Value from Diverse Healthcare Data Paul Bleicher, MD, PhD Chief Medical Officer Humedica Boston MA The Information Environment in Healthcare Pharma, Biotech, Devices Hospitals Physicians Pharmacies

More information

A leader in the development and application of information technology to prevent and treat disease.

A leader in the development and application of information technology to prevent and treat disease. A leader in the development and application of information technology to prevent and treat disease. About MOLECULAR HEALTH Molecular Health was founded in 2004 with the vision of changing healthcare. Today

More information

HIT AND HSR FOR ACTIONABLE KNOWLEDGE: HEALTH SYSTEM SUMMARY. PARTNER: Kaiser Permanente. Organization and IT Infrastructure

HIT AND HSR FOR ACTIONABLE KNOWLEDGE: HEALTH SYSTEM SUMMARY. PARTNER: Kaiser Permanente. Organization and IT Infrastructure HIT AND HSR FOR ACTIONABLE KNOWLEDGE: HEALTH SYSTEM SUMMARY PARTNER: Kaiser Permanente Organizational Description and History Organization and IT Infrastructure Kaiser Permanente is a not-for-profit, mainly

More information

MOC 20467B: Designing Business Intelligence Solutions with Microsoft SQL Server 2012

MOC 20467B: Designing Business Intelligence Solutions with Microsoft SQL Server 2012 MOC 20467B: Designing Business Intelligence Solutions with Microsoft SQL Server 2012 Course Overview This course provides students with the knowledge and skills to design business intelligence solutions

More information

11. CASE STUDY: HEALTHCARE ANALYTICAL DASHBOARDS USING TABLEAU

11. CASE STUDY: HEALTHCARE ANALYTICAL DASHBOARDS USING TABLEAU 11. CASE STUDY: HEALTHCARE ANALYTICAL DASHBOARDS USING TABLEAU 11.1 Problem Definition: The Quality of the healthcare data is enforced as part of Patient Protection and Affordable Care Act and to measure

More information

Applying Big Data approaches to Competitive Intelligence challenges

Applying Big Data approaches to Competitive Intelligence challenges Applying Big Data approaches to Competitive Intelligence challenges THOMSON REUTERS IP & SCIENCE PHARMA CI EUROPE CONFERENCE & EXHIBITION TIM MILLER 19 FEBRUARY 2014 BIG DATA, NOT JUST ABOUT VOLUMES Patient

More information

Business Intelligence for Healthcare Benefits

Business Intelligence for Healthcare Benefits Business Intelligence for Healthcare Benefits A whitepaper with technical details on the value of using advanced data analytics to reduce the cost of healthcare benefits for self-insured companies. Business

More information

Singapore s National Electronic Health Record

Singapore s National Electronic Health Record Singapore s National Electronic Health Record The Roadmap to 2010 Dr Sarah Christine Muttitt Chief Information Officer Information Systems Division 17 th July, 2009 Taking the Next Step (MSM April 2008)

More information

Global Scientific Data Infrastructures: The Big Data Challenges. Capri, 12 13 May, 2011

Global Scientific Data Infrastructures: The Big Data Challenges. Capri, 12 13 May, 2011 Global Scientific Data Infrastructures: The Big Data Challenges Capri, 12 13 May, 2011 Data-Intensive Science Science is, currently, facing from a hundred to a thousand-fold increase in volumes of data

More information

Technology Assisting Cancer Outcomes: Automated Biomarker Abstraction Overcoming Textual Data-Silos

Technology Assisting Cancer Outcomes: Automated Biomarker Abstraction Overcoming Textual Data-Silos Technology Assisting Cancer Outcomes: Automated Biomarker Abstraction Overcoming Textual Data-Silos Patrick Mergler, MBA PMP CPHIMS DISCLAIMER: The views and opinions expressed in this presentation are

More information

Wits School of Public Health

Wits School of Public Health SHORT COURSES FOR 2016 Wits School of Public Health Division of Epidemiology and Biostatistics Obtain Certificate of Competence in : 1. Processing, Distribution & Archiving I 2. Programming for Research

More information

NOW!! Registry and BioBank Services for! Your Organization/Company/Clinic/Project!

NOW!! Registry and BioBank Services for! Your Organization/Company/Clinic/Project! NOW!! Registry and BioBank Services for! Your Organization/Company/Clinic/Project! What Does Genetic Alliance Registry and BioBank Offer?! Flexible, customizable, registry and biobank options One-on-one

More information

The Big Data Bioinformatics System

The Big Data Bioinformatics System The Big Data Bioinformatics System Introduction The purpose of this document is to describe a fictitious bioinformatics research system based in part on the design and implementation of a similar system

More information

Strategic Information Management System for National AIDS Control Organisation, Ministry of Health and Family Welfare, Government of India

Strategic Information Management System for National AIDS Control Organisation, Ministry of Health and Family Welfare, Government of India Strategic Information Management System for National AIDS Control Organisation, Ministry of Health and Family Welfare, Government of India CLIENT: National AIDS Control Organisation, Ministry of Health

More information