The Small Strain TL C1 Plane Beam

Size: px
Start display at page:

Download "The Small Strain TL C1 Plane Beam"

Transcription

1 . H The Small Strain TL C Plane Beam H

2 Appendix H: THE SMALL STRAIN TL C PLANE BEAM H H. SUMMARY This Appendix derives the discrete equations of a geometrically nonlinear, C (Hermitian), prismatic, plane beam-column in the framework of the Total Lagrangian (TL) description. The formulation is restricted to the three deformational degrees of freedom: d, θ and θ shown in Figure H.. The element rigid body motions have been removed by forcing the transverse deflections at the end nodes to vanish. The strains are assumed to be small while the cross section rotations θ are small but finite. Given the foregoing kinematic limitations, this element is evidently of no use per se in geometrically nonlinear analysis. Its value is in providing the local equations for a TL/CR formulation H. FORMULATION OF GOVERING EQUATIONS H.. Kinematics We consider a geometrically nonlinear, prismatic, homogenous, isotropic elastic, plane beam element that deforms in the x, y plane as shown in Figure H.. The element has cross section area A and moment of inertia I in the reference configuration, and elastic modulus E. y -d/ θ d/ C R L L C θ x Figure H. Kinematics of TL Hermitian beam element The plane motion of the beam is described by the two dimensional displacement field {u x (x, y), u y (x, y)} where u x and u y are the axial and transverse displacement components, respectively, of arbitrary points within the element. The rotation of the cross section is θ(x), which is assumed small. The following kinematic assumptions of thin beam theory are used [ ux (x, y) = u a x (x) y ua y (x) ] [ u a ] x u y (x, y) u a y (x) = x (x) yθ(x) u a y (x) (H.) where u a x and ua y denote the displacements of the neutral axes, and θ(x) = ua y / x is the rotation of the cross section. The three degrees of freedom of the beam element are ] u e = [ d θ θ (H.) H

3 H 3 H. FORMULATION OF GOVERING EQUATIONS H.. Strains We introduce the notation ɛ = u x x, = θ x = u a y x. (H.3) for engineering axial strain and beam curvature, respectively. The exact Green-Lagrange measure of axial strain is e = u ( ) x x + ux + x ( ) u y = ɛ y + x (ɛ y) + θ (H.4) This can be expressed in terms of the displacement gradients as follows: e = h T g + gt Hg = c T g (H.5) where g = u a x / x u a y / x u a y / x = [ ɛ θ ], h =, H = y [ y y y ] (H.6) We simplify this expression by dropping all y dependent terms form the H matrix: Ĥ = [ ] (H.7) The simplified axial strain is e = h T g + gt Ĥg = ɛ y + ɛ + θ (H.8) The rational for this selective simplification is that e a = ɛ + ɛ is the GL mean axial strain. If the ɛ term is retained, a simpler geometric stiffness is obtained. The term θ is the main nonlinear effect contributed by the section rotations. The vectors that appear in the CCF formulation of TL finite elements discussed in Chapters - are + ɛ + b = h + Hg = θ, c = h + ɛ Hg = θ, (H.9) y y H 3

4 Appendix H: THE SMALL STRAIN TL C PLANE BEAM H 4 N M C M V N V V M M C N V Figure H.. Stress resultants in reference and current configurations. Configurations shown offset for clarity. N H..3 Stresses and Stress Resultants The stress resultants in the reference configuration are N, M and M. The initial shear force is V = (M M )/L. The axial force N and transvese shear force V are constant along the element, whereas the bending moment M (x) is linearly interpolated from M = M ( x/l ) + M x/l. See Figure H. for sign conventions. The initial PK axial stress is computed using beam theory: s = N M y (H.) A I Denote by N, V and M the stress resultants in the current configuration. Whereas N and V are constant along the element, M = M(x) varies linearly along the length because this is a Hermitian model, which relies on cubic transverse displacements. Consequently we will define its variation by the two node values M and M. The shear V is recovered from equilibrium as V = (M M )/L, which is also constant. The PK axial stress in the current state is s = s + Ee = s + Ec T g,or inserting (H.9): s = s + E ( ɛ + ɛ + θ y ) (H.) H..4 Constitutive Equations Integrating (H.) over the cross section one gets the constitutive equations in terms of resultants: N = sda= s A + EA (ɛ + ɛ + θ ) = N + EA (e a + θ ), A M = ys da = M + EI A (H.) H..5 Strain Energy Density H 4

5 H 5 H. FORMULATION OF GOVERING EQUATIONS We shall use the CCF formulation presented in Chapter to derive the stiffness equations. Using α = β = (not a spectral form) one obtains the core energy of a beam particle as U = ( + ɛ) + 4 θ 3 y 3 θ y( + 3 ɛ) = gt E 3 θ 4 (ɛ + θ ) + 3 (ɛ y) 3 yθ + s g y( + 3 ɛ) yθ y 3 (H.3) Integration over this cross section yields the strain energy per unit of beam length: U A = gt A (Ecc T + s H) da g = gt ( + ɛ) A ( + ɛ)θ A E ( + ɛ)θ A 4 θ A + N g I (H.4) To obtain the element energy it is necessary to specify the variation of ɛ, θ and along the beam. At this point shape functions have to be introduced. H..6 Shape Functions Define the isoparametric coordinate ξ = x/l. The displacement interpolation is taken to be the same used for the linear beam element: [ u a x u a = ξ ] d y 8 L ( ξ) ( + ξ) 8 L ( + ξ) θ. (H.5) ( ξ) θ From this the displacement gradients are ɛ g = θ = d L 4 L (ξ )(3ξ + ) 4 L ( + ξ)(3ξ ) θ = Gu e. (H.6) 3ξ 3ξ + The rotation θ varies quadritically and the curvature θ linearly. The node values are obtained on setting ξ =±: ɛ g = θ = ɛ L u e, g L = θ = L u e (H.7) 4 L 4 H..7 Element Energy The strain energy of the element can be now obtained by expressing the gradients g = Gu e and integrating over the length. the result can be expressed as U e = L L U A da= U A L dξ = (ue ) T K U u e (H.8) H 5 θ

6 Appendix H: THE SMALL STRAIN TL C PLANE BEAM H 6 where the energy stiffness is the sum of three contributions: K U = K U a + KU b + KU N. These come from the axial deformations, bending deformations and initial stress, respectively: K U a = EA L K U b = EI L ( + ( + ɛ) ɛ)(4θ θ )L 6 ( + ɛ)(4θ θ )L (θ 3θ θ + θ )L 6 84 ( + ɛ)( θ + 4θ )L ( 3θ + 4θ θ 3θ )L , K U N = N L 4 L /5 L /3. L /3 L /5 ( + ɛ)( θ + 4θ )L 6 ( 3θ + 4θ θ 3θ )L 68, (θ 3θ θ + θ )L 84 (H.9) H.3 INTERNAL FORCE The internal force p is obtained as the derivative ( ) p = U e u = K U + e (ue ) T KU u e = K p u e u e (H.) The internal force stiffness is again the sum of three contributions: K p = K p a + Kp b + Kp N. These come from the axial deformations, bending deformations and initial stress, respectively: K p a = EA L K p b = EI L + 3 ɛ + (3 + ɛ)(4θ ɛ θ )L (3 + ɛ)(4θ θ )L (θ 3θ θ + θ )L 4 (3 + ɛ)( θ + 4θ )L ( 3θ + 4θ θ 3θ )L 84 4, K p N = N L 4 L /5 L /3. L /3 L /5 (3 + ɛ)( θ + 4θ )L ( 3θ + 4θ θ 3θ )L 84, (θ 3θ θ + θ )L 4 (H.) H.4 TANGENT STIFFNESS The tangent stiffness K is obtained as the derivative K = p ) (K u = r + (u e ) T Kr u e e u e (H.) This is again the sum of three contributions: K = K a + K b + K N, which come from the axial H 6

7 H 7 H.4 TANGENT STIFFNESS deformations, bending deformations and current stress, respectively: K a = EA L K b = EI L ( + ɛ) ( + ɛ)(4θ θ )L 3 ( + ɛ)(4θ θ )L (θ 3θ θ + θ )L 3 ( + ɛ)( θ + 4θ )L ( 3θ + 4θ θ 3θ )L 3 4 4, K N = N L 4L L L 4L The material stiffness is K M = K a + K b and the geometric stiffness is K G = K N. ( + ɛ)( θ + 4θ )L 3 ( 3θ + 4θ θ 3θ )L 4, (θ 3θ θ + θ )L (H.3) H 7

Finite Element Formulation for Beams - Handout 2 -

Finite Element Formulation for Beams - Handout 2 - Finite Element Formulation for Beams - Handout 2 - Dr Fehmi Cirak (fc286@) Completed Version Review of Euler-Bernoulli Beam Physical beam model midline Beam domain in three-dimensions Midline, also called

More information

Finite Element Analysis Prof. Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology, Madras. Module - 01 Lecture - 08

Finite Element Analysis Prof. Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology, Madras. Module - 01 Lecture - 08 Finite Element Analysis Prof. Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology, Madras Module - 01 Lecture - 08 In the last lecture, we have seen how to solve two dimensional

More information

Section 7: PRISMATIC BEAMS. Beam Theory. There are two types of beam theory available to craft beam element formulations from.

Section 7: PRISMATIC BEAMS. Beam Theory. There are two types of beam theory available to craft beam element formulations from. Beam Theory There are two types of beam theory available to craft beam element formulations from. They are Bernoulli-Euler beam theory Timoshenko beam theory One learns the details of Bernoulli-Euler El

More information

Generalize simple beam theory to three dimensions and general cross sections. Consider combined effects of bending, shear and torsion

Generalize simple beam theory to three dimensions and general cross sections. Consider combined effects of bending, shear and torsion Module 7 Simple Beam Theory Learning Objectives Review simple beam theory Generalize simple beam theory to three dimensions and general cross sections Consider combined effects of bending, shear and torsion

More information

Generalize simple beam theory to three dimensions and general cross sections. Consider combined effects of bending, shear and torsion

Generalize simple beam theory to three dimensions and general cross sections. Consider combined effects of bending, shear and torsion Module 7 Simple Beam Theory Learning Objectives Review simple beam theory Generalize simple beam theory to three dimensions and general cross sections Consider combined effects of bending, shear and torsion

More information

Dynamics of Beams, Plates and Shells - Handout 6 -

Dynamics of Beams, Plates and Shells - Handout 6 - Dynamics of Beams, Plates and Shells - Handout 6 - Dr Fehmi Cirak (fc286@) Completed Version Strong and Weak Form of Elastodynamics Equilibrium equations for elastodynamics (strong form) Density Acceleration

More information

Preface. Symbols and abbreviations. 1.1 Approach A brief historical note Notation and layout Organization 9

Preface. Symbols and abbreviations. 1.1 Approach A brief historical note Notation and layout Organization 9 Contents Preface Symbols and abbreviations Software agreement v xv xix 1. Introduction 1 1.1 Approach 1 The engineering approach 1 The mathematical approach 3 1.2 A brief historical note 5 1.3 Notation

More information

Introduction. Finite Element Method of Analysis. FEM con t. Finite Element Method

Introduction. Finite Element Method of Analysis. FEM con t. Finite Element Method Introduction Finite Element Method of Analysis Engineers model physical phenomena. Analytical descriptions of physical phenomena and processes are called mathematical models. Developed using assumptions

More information

Eng Ship Structures 1. An introduction to the finite element method using MATLAB

Eng Ship Structures 1. An introduction to the finite element method using MATLAB Eng. 6002 Ship Structures 1 An introduction to the finite element method using MATLAB Overview This presentation outlines an efficient approach to introducing the finite element method This approach requires

More information

Finite Element Formulation for Plates - Handout 3 -

Finite Element Formulation for Plates - Handout 3 - Finite Element Formulation for Plates - Handout 3 - Dr Fehmi Cirak (fc286@) Completed Version Definitions A plate is a three dimensional solid body with one of the plate dimensions much smaller than the

More information

The TL Plane Beam Element: Formulation

The TL Plane Beam Element: Formulation 11 The T Plane Beam Element: Formulation 11 1 Chapter 11: THE T PANE BEAM EEMENT: FORMUATION TABE OF CONTENTS Page 11.1 Introduction..................... 11 3 11.2 Beam Models.................... 11 3

More information

Chapter 6: Indeterminate Structures Direct Stiffness Method

Chapter 6: Indeterminate Structures Direct Stiffness Method Chapter 6: Indeterminate Structures Direct Stiffness Method 1. Introduction Force method and slope-deflection method can be used, with hand calculation, for solving the indeterminate structures when the

More information

Laboratory Weeks 9 10 Theory of Pure Elastic Bending

Laboratory Weeks 9 10 Theory of Pure Elastic Bending Laboratory Weeks 9 10 Theory of Pure Elastic Bending Objective To show the use of the Sagital method for finding the Radius of Curvature of a beam, to prove the theory of bending, and find the elastic

More information

Best Fit CR Frame C 1

Best Fit CR Frame C 1 . C Best Fit CR Frame C 1 Appendix C: BEST FIT CR FRAME C 2 TABLE OF CONTENTS Page C.1. Introduction C 3 C.2. The Shadowing Problem C 3 C.3. Minimization Conditions C 3 C.4. Best Origin C 4 C.5. Best Rotator

More information

Finite Element Formulation for Shells - Handout 5 -

Finite Element Formulation for Shells - Handout 5 - Finite Element Formulation for Shells - Handout 5 - Dr Fehmi Cirak (fc286@) Completed Version Overview of Shell Finite Elements There are three different approaches for deriving shell finite elements Flat

More information

Plates and Shells. Idea of these lectures

Plates and Shells. Idea of these lectures Idea of these lectures Make the students familiar with the finite element theory behind standard plates and shells Through exercises make the students able to program various plate and shell elements in

More information

Unsymmetrical Bending of Beams

Unsymmetrical Bending of Beams Unsmmetrical Bending of Beams rd_mech@ahoo.co.in ntroduction Beam structural member takes transverse loads Cross-sectional dimensions much smaller than length Beam width same range of thickness/depth Thin

More information

Proceedings of the International Congress of Applied Mechanics, Beijing, Peoples Republic of China, Aug

Proceedings of the International Congress of Applied Mechanics, Beijing, Peoples Republic of China, Aug Republic of China, Aug. 989. GEOMETRIC NONLINEARITY IN A BIMATERIAL STRIP J. W. Eischen Department of Mechanical and Aerospace Engineering NC State University Raleigh, NC 7695 ABSTRACT A classic paper

More information

Keywords: Structural System, Structural Analysis, Discrete Modeling, Matrix Analysis of Structures, Linear Elastic Analysis.

Keywords: Structural System, Structural Analysis, Discrete Modeling, Matrix Analysis of Structures, Linear Elastic Analysis. STRUCTURAL ANALYSIS Worsak Kanok-Nukulchai Asian Institute of Technology, Thailand Keywords: Structural System, Structural Analysis, Discrete Modeling, Matrix Analysis of Structures, Linear Elastic Analysis.

More information

Frame Element Stiffness Matrices

Frame Element Stiffness Matrices Frame Element Stiffness Matrices CEE 421. Matrix Structural Analysis Department of Civil and Environmental Engineering Duke University Henri P. Gavin Fall, 214 Truss elements carry axial forces only. Beam

More information

Deflections using Energy Methods

Deflections using Energy Methods 9.1 Work and Energy Conservation of energy: Deflections using Energy Methods (for conservative systems) (Ref Chapter 9) Work done by external forces on a material point or a structure is converted to internal

More information

Beam theory blah CHAPTER 6. Synopsis. a 3 b M. Bending under end loading F EA. Axial compression: K x

Beam theory blah CHAPTER 6. Synopsis. a 3 b M. Bending under end loading F EA. Axial compression: K x CHAPTER 6 Beam theory blah Synopsis 1 M Moment/curvature relationship κ -- -----, I ρ EI a 3 b -------- 1 Bending under end loading yx ( ) x -------- x ( x 3)F + --------M 6EI EI y ( ) 3 --------F + --------M

More information

Indeterminate Analysis Force Method 1

Indeterminate Analysis Force Method 1 Indeterminate Analysis Force Method 1 The force (flexibility) method expresses the relationships between displacements and forces that exist in a structure. Primary objective of the force method is to

More information

V. V. VASIL EV. Moscow Institute of Aviation Technology Moscow USSR. S. A. LUR E Moscow Aviation Institute Moscow USSR

V. V. VASIL EV. Moscow Institute of Aviation Technology Moscow USSR. S. A. LUR E Moscow Aviation Institute Moscow USSR On Refined Theories of Beams, Plates, and Shells V. V. VASIL EV Moscow Institute of Aviation Technology 103767 Moscow USSR S. A. LUR E Moscow Aviation Institute 125871 Moscow USSR (Received July 17, 1990)

More information

Finite Element Reference Guide

Finite Element Reference Guide Page 1 Finite Element Reference Guide Preface Using This Guide Where to Find More Information Conventions Objects & Characteristics Elements Linear Triangle Shell Parabolic Triangle Shell Linear Quadrangle

More information

Plates and Shells. All images are from R. Cook, et al. Concepts and Applications of Finite Element Analysis, 1996.

Plates and Shells. All images are from R. Cook, et al. Concepts and Applications of Finite Element Analysis, 1996. Plates and Shells All images are from R. Cook, et al. Concepts and Applications of Finite Element Analysis, 1996. Plate Formulation Plates may be considered similar to beams, however: Plates can bend in

More information

Vukazich Fall 2016 CE 160 Notes - Principle of Virtual Work for Beams and Frames

Vukazich Fall 2016 CE 160 Notes - Principle of Virtual Work for Beams and Frames CE 16 Notes - Principle of Virtual Work for Beams and Frames Recall the generic form of the Principle of Virtual Work to find deformation in structures. 1 δ P = F Q dl P Consider the beam below. Suppose

More information

Module 4 : Deflection of Structures Lecture 1 : Moment Area Method

Module 4 : Deflection of Structures Lecture 1 : Moment Area Method Module 4 : Deflection of Structures Lecture 1 : Moment Area Method Objectives In this course you will learn the following Importance of computation of deflection. Computation of deflection using moment

More information

Module 2 WAVE PROPAGATION (Lectures 7 to 9)

Module 2 WAVE PROPAGATION (Lectures 7 to 9) Topics Module 2 WAVE PROPAGATION (Lectures 7 to 9) 2.1 INTRODUCTION 2.2 WAVE IN UNBOUND MEDIA 2.2.1 One-Dimensional wave propagation 2.2.2 Longitudinal waves in an infinitely long rod 2.2.3 Torsional waves

More information

Applying Classical Beam Theory to Twisted Cantilever Beams and Comparing to the Results of FEA

Applying Classical Beam Theory to Twisted Cantilever Beams and Comparing to the Results of FEA Applying Classical Beam Theory to Twisted Cantilever Beams and Comparing to the Results of FEA by Mitchell S. King An Engineering Project Submitted to the Graduate Faculty of Rensselaer Polytechnic Institute

More information

Nonlinear Finite Element Method 18/10/2004

Nonlinear Finite Element Method 18/10/2004 Nonlinear Finite Element Method 18/10/2004 Nonlinear Finite Element Method Lectures include discussion of the nonlinear finite element method. It is preferable to have completed Introduction to Nonlinear

More information

Stiffness Methods for Systematic Analysis of Structures (Ref: Chapters 14, 15, 16)

Stiffness Methods for Systematic Analysis of Structures (Ref: Chapters 14, 15, 16) Stiffness Methods for Systematic Analysis of Structures (Ref: Chapters 14, 15, 16) The Stiffness method provides a very systematic way of analyzing determinate and indeterminate structures. Recall Force

More information

2D Stress Analysis (Draft 1, 10/10/06)

2D Stress Analysis (Draft 1, 10/10/06) 2D Stress Analysis (Draft 1, 10/10/06) Plane stress analysis Generally you will be forced to utilize the solid elements in CosmosWorks due to a complicated solid geometry. To learn how to utilize local

More information

Chapter 4: Tapered Beam

Chapter 4: Tapered Beam Application of the Finite Element Method Using MARC and Mentat 4-1 Chapter 4: Tapered Beam Keywords: elastic beam, 2D elasticity, plane stress, convergence, deformed geometry Modeling Procedures: ruled

More information

Chapter 4. Shape Functions

Chapter 4. Shape Functions Chapter 4 Shape Functions In the finite element method, continuous models are approximated using information at a finite number of discrete locations. Dividing the structure into discrete elements is called

More information

Geometric Stiffness Effects in 2D and 3D Frames

Geometric Stiffness Effects in 2D and 3D Frames Geometric Stiffness Effects in D and 3D Frames CEE 41. Matrix Structural Analsis Department of Civil and Environmental Engineering Duke Universit Henri Gavin Fall, 1 In situations in which deformations

More information

Theory of Structures. Barış Erkuş

Theory of Structures. Barış Erkuş Theory of Structures Barış Erkuş Contents I Introduction 5 1 Introduction to Structural Engineering 6 1.1 Structural Engineering.............................. 6 1.2 Design Process..................................

More information

Plates, shells and laminates in Mentat & MARC. Tutorial

Plates, shells and laminates in Mentat & MARC. Tutorial Plates, shells and laminates in Mentat & MARC Tutorial Eindhoven University of Technology Department of Mechanical Engineering Piet Schreurs September 30, 2015 Contents 1 Linear plate bending 3 1.1 Deformation

More information

Applied Finite Element Analysis. M. E. Barkey. Aerospace Engineering and Mechanics. The University of Alabama

Applied Finite Element Analysis. M. E. Barkey. Aerospace Engineering and Mechanics. The University of Alabama Applied Finite Element Analysis M. E. Barkey Aerospace Engineering and Mechanics The University of Alabama M. E. Barkey Applied Finite Element Analysis 1 Course Objectives To introduce the graduate students

More information

The Bending of Bonded Layers Due to Thermal Stress

The Bending of Bonded Layers Due to Thermal Stress The Bending of Bonded Layers Due to Thermal Stress Ahmad T. Abawi Hughes Research Laboratories 3011 Malibu Canyon Road Malibu CA 9065 October 3 004 When two layers expand unequally but are bonded together

More information

Finite Element Method An Introduction (One Dimensional Problems)

Finite Element Method An Introduction (One Dimensional Problems) Finite Element Method An Introduction (One Dimensional Problems) by Tarun Kant tkant@civil.iitb.ac.in www.civil.iitb.ac.in/~tkant Department of Civil Engineering Indian Institute of Technology Bombay Powai,

More information

Lecture 32. TORSION EXAMPLES HAVING MORE THAN ONE DEGREE OF FREEDOM

Lecture 32. TORSION EXAMPLES HAVING MORE THAN ONE DEGREE OF FREEDOM Lecture 32. TORSION EXAMPLES HAVING MORE THAN ONE DEGREE OF FREEDOM Figure 5.40 (a) Two-disk, torsional vibration example, (b) coordinates and free-body diagram for Torsional Vibration Examples We worked

More information

Lecture in Nonlinear FEM on. the Building- and Civil Engineering sectors 8.th. semester for

Lecture in Nonlinear FEM on. the Building- and Civil Engineering sectors 8.th. semester for Lecture in Nonlinear FEM on the Building- and Civil Engineering sectors 8.th. semester for the Building- and Civil Engineering, B8k, and Mechanical Engineering, B8m AALBORG UNIVERSITY ESBJERG, DENMARK

More information

New approaches in Eurocode 3 efficient global structural design

New approaches in Eurocode 3 efficient global structural design New approaches in Eurocode 3 efficient global structural design Part 1: 3D model based analysis using general beam-column FEM Ferenc Papp* and József Szalai ** * Associate Professor, Department of Structural

More information

Chapter (1) Basic concepts and definitions

Chapter (1) Basic concepts and definitions Chapter (1) Basic concepts and definitions Similar to other field theories such as fluid mechanics, heat conduction, and electromagnetics, the study and application of elasticity theory requires knowledge

More information

3 2 6 Solve the initial value problem u ( t) 3. a- If A has eigenvalues λ =, λ = 1 and corresponding eigenvectors 1

3 2 6 Solve the initial value problem u ( t) 3. a- If A has eigenvalues λ =, λ = 1 and corresponding eigenvectors 1 Math Problem a- If A has eigenvalues λ =, λ = 1 and corresponding eigenvectors 1 3 6 Solve the initial value problem u ( t) = Au( t) with u (0) =. 3 1 u 1 =, u 1 3 = b- True or false and why 1. if A is

More information

Strain and deformation

Strain and deformation Outline Strain and deformation a global overview Mark van Kraaij Seminar on Continuum Mechanics Outline Continuum mechanics Continuum mechanics Continuum mechanics is a branch of mechanics concerned with

More information

The Basics of FEA Procedure

The Basics of FEA Procedure CHAPTER 2 The Basics of FEA Procedure 2.1 Introduction This chapter discusses the spring element, especially for the purpose of introducing various concepts involved in use of the FEA technique. A spring

More information

AN INTRODUCTION TO THE FINITE ELEMENT METHOD FOR YOUNG ENGINEERS

AN INTRODUCTION TO THE FINITE ELEMENT METHOD FOR YOUNG ENGINEERS AN INTRODUCTION TO THE FINITE ELEMENT METHOD FOR YOUNG ENGINEERS By: Eduardo DeSantiago, PhD, PE, SE Table of Contents SECTION I INTRODUCTION... 2 SECTION II 1-D EXAMPLE... 2 SECTION III DISCUSSION...

More information

Harmonic and Periodic Motions. Single-Degree-of-Freedom Systems.

Harmonic and Periodic Motions. Single-Degree-of-Freedom Systems. Outline of Introduction. Harmonic and Periodic Motions. Single-Degree-of-Freedom Systems. Equation of Motion of Undamped Eigenvibrations. Equation of Motion for Forced, Damped Vibrations. Damping Models.

More information

11 Vibration Analysis

11 Vibration Analysis 11 Vibration Analysis 11.1 Introduction A spring and a mass interact with one another to form a system that resonates at their characteristic natural frequency. If energy is applied to a spring mass system,

More information

Analysis of Plane Frames

Analysis of Plane Frames Plane frames are two-dimensional structures constructed with straight elements connected together by rigid and/or hinged connections. rames are subjected to loads and reactions that lie in the plane of

More information

DYNAMIC ANALYSIS USING RESPONSE SPECTRUM SEISMIC LOADING

DYNAMIC ANALYSIS USING RESPONSE SPECTRUM SEISMIC LOADING DYNAMIC ANALYSIS USING RESPONSE SPECTRUM SEISMIC LOADING Prior To The Existence Of Inexpensive Personal Computers The Response Spectrum Method Was The Standard Approach For Linear Seismic Analysis 15.1

More information

MATHEMATICAL MODEL FOR VIBRATIONS OF NON-UNIFORM FLEXURAL BEAMS

MATHEMATICAL MODEL FOR VIBRATIONS OF NON-UNIFORM FLEXURAL BEAMS Engineering MECHANICS, Vol. 15, 2008, No. 1, p. 3 11 3 MATHEMATICAL MODEL FOR VIBRATIONS OF NON-UNIFORM FLEXURAL BEAMS Mohamed Hussien Taha, Samir Abohadima* A simplified mathematical model for free vibrations

More information

Beam, Plate, and Shell Elements Part I

Beam, Plate, and Shell Elements Part I Topic 19 Beam, Plate, and Shell Elements Part I Contents: Brief review of major formulation approaches The degeneration of a three-dimensional continuum to beam and shell behavior Basic kinematic and static

More information

EML 5526 FEA Project 1 Alexander, Dylan. Project 1 Finite Element Analysis and Design of a Plane Truss

EML 5526 FEA Project 1 Alexander, Dylan. Project 1 Finite Element Analysis and Design of a Plane Truss Problem Statement: Project 1 Finite Element Analysis and Design of a Plane Truss The plane truss in Figure 1 is analyzed using finite element analysis (FEA) for three load cases: A) Axial load: 10,000

More information

Application of Second-Order Elastic Analysis in LRFD: Research to Practice

Application of Second-Order Elastic Analysis in LRFD: Research to Practice Application of Second-Order Elastic Analysis in LRFD: Research to Practice DONALD W. WHITE and JEROME F. HAJJAR INTRODUCTION The AISC Load and Resistance Factor Design Specification, 1 states, "In structures

More information

Definition of stress and strain Sunday, March 1, :04 PM

Definition of stress and strain Sunday, March 1, :04 PM Definition of stress and strain Sunday, March 1, 2015 1:04 PM To solve any problem in elasticity we must satisfy 1. Compatibility of displacements (ie single value displacements and their derivatives in

More information

Joint Displacements and Forces

Joint Displacements and Forces 1. Coordinate Systems y Joint Displacements and Forces z x x z Fig. 1: Coordinate System1 (widely used and also applied in this course) y Fig. 2: Coordinate System2 (used in some formulations) 2. Sign

More information

Symmetry of Tangent Stiffness Matrices of 3D Elastic Frame a

Symmetry of Tangent Stiffness Matrices of 3D Elastic Frame a Symmetry of Tangent Stiffness Matrices of 3D Elastic Frame a B.A. Izzuddin 2 In their paper, the authors contend to have resolved the issues concerning the symmetry of the tangent stiffness matrix for

More information

Kinetics of Particles: Relative Motion

Kinetics of Particles: Relative Motion Kinetics of Particles: Relative Motion D Alembert s Principle Accln of a particle measured from fixed set of axes X-Y-Z is its absolute acceleration (a). Newton s second law of motion can be applied (

More information

Types of Elements

Types of Elements chapter : Modeling and Simulation 439 142 20 600 Then from the first equation, P 1 = 140(0.0714) = 9.996 kn. 280 = MPa =, psi The structure pushes on the wall with a force of 9.996 kn. (Note: we could

More information

Finite Element Method (ENGC 6321) Syllabus. Second Semester 2013-2014

Finite Element Method (ENGC 6321) Syllabus. Second Semester 2013-2014 Finite Element Method Finite Element Method (ENGC 6321) Syllabus Second Semester 2013-2014 Objectives Understand the basic theory of the FEM Know the behaviour and usage of each type of elements covered

More information

Figure 12 1 Short columns fail due to material failure

Figure 12 1 Short columns fail due to material failure 12 Buckling Analysis 12.1 Introduction There are two major categories leading to the sudden failure of a mechanical component: material failure and structural instability, which is often called buckling.

More information

Closed Form Solution of the Natural. Frequencies and Mode Shapes of a Tapered. Torsional Shaft Clamped at One End

Closed Form Solution of the Natural. Frequencies and Mode Shapes of a Tapered. Torsional Shaft Clamped at One End Closed Form Solution of the Natural Frequencies and Mode Shapes of a Tapered Torsional Shaft Clamped at One End Soon-Jo Chung Graduate Student, Department of Aeronautics and Astronautics, Massachusetts

More information

BEAM THEORIES The difference between Euler-Bernoulli and Timoschenko

BEAM THEORIES The difference between Euler-Bernoulli and Timoschenko BEAM THEORIES The difference between Euler-Bernoulli and Timoschenko Uemuet Goerguelue Two mathematical models, namely the shear-deformable (Timoshenko) model and the shearindeformable (Euler-Bernoulli)

More information

Today. 1D example. Finite Element Analysis (FEA) Strong (differential) formulation. Strong (differential) formulation

Today. 1D example. Finite Element Analysis (FEA) Strong (differential) formulation. Strong (differential) formulation CSE291 Topics in Computer Graphics Mesh Animation Today Review introduction to FEM Elastic bodies in 3D Matthias Zwicker University of California, San Diego Fall 2006 Finite Element Analysis (FEA) Class

More information

10 Space Truss and Space Frame Analysis

10 Space Truss and Space Frame Analysis 10 Space Truss and Space Frame Analysis 10.1 Introduction One dimensional models can be very accurate and very cost effective in the proper applications. For example, a hollow tube may require many thousands

More information

CHAPTER 5. Results and Analysis. 5.1 Four Point Bend Test. This chapter presents the comparison of shear distribution between the numerical

CHAPTER 5. Results and Analysis. 5.1 Four Point Bend Test. This chapter presents the comparison of shear distribution between the numerical CHAPTER 5 Results and Analysis This chapter presents the comparison of shear distribution between the numerical models and the analytical models. The effect of geometric non-linearity in the way the structure

More information

FE Review Mechanics of Materials

FE Review Mechanics of Materials FE Review Mechanics of Materials 1 Resources You can get the sample reference book: www.ncees.org main site http://www.ncees.org/exams/study_ma terials/fe_handbook Multimedia learning material web site:

More information

WIND TURBINE BLADE DESIGN USING FEM

WIND TURBINE BLADE DESIGN USING FEM WIND TURBINE BLADE DESIGN USING FEM By: Wei Cheng Wenyu Zhou Afolabi Akingbe May 1, 2014 1 1. Abstract The energy output of wind turbines is directly affected by the structural design of the turbine. Due

More information

Stability Of Structures: Basic Concepts

Stability Of Structures: Basic Concepts 23 Stability Of Structures: Basic Concepts ASEN 3112 Lecture 23 Slide 1 Objective This Lecture (1) presents basic concepts & terminology on structural stability (2) describes conceptual procedures for

More information

TL Bar Elements: Formulation

TL Bar Elements: Formulation 9 TL Bar Elements: Formulation 9 1 Chapter 9: TL BAR ELEMENTS: FORMULATION TABLE OF CONTENTS Page 9.1 Introduction..................... 9 3 9. The TL Plane Bar Element............... 9 3 9..1 Plane Bar

More information

Chapter 6: Modal Analysis of a Cantilevered Tapered Beam

Chapter 6: Modal Analysis of a Cantilevered Tapered Beam Application of the Finite Element Method Using MARC and Mentat 6-1 Chapter 6: Modal Analysis of a Cantilevered Tapered Beam Keywords: elastic beam, 2D elasticity, plane stress, convergence, modal analysis

More information

MATH 312 Section 5.2: Linear Models: BVPs

MATH 312 Section 5.2: Linear Models: BVPs MATH 312 Section 5.2: Linear Models: BVPs Prof. Jonathan Duncan Walla Walla University Spring Quarter, 2008 Outline 1 Deflection of a Beam 2 Eigenvalues and Eigenfunctions 3 Conclusion Understanding the

More information

THE CONSTRUCTION OF FREE-FREE FLEXIBILITY MATRICES AS GENERALIZED STIFFNESS INVERSES

THE CONSTRUCTION OF FREE-FREE FLEXIBILITY MATRICES AS GENERALIZED STIFFNESS INVERSES CU-CAS-97-09 CENTER FOR AEROSPACE STRUCTURES THE CONSTRUCTION OF FREE-FREE FLEXIBILITY MATRICES AS GENERALIZED STIFFNESS INVERSES by C. A. Felippa, K. C. Park and M. R. Justino Filho April 997 COLLEGE

More information

FE Review Mechanics of Materials

FE Review Mechanics of Materials FE Review Mechanics of Materials F Stress V M N N = internal normal force (or P) V = internal shear force M = internal moment Double Shear Normal Stress = N = = A Average Shear Stress = τ = P A V A F/

More information

The elements used in commercial codes can be classified in two basic categories:

The elements used in commercial codes can be classified in two basic categories: CHAPTER 3 Truss Element 3.1 Introduction The single most important concept in understanding FEA, is the basic understanding of various finite elements that we employ in an analysis. Elements are used for

More information

Optimal bead orientation of 3D shell/plate structures

Optimal bead orientation of 3D shell/plate structures Finite Elements in Analysis and Design 31 (1998) 55 71 Optimal bead orientation of 3D shell/plate structures Jian Hui Luo, Hae Chang Gea* Rutgers, The State University of New Jersey, Piscataway, NJ 08855-0909,

More information

Module 2. Analysis of Statically Indeterminate Structures by the Matrix Force Method. Version 2 CE IIT, Kharagpur

Module 2. Analysis of Statically Indeterminate Structures by the Matrix Force Method. Version 2 CE IIT, Kharagpur Module nalysis of Statically Indeterminate Structures by the Matrix Force Method Lesson 7 The Force Method of nalysis: n Introduction Since twentieth century, indeterminate structures are being widely

More information

Module 3. Analysis of Statically Indeterminate Structures by the Displacement Method. Version 2 CE IIT, Kharagpur

Module 3. Analysis of Statically Indeterminate Structures by the Displacement Method. Version 2 CE IIT, Kharagpur odule 3 Analysis of Statically Indeterminate Structures by the Displacement ethod Lesson 21 The oment- Distribution ethod: rames with Sidesway Instructional Objectives After reading this chapter the student

More information

Stress and Deformation Analysis. Representing Stresses on a Stress Element. Representing Stresses on a Stress Element con t

Stress and Deformation Analysis. Representing Stresses on a Stress Element. Representing Stresses on a Stress Element con t Stress and Deformation Analysis Material in this lecture was taken from chapter 3 of Representing Stresses on a Stress Element One main goals of stress analysis is to determine the point within a load-carrying

More information

4.1 The General Inverse Kinematics Problem

4.1 The General Inverse Kinematics Problem Chapter 4 INVERSE KINEMATICS In the previous chapter we showed how to determine the end-effector position and orientation in terms of the joint variables. This chapter is concerned with the inverse problem

More information

Plane Stress - Linear Quadrilateral

Plane Stress - Linear Quadrilateral Plane Stress - Linear Quadrilateral Plane stress elements assume zero stress in the out-of-plane direction. Linear quadrilateral plane stress elements are supported by structural analyses (Linear Statics,

More information

UNIT - III FLEXURAL STRESSES OR BENDING STRESSES IN BEAMS

UNIT - III FLEXURAL STRESSES OR BENDING STRESSES IN BEAMS UNIT - III FLEXURAL STRESSES OR BENDING STRESSES IN BEAMS BENDING STRESSES: The stresses induced by bending moment are known as bending stresses. PURE BENDING OR SIMPLE BENDING: If a length of a beam is

More information

Structural Mechanics summary and problems

Structural Mechanics summary and problems Structural Mechanics summary and problems Introduction The subject is the study of stresses and strains in bodies. Knowledge of stresses and strains is needed in the design of engineering components. The

More information

Bending Stress in Beams

Bending Stress in Beams 936-73-600 Bending Stress in Beams Derive a relationship for bending stress in a beam: Basic Assumptions:. Deflections are very small with respect to the depth of the beam. Plane sections before bending

More information

FINITE ELEMENT : MATRIX FORMULATION

FINITE ELEMENT : MATRIX FORMULATION FINITE ELEMENT : MATRIX FORMULATION Georges Cailletaud Ecole des Mines de Paris, Centre des Matériaux UMR CNRS 76 Contents /67 Contents Discrete versus continuous Element Interpolation Element list Global

More information

Unit Virtual Load Method

Unit Virtual Load Method Professor Terje Haukaas University of British Columbia, ancouver www.inrisk.ubc.ca Unit irtual oad Method This is a powerful method for calculating displacements and rotations, primarily in statically

More information

Chapter 5. Finite Element Program

Chapter 5. Finite Element Program 77 Chapter 5 Finite Element Program An existing finite element (FE) program, written by John F. Hall, is adapted for use with this model. The original program was a linearly elastic, static analysis FE

More information

What is a Fixed Support? (Draft 3, 10/02/06)

What is a Fixed Support? (Draft 3, 10/02/06) What is a Fixed Support? (Draft 3, 10/02/06) History A study of the history of mechanics of materials shows that the concept of a fixed, or cantilevered, or encastre, or immovable support came from elementary

More information

USER S GUIDE. Bending Test. Data Processing and Evaluation Software

USER S GUIDE. Bending Test. Data Processing and Evaluation Software USER S GUIDE Bending Test Data Processing and Evaluation Software Author: Václav NEŽERKA March 26, 2012 Part I About The Program The program was developed for fast and user-friendly evaluation of the data

More information

Elasticity Theory Basics

Elasticity Theory Basics G22.3033-002: Topics in Computer Graphics: Lecture #7 Geometric Modeling New York University Elasticity Theory Basics Lecture #7: 20 October 2003 Lecturer: Denis Zorin Scribe: Adrian Secord, Yotam Gingold

More information

Method of Weighted Residuals

Method of Weighted Residuals CHAPTER 5 Method of Weighted 5.1 INTRODUCTION Chapters, 3, and 4 introduced some of the basic concepts of the finite element method in terms of the so-called line elements. The linear elastic spring, the

More information

CHAPTER 9 MULTI-DEGREE-OF-FREEDOM SYSTEMS Equations of Motion, Problem Statement, and Solution Methods

CHAPTER 9 MULTI-DEGREE-OF-FREEDOM SYSTEMS Equations of Motion, Problem Statement, and Solution Methods CHAPTER 9 MULTI-DEGREE-OF-FREEDOM SYSTEMS Equations of Motion, Problem Statement, and Solution Methods Two-story shear building A shear building is the building whose floor systems are rigid in flexure

More information

1. a) Discuss how finite element is evolved in engineering field. (8) b) Explain the finite element idealization of structures with examples.

1. a) Discuss how finite element is evolved in engineering field. (8) b) Explain the finite element idealization of structures with examples. M.TECH. DEGREE EXAMINATION Branch: Civil Engineering Specialization Geomechanics and structures Model Question Paper - I MCEGS 106-2 FINITE ELEMENT ANALYSIS Time: 3 hours Maximum: 100 Marks Answer ALL

More information

Unit 21 Influence Coefficients

Unit 21 Influence Coefficients Unit 21 Influence Coefficients Readings: Rivello 6.6, 6.13 (again), 10.5 Paul A. Lagace, Ph.D. Professor of Aeronautics & Astronautics and Engineering Systems Have considered the vibrational behavior of

More information

APPROXIMATE ANALYSIS OF STRENGTH OF TEHRAN'S TALL BUILDINGS REINFORCED WITH SPANDREL FRAME AGAINST LATERAL FORCES

APPROXIMATE ANALYSIS OF STRENGTH OF TEHRAN'S TALL BUILDINGS REINFORCED WITH SPANDREL FRAME AGAINST LATERAL FORCES Indian J.Sci.Res.3(2) : 25-32, 2012 APPROXIMATE ANALYSIS OF STRENGTH OF TEHRAN'S TALL BUILDINGS REINFORCED WITH SPANDREL FRAME AGAINST LATERAL FORCES HAMID REZAGHASEMI Department of Civil Engineering,

More information

Non-Linear Analysis of Bolted Extended End-Plate Steel Beam-To Column Connection Cut Ainul Mardziah Amir,Redzuan Abdullah

Non-Linear Analysis of Bolted Extended End-Plate Steel Beam-To Column Connection Cut Ainul Mardziah Amir,Redzuan Abdullah Non-Linear Analysis of Bolted Extended End-Plate Steel Beam-To Column Connection Cut Ainul Mardziah Amir,Redzuan Abdullah Faculty of Civil Engineering, Universiti Teknologi Malaysia, Malaysia redzuan@utm.my

More information

Analyses of Deflections and Stresses within a Column-Steel Plate Connection

Analyses of Deflections and Stresses within a Column-Steel Plate Connection Analyses of Deflections and Stresses within a Column-Steel Plate Connection Abdul Al-Mishwat M.Eng Structural Engineering aa887@cornell.edu Daniel Margolin M.Eng Structural Engineering dmm325@cornell.edu

More information