Layout specifications for thermal comfort

Size: px
Start display at page:

Download "Layout specifications for thermal comfort"

Transcription

1 Layout specifications for thermal comfort TB 9 E / 2008

2 Categories of thermal comfort With regard to thermal comfort in commercial buildings the European standard EN ISO 7730 defines three categories for thermal environment where the percentage of dissatisfied is expected to be under the PPD index (Predicted Percentage of Dissatisfied). Dissatisfaction may be the result of too high indoor air velocities (Draught Rating DR in %), too high vertical temperature gradient, too high radiant temperature asymmetry, and uncomfortable floor temperatures. The 3 categories are shown in Table 1. PPD % DR % Percentage of Dissatisfied because of vertical temperature gradient radiant temperature asymmetry floor temperature A < < 10 < 3 < < 10 B < 10 < 20 < < < 10 C < 1 < 30 < 10 < 10 < 1 Table 1: Three categories for thermal environment In category A, for instance, one expects that less than % of the people are not satisfied with their thermal environment. This is the case when the draught rating (DR) is < 10% and dissatisfaction is as follows: < 3% with regard to vertical temperature gradient, < % with regard to radiant temperature asymmetry, and < 10% with regard to floor temperature. These 4 criteria should be met simultaneously for each of the three categories. Which category is to be complied with will be agreed upon between the consultant and the client. Max. air velocity u in m/s DR = 20% DR = 10% 0.10 Extrapolated Activity level I: Light activity, seated (1.2 met) Draught rating and allowable indoor air velocities The draught rating depends on the indoor air velocity, the turbulence intensity and the room temperature. This relationship is defined with equations in EN ISO 7730 for room temperatures of 20 C to 2 C and activity level I, and is illustrated in Fig. 1. For higher room temperatures and activity level II, the relationship has been extrapolated on the basis of further criteria specified in EN ISO 7730 as well as from our personal experience. The following turbulence intensities have been taken as a basis in Fig. 1: Turbulent mixing ventilation Tu = 40% Displacement ventilation Tu = 2% Examples of activity levels: Activity level I: Offices, schools, theatres, (1.2 met) assembly rooms Activity level II: Laboratories, exhibition spaces, (1. met) sales spaces, museums, sports centres. If, for instance, category A at DR < 10% has been specified, then the indoor air velocity at an indoor air temperature of 2 C and activity level I should not exceed 0.1 m/s with turbulent mixing ventilation and 0.17 m/s with displacement ventilation. But, if category B (at DR < 20%) has been specified, then the indoor air velocity under like conditions of temperature and activity should not exceed 0.2 m/s with turbulent mixing ventilation and 0.30 m/s with displacement ventilation. As far as activity level II is concerned, for category A and 2 C the maximum indoor air velocity is 0.21 m/s with turbulent mixing ventilation and 0.24 m/s with displacement ventilation. Displacement ventilation Turbulent mixing ventilation Maximum indoor air velocities for category C (DR < 30%) are not indicated here as this category will be found only seldom in commercial buildings. TB 9 E Bl Activity level II: Light activity, standing (1. met) Air temperature R in C Fig. 1: Allowable range for maximum indoor air velocities to EN ISO

3 Allowable indoor air velocities in industrial plants are specified in the German standard VDI 3802 dated December 1998 (Air-conditioning systems for factories). As shown in Fig. 2, this standard defines the allowable mean indoor air velocities in relation to activity level and clothing, yet irrespective of turbulence intensity. The type of clothing or rather the clothing insulation value is expressed in clo units. The following values refer to: 0. clo: light work clothing (shirt) 0.9 clo: standard work clothing 1.3 clo: heavy work clothing (protective jacket). Industrial halls are also concerned with activity levels III and IV: Activity level III: 2 met (moderate work, standing) Activity level IV: 2. met (heavy work, standing). For example, in an industrial hall with indoor air temperature 2 C activity level III (2 met) clothing 0.9 clo, indoor air velocities up to max m/s are allowable. At 28 C indoor air temperature other conditions being the same indoor air velocities may amount to max. 0.4 m/s. 0.8 Allowable mean air velocity u in m/s met 2. met 2.0 met clo 1.3 clo 0.9 clo 0. TB 9 E Bl Air temperature R in C Fig. 2: Allowable mean indoor air velocities in factories as per VDI 3802 of December

4 Compliance with allowable indoor air velocities Turbulent mixing ventilation Compliance with allowable indoor air velocities as per Fig. 1 and 2 mainly depends on the following physical variables: 1. Maximum temperature difference J between supply air and indoor air in the cooling mode. 2. Specific air volume flow rate per m 2 of floor area. The maximum specific air volume flow rate can be read off as a function of the maximum allowable indoor air velocity and the discharge height. The allowable indoor air velocity will be taken from Fig. 1, or from national guidelines in non-european countries, or from special arrangements between consultant and client, or from Fig. 2 for industrial plants. For air outlets for turbulent mixing ventilation manufactured by KRANTZ KOMPONENTEN the following limit criteria apply: 1. Maximum temperature difference For air outlets generating three-dimensional diffuse air flow without tangential patterns: Ceiling twist outlet Radial outlet Radial slot outlet Multiplex outlet Induction outlet Opticlean Swivel jet outlet J max = 12 K J max = 10 K For air outlets generating two-dimensional diffuse air flow with tangential patterns: Linear whirl outlet Wall slot diffuser Jet nozzle Broad multiplex outlet Parapet outlet J max = 8 K J max = 10 K Maximum specific volume flow rate VSp max m 3 /(h m 2 ) l/(s m 2 ) Discharge height H in m Maximum allowable indoor air velocity u in m/s Fig. 3: Three-dimensional diffuse air flow, e.g. with ceiling twist outlet, radial outlet, radial slot outlet, multiplex outlet, induction outlet, Opticlean, and swivel jet outlet Maximum specific air volume flow rate According to Fig. 3 for air outlets generating threedimensional diffuse air flow. According to Fig. 4 for air outlets generating twodimensional diffuse air flow. The layout criterion is based on J max = 10 to 12 K If the maximum temperature difference is lower, V. Sp max can be increased by the following percentage: J max = 8 K V. Sp max 1% higher J max = K V. Sp max 3% higher J max = 4 K V. Sp max 70% higher TB 9 E Bl

5 Maximum specific volume flow rate VSp max m 3 /(h m 2 ) l/(s m 2 ) Discharge height H in m Low-turbulence displacement ventilation For low-turbulence displacement flow (generated by displacement outlets for commercial or industrial applications), other layout criteria are relevant; they are described in the technical brochures relating to the different types of KRANTZ KOMPONENTEN displacement outlets. In particular the near zone is defined, where higher air velocities occur due to physical conditions. An exception, however, is our circular displacement outlet of type VA-ZD when placed above the occupied zone. In such case and for horizontal discharge, the criteria indicated in Fig. 3 can be roughly taken as a basis for layout Maximum allowable indoor air velocity u in m/s Fig. 4: Two-dimensional diffuse air flow with sidewall air outlets, e.g. linear whirl outlet, wall slot diffuser, broad multiplex outlet, jet nozzle, and parapet outlet The layout criterion is based on J max = 8 to 10 K If the maximum temperature difference is lower, V. Sp max can be increased by the following percentage: J max = K V. Sp max 3% higher J max = 4 K V. Sp max 70% higher TB 9 E Bl For instance, if with three-dimensional diffuse air flow a maximum indoor air velocity of 0.2 m/s is allowable, the specific air volume flow rate may not exceed 10.3 l/(s m 2 ) [37 m 3 /(h m 2 ) ] at 3 m discharge height. If the maximum temperature difference is limited to 8 K in the cooling mode, the specific air volume flow rate may be 1% higher, i.e l/(s m 2 ) [43 m 3 /(h m 2 )].

6 Temperatures Indoor air temperature In the occupied zone one should consider the interaction of air temperature and radiant temperature of surrounding surfaces, in particular when rooms are fitted with chilled ceilings or buildings have large glass facades. The local temperature J o is called operative temperature and is determined from the following approximate equation: J o = 1 (J a + J r ) 2 J o = Operative temperature J a = Room air temperature J r = Mean radiant temperature J r is calculated from the surface temperatures of the room surrounding surfaces and the angles of radiation to the spot considered (the workplace as a rule). For instance, the closer the workplace is to the facade, the greater is the influence of the facade temperature on the operative temperature. With reference to EN 121 the following layout values are recommended for the operative temperature: Operative temperature in C Min. value for the heating season (winter)» 1 clo Max. value for the cooling season (summer)» 0. clo A B 20 2 C Table 2: Recommended layout values for the operative temperature at 1.2 met Radiant temperature asymmetry Thermal comfort is also affected by the radiant temperature asymmetry. Discomfort occurs when the surface temperatures of the different room surrounding surfaces differ too widely. These are influenced by active cooling or heating surfaces that can be used to make up for too great differences. It must be noted that an individual has different perceptions of the same values of radiant temperature asymmetry in different situations. To an individual, a warm ceiling is much more unpleasant than a cold one. The acceptable limits for radiant temperature asymmetry have been derived from this knowledge and are specified in EN ISO 7730 as follows (Table 3): Radiant temperature asymmetry in K Warm ceiling Cold wall Cold ceiling Warm wall A < < 10 < 14 < 23 B < < 10 < 14 < 23 C < 7 < 13 < 18 < 3 Table 3: Limits for radiant temperature asymmetry to EN ISO 7730 If these values are not exceeded, the acceptable percentage of dissatisfied with radiant temperature asymmetry as per Table 1 is kept to. In practice, where chilled ceilings are used, the limit of 14 or 18 K is never reached in the cooling mode, simply because condensation would occur much earlier. The limit of K in the heating mode, however, may be reached if the system has not been designed properly. m Unless otherwise agreed, the operative temperature stated above applies to the area in the middle of the room at 0. m above the floor. U = 1.1 W/(m 2 K) 10 C 21 C 1 m 18 C C 22 C 22 C 22 C Fig. : Example of calculation of radiant temperature asymmetry 0.9m 1.8 m TB 9 E Bl. 2008

7 TB 9 E Bl The following example illustrates the method of calculation: Upper half space: J rh1 = 2 18 C C C = 2.4 C Lower half space: J rh2 = C C C = 21.8 C The radiant temperature asymmetry is J rh = 4. K, which is acceptable for all categories. These formulas enable to determine a maximum heating capacity of approx. W/m 2 of floor area (Fig. ) for categories A and B when a chilled ceiling is used to heat a space. Radiant temperature asymmetry in half space rh in K Limit as per EN ISO Glazing over full room height Reference height 1.2 m 1 Facade with parapet Reference height 1.2 m Specific heating capacity in W/m 2 of floor area Fig. : Radiant temperature asymmetry in half space J rh (ceiling to floor) at 1 m from facade Vertical temperature gradient According to EN ISO 7730 the following maximum vertical temperature gradients are acceptable at a height between 1.1 m and 0.1 m above the floor, depending on the category of thermal comfort (Table 4). A B C Vertical temperature gradient < 2 K < 3 K < 4 K Table 4: Acceptable vertical temperature gradients as per EN ISO 7730 If this is complied with, the acceptable percentage of dissatisfied with the vertical temperature gradient as per Table 1 is kept to. With turbulent mixing ventilation and a chilled ceiling operating in the cooling mode, the limits for vertical temperature gradient are of no significance as the related values are always far below these limits. With displacement ventilation and a chilled ceiling operating in the heating mode, however, one should take care that the limits for vertical temperature gradient are not exceeded. The following experimental values are applicable in this regard: With displacement ventilation, the specific cooling load should not exceed 4 W/m 2 for category A and W/m 2 for category B. For a chilled ceiling operating in the heating mode, the specific heating output per m 2 of floor area should not exceed 0 W/m 2 for category A and 70 W/m 2 for category B. If a turbulent mixing ventilation system from the ceiling or using floor twist outlets is in operation together with a chilled ceiling, then the acceptable heating output will be raised to 100 W/m 2 of floor area. Floor temperature Table shows the acceptable values for the surface temperature of the floor, depending on the category of thermal comfort. Acceptable surface temperature of the floor in C A B C Table : Acceptable surface temperature of the floor as per EN ISO 7730 The surface temperature of the floor can be influenced only a little using HVAC systems. 7

8 Cold air drop at facades There is a risk of discomfort as a result of cold air drop at glass facades being very high or having a too high heat transmission coefficient U > 1. to 2 W/(m 2 K). The cold air flow is deflected at floor level and penetrates the occupied zone. Fig. 7 illustrates the indoor air velocities u in relation to the window/facade height. Indoor air velocity u at 1 m from facade, in m/s U value in W/(m 2 K) Outdoor air temperature: Indoor air temperature: : 12 C 22 C 34 K Window height in m Fig. 7: Indoor air velocities u above the floor as a result of cold air drop at glass facades To efficiently prevent cold air drop at high facades, one can use window air curtain units or facade heating systems; for glazing over the room height, one can also use heating elements or parapet air supply units. Aachen, April 2008 Dr. Franc Sodec TB 9 E Bl caverion GmbH Business unit KRANTZ KOMPONENTEN P.O. Box Aachen Germany Phone Fax info@krantz.de

COMPARISON OF THE THERMAL ENVIRONMENT IN ROOMS WITH CHILLED BEAM AND RADIANT PANEL SYSTEMS

COMPARISON OF THE THERMAL ENVIRONMENT IN ROOMS WITH CHILLED BEAM AND RADIANT PANEL SYSTEMS COMPARISON OF THE THERMAL ENVIRONMENT IN ROOMS WITH CHILLED BEAM AND RADIANT PANEL SYSTEMS Risto Kosonen, Panu Mustakallio Arsen Melikov 2, Marcin Duszyk 2 Oy Halton Group Ltd., Helsinki, Finland. 2 International

More information

Research Project F 2071. W. Richter. Manual of thermal comfort of Summer cooling mode

Research Project F 2071. W. Richter. Manual of thermal comfort of Summer cooling mode Research Project F 2071 W. Richter Manual of thermal comfort of Summer cooling mode Dortmund/Berlin/Dresden 2007 This publication is a summary of the final report of a project Development of a manual on

More information

Cleanroom systems. HVAC systems for hospitals

Cleanroom systems. HVAC systems for hospitals Cleanroom systems HVAC systems for hospitals Let us explore together the different building areas Pages 4 5 Reception / Waiting area Pages 6 9 Best air management solutions through customized systems KRANTZ

More information

Eco Pelmet Modelling and Assessment. CFD Based Study. Report Number 610.14351-R1D1. 13 January 2015

Eco Pelmet Modelling and Assessment. CFD Based Study. Report Number 610.14351-R1D1. 13 January 2015 EcoPelmet Pty Ltd c/- Geoff Hesford Engineering 45 Market Street FREMANTLE WA 6160 Version: Page 2 PREPARED BY: ABN 29 001 584 612 2 Lincoln Street Lane Cove NSW 2066 Australia (PO Box 176 Lane Cove NSW

More information

Displacement ventilation

Displacement ventilation General The displacement ventilation principle is the oldest form of ventilation and can be achieved without the use of fans. Air movement occurs by means of the density differences between supply air

More information

ENERGY SAVINGS BY CHANGING CONSTANT AIR VOLUME SYSTEMS (CAV) TO VARIABLE AIR VOLUME SYSTEMS (VAV) IN EXISTING OFFICE BUILDINGS.

ENERGY SAVINGS BY CHANGING CONSTANT AIR VOLUME SYSTEMS (CAV) TO VARIABLE AIR VOLUME SYSTEMS (VAV) IN EXISTING OFFICE BUILDINGS. 1 ENERGY SAVINGS BY CHANGING CONSTANT AIR VOLUME SYSTEMS (CAV) TO VARIABLE AIR VOLUME SYSTEMS (VAV) IN EXISTING OFFICE BUILDINGS. - EXPERIENCE FROM A PLANT RECONSTRUCTION BASED ON A NEW SUPPLY AIR TERMINAL

More information

Adaptive strategies for office spaces in the UK climate

Adaptive strategies for office spaces in the UK climate International Conference Passive and Low Energy Cooling 631 Adaptive strategies for office spaces in the UK climate I. Gallou Environment & Energy Studies Programme, Architectural Association Graduate

More information

How To Design A Room Air Conditioning System

How To Design A Room Air Conditioning System Comparison of HVAC Technology in Buildings Conventional HVAC Technology Bauer Optimising Technology The Differences Room environment (Occupant Comfort) Energy Consumption Architecture Air flows in a room

More information

AIR DISTRIBUTION FOR COMFORT AND IAQ

AIR DISTRIBUTION FOR COMFORT AND IAQ AIR DISTRIBUTION FOR COMFORT AND IAQ Heating Piping and Air Conditioning March 1998 Dan Int-Hout Chief Engineer KRUEGER EXCELLENCE IN AIR DISTRIBUTION Modern environmentally controlled spaces consume significant

More information

CAN DEMAND CONTROLLED VENTILATION REPLACE SPACE HEATING IN OFFICE BUILDINGS WITH LOW HEATING DEMAND?

CAN DEMAND CONTROLLED VENTILATION REPLACE SPACE HEATING IN OFFICE BUILDINGS WITH LOW HEATING DEMAND? Topic B3: Control of indoor environment CAN DEMAND CONTROLLED VENTILATION REPLACE SPACE HEATING IN OFFICE BUILDINGS WITH LOW HEATING DEMAND? Axel CABLE 1,*, Mads MYSEN 1,2, Kari THUNSHELLE 1 1 SINTEF,

More information

EVALUATION OF THE PMV THERMAL COMFORT INDEX IN OUTDOOR WEATHER CONDITIONS JuYoun Kwon and Ken Parsons

EVALUATION OF THE PMV THERMAL COMFORT INDEX IN OUTDOOR WEATHER CONDITIONS JuYoun Kwon and Ken Parsons EVALUATION OF THE THERMAL COMFORT INDEX IN OUTDOOR WEATHER CONDITIONS JuYoun Kwon and Ken Parsons Environmental Ergonomics Research Centre, Loughborough University, Loughborough, Leicestershire, U.K. LE11

More information

Life cycle cost comparison of TAB vs. other HVAC (UK) TECHNICAL BROCHURE

Life cycle cost comparison of TAB vs. other HVAC (UK) TECHNICAL BROCHURE Life cycle cost comparison of TAB vs. other HVAC (UK) TECHNICAL BROCHURE 3 213 2 2 UPONOR LIFE CYCLE COST COMPARISON OF TAB VS. OTHER HVAC Contents Introduction... 4 Base building... 5 System and tested

More information

Air-water systems for efficient air conditioning

Air-water systems for efficient air conditioning Air-water systems for efficient air conditioning The art of handling air System overview Passive cooling systems Induction units Façade ventilation units Page 4 Page 6 Page 10 Passive Chilled ceiling Undersill

More information

EFA PSBP. Natural Ventilation Strategy. Introduction. 1.1 Relevant legislation. 1.1.1 The Building Regulations 2010

EFA PSBP. Natural Ventilation Strategy. Introduction. 1.1 Relevant legislation. 1.1.1 The Building Regulations 2010 EFA PSBP Natural Ventilation Strategy Introduction The Baseline Designs Project will provide scheme design details for a number of Primary and Secondary School Exemplars. For the purposes of setting a

More information

Federation of European Heating, Ventilation and Air-conditioning Associations

Federation of European Heating, Ventilation and Air-conditioning Associations Federation of European Heating, Ventilation and Air-conditioning Associations Address: Rue Washington 40 1050 Brussels Belgium www.rehva.eu info@rehva.eu Tel: +32 2 514 11 71 Fax: +32 2 512 90 62 Use of

More information

HDA -----------------------------------------------------------

HDA ----------------------------------------------------------- ----------------------------------------------------------- Lightstrips ---------------------------------------------------------------------- Ceiling system for heating and cooling LIGHTSTRIPS LIGHTSTRIPS

More information

Radiant Heating and Cooling Systems BY KWANG WOO KIM, ARCH.D., MEMBER ASHRAE; BJARNE W. OLESEN, PH.D., FELLOW ASHRAE

Radiant Heating and Cooling Systems BY KWANG WOO KIM, ARCH.D., MEMBER ASHRAE; BJARNE W. OLESEN, PH.D., FELLOW ASHRAE TECHNICAL FEATURE Fundamentals at Work This article was published in ASHRAE Journal, February 2015. Copyright 2015 ASHRAE. Posted at www.ashrae.org. This article may not be copied and/or distributed electronically

More information

COOLING AND HEATING OF BUILDINGS BY ACTIVATING THEIR THERMAL MASS WITH EMBEDDED HYDRONIC PIPE SYSTEMS -

COOLING AND HEATING OF BUILDINGS BY ACTIVATING THEIR THERMAL MASS WITH EMBEDDED HYDRONIC PIPE SYSTEMS - pcoolingandheating COOLING AND HEATING OF BUILDINGS BY ACTIVATING THEIR THERMAL MASS WITH EMBEDDED HYDRONIC PIPE SYSTEMS - Bjarne W. Olesen, Ph.D. D. F. Liedelt "Velta" Summary Due to intensive use of

More information

Subtropical Cities September 2006. Design for Energy Efficiency in Commercial Buildings in Queensland

Subtropical Cities September 2006. Design for Energy Efficiency in Commercial Buildings in Queensland Subtropical Cities September 2006 Design for Energy Efficiency in Commercial Buildings in Queensland Contents Typical Building Constraints & Requirements Understanding Energy Consumption in Buildings HVAC

More information

Comparison between Decentralised and Centralised Air Conditioning Systems

Comparison between Decentralised and Centralised Air Conditioning Systems Comparison between De and Centralised Air Conditioning Systems (Summary) FassadenSystemLüftung FassadenSystemLüftung Telephone +49/ 28 45/ 2 02-711 GmbH & Co KG Telefax +49/28 45/2 02-2 25 Heinrich-Trox-Platz

More information

Thermal environments. www.swema.com swema@swema.com Tel. +46 8 94 00 90

Thermal environments. www.swema.com swema@swema.com Tel. +46 8 94 00 90 ISO 7730 Moderate Thermal Environments Thermal environments Swema equipment for the measurement of Moderate Thermal Environments is designed to comply with the standards: ISO7726 - Thermal environments

More information

CHAPTER 3. BUILDING THERMAL LOAD ESTIMATION

CHAPTER 3. BUILDING THERMAL LOAD ESTIMATION CHAPTER 3. BUILDING THERMAL LOAD ESTIMATION 3.1 Purpose of Thermal Load Estimation 3.2 Heating Load versus Cooling Load 3.3 Critical Conditions for Design 3.4 Manual versus Computer Calculations 3.5 Heating

More information

Under sill units. Type FSL-B-ZAS

Under sill units. Type FSL-B-ZAS .1 X X testregistrierung Under sill units Type, heat recovery Centrifugal fan Adaptive heat recovery damper HYGIENISCH GETESTET V DI 022 Tested to VDI 022 Secondary air unit for supply air and extract

More information

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution

More information

VENTILATIVE COOLING EBC ANNEX 62 PER HEISELBERG DEPARTMENT OF CIVIL ENGINEERING

VENTILATIVE COOLING EBC ANNEX 62 PER HEISELBERG DEPARTMENT OF CIVIL ENGINEERING VENTILATIVE COOLING EBC ANNEX 62 PER HEISELBERG DEFINITION OF VENTILATIVE COOLING VENTILATIVE COOLING IS APPLICATION (DISTRIBUTION IN TIME AND SPACE) OF VENTILATION AIR FLOW TO REDUCE COOLING LOADS IN

More information

SECTION EG. Engineering Guide Air Distribution. Please refer to the Price Engineer s HVAC Handbook for more information on Air Distribution.

SECTION EG. Engineering Guide Air Distribution. Please refer to the Price Engineer s HVAC Handbook for more information on Air Distribution. SECTION EG Air Distribution Please refer to the Price Engineer s HVAC Handbook for more information on Air Distribution. Space Air Diffusion AIR DISTRIBUTION ENGINEERING GUIDE Proper selection of air diffusion

More information

Selecting Energy Efficient New Windows in Florida

Selecting Energy Efficient New Windows in Florida Selecting Energy Efficient New Windows in Florida www.efficientwindows.org January 06 Zones. Meet the Energy Code & Look for the Windows must comply with your local energy code. Windows that are certified

More information

ASHRAE STANDARD. Thermal Environmental Conditions for Human Occupancy. BSR/ASHRAE Standard 55P -1992R. Proposed American National Standard

ASHRAE STANDARD. Thermal Environmental Conditions for Human Occupancy. BSR/ASHRAE Standard 55P -1992R. Proposed American National Standard BSR/ASHRAE Standard 55P -1992R This draft standard will be submitted to the American National Standards Institute Board of Standards Review (BSR) for approval. ASHRAE STANDARD Proposed American National

More information

Thermal environment in indoor spaces with under-floor air distribution systems: 1. Impact of design parameters (1522-RP)

Thermal environment in indoor spaces with under-floor air distribution systems: 1. Impact of design parameters (1522-RP) Lee, K.S., Xue, G., Jiang, Z., and Chen, Q. 0. Thermal environment in indoor spaces with under-floor air distribution systems:. Impact of design parameters (5-RP), HVAC&R Research, 8(6), 8 9. Thermal environment

More information

Air Conditioning in Green Office Buildings?

Air Conditioning in Green Office Buildings? Air Conditioning in Green Office Buildings? How to implement Demand Controlled Ventilation Stuttgart Rechte allein bei ICEBO 08 10.10.2008 CI / DrRo 1 Air Conditioning in Green Office Buildings ventilation

More information

How To Make A Building Energy Efficient

How To Make A Building Energy Efficient An Introduction to Chilled Beams and Ceilings July 2012 Version 1 DISCLAIMER All rights reserved. Apart from any fair dealing for the purposes of private study or research allowed under applicable copyright

More information

Air distribution effectiveness with stratified air distribution systems

Air distribution effectiveness with stratified air distribution systems Lee, K.S., Jiang, Z., and Chen, Q. 2009 Air distribution effectiveness with stratified air distribution systems, ASHRAE Transactions, 115(2). Air distribution effectiveness with stratified air distribution

More information

Opening the Bonnet. Prof Darren Woolf WYSINWYG 1

Opening the Bonnet. Prof Darren Woolf WYSINWYG 1 Opening the Bonnet Prof Darren Woolf WYSINWYG 1 WYSINWYG What You See Is NOT What You Get: Looking inside the Pandora s Box Prof Darren Woolf WYSINWYG 2 WYSIWYG implies a user interface that allows the

More information

DESIGN OF NATURAL VENTILATION WITH CFD CHAPTER SEVEN. Qingyan Chen. difficult to understand and model, even for simple

DESIGN OF NATURAL VENTILATION WITH CFD CHAPTER SEVEN. Qingyan Chen. difficult to understand and model, even for simple CHAPTER SEVEN L. Glicksman and J. Lin (eds), Sustainable Urban Housing in China, 116-123 2006 Springer. Printed in the Netherlands. DESIGN OF NATURAL VENTILATION WITH CFD Qingyan Chen INTRODUCTION As the

More information

Sustainable construction criteria to evaluate the thermal indoor climate - further development of the BNB assessment tool and practical implementation

Sustainable construction criteria to evaluate the thermal indoor climate - further development of the BNB assessment tool and practical implementation Fraunhofer Institute for Building Physics IBP Directors Univ. Prof. Dr. Ing. Gerd Hauser Univ. Prof. Dr. Ing. Klaus Sedlbauer Holzkirchen Branch Fraunhoferstrasse 10 83626 Valley / Germany IBP-Abstract

More information

A NODAL MODEL FOR DISPLACEMENT VENTILATION AND CHILLED CEILING SYSTEMS IN OFFICE SPACES

A NODAL MODEL FOR DISPLACEMENT VENTILATION AND CHILLED CEILING SYSTEMS IN OFFICE SPACES A NODAL MODEL FOR DISPLACEMENT VENTILATION AND CHILLED CEILING SYSTEMS IN OFFICE SPACES Simon J. Rees and Philip Haves School of Mechanical & Aerospace Engineering, Oklahoma State University, Stillwater,

More information

School Performance Specifications. SPACES Engineering Technical Meeting 22 September 2015

School Performance Specifications. SPACES Engineering Technical Meeting 22 September 2015 School Performance Specifications SPACES Engineering Technical Meeting 22 September 2015 EFA Facilities Output Specification: Introduced in 2013 to promote: well-integrated and simple buildings that benefit

More information

Problem Statement In order to satisfy production and storage requirements, small and medium-scale industrial

Problem Statement In order to satisfy production and storage requirements, small and medium-scale industrial Problem Statement In order to satisfy production and storage requirements, small and medium-scale industrial facilities commonly occupy spaces with ceilings ranging between twenty and thirty feet in height.

More information

Product Data. Thermal Comfort Data Logger Type 1221. Including Application Software Type 7301

Product Data. Thermal Comfort Data Logger Type 1221. Including Application Software Type 7301 Product Data Thermal Comfort Data Logger Type 1221 Including Application Software Type 7301 USES: For measuring all physical parameters necessary to evaluate heat stress and thermal comfort For evaluating

More information

SBi 2013:14. Study of a Two-Pipe Chilled Beam System for both Cooling and Heating of Office Buildings

SBi 2013:14. Study of a Two-Pipe Chilled Beam System for both Cooling and Heating of Office Buildings SBi 2013:14 Study of a Two-Pipe Chilled Beam System for both Cooling and Heating of Office Buildings Study of a Two-Pipe Chilled Beam System for both Cooling and Heating of Office Buildings Rouzbeh Norouzi,

More information

Essam E. Khalil khalile1@asme.org

Essam E. Khalil khalile1@asme.org AIR-CONDITIONING SYSTEMS DEVELOPMENTS IN HOSPITALS: COMFORT, AIR QUALITY, AND ENERGY UTILIZATION Essam E. Khalil khalile1@asme.org PROFESSOR OF MECHANICAL ENGINEERING, CAIRO UNIVERSITY, EGYPT Abstract

More information

Mistrale. Fusion Terminal

Mistrale. Fusion Terminal Mistrale Fusion Terminal PUBLICATION NATURAL VENT. 1 SEPT 2015 Features - Slimline energy efficient ventilation solution - Standard and high capacity terminals provide 128 or 256 L/s capacity - Compliant

More information

Radiant Floor Heating In Theory and Practice

Radiant Floor Heating In Theory and Practice The following article was published in ASHRAE Journal, July 02. Copyright 02 American Society of Heating, Refrigerating and Air- Conditioning Engineers, Inc. It is presented for educational purposes only.

More information

CFD ANALYSIS CHALLENGES IN BUILDING SIMULATION FOR SIMBUILD2004 CONFERENCE. Ferdinand Schmid and Galen Burrell Architectural Energy Corporation

CFD ANALYSIS CHALLENGES IN BUILDING SIMULATION FOR SIMBUILD2004 CONFERENCE. Ferdinand Schmid and Galen Burrell Architectural Energy Corporation CFD ANALYSIS CHALLENGES IN BUILDING SIMULATION FOR SIMBUILD2004 CONFERENCE Ferdinand Schmid and Galen Burrell Architectural Energy Corporation ABSTRACT This paper discusses the capabilities and challenges

More information

Chilled Beam Solutions ADVANCING THE SCIENCE OF AIR DISTRIBUTION. Redefine your comfort zone. www.titus-hvac.com

Chilled Beam Solutions ADVANCING THE SCIENCE OF AIR DISTRIBUTION. Redefine your comfort zone. www.titus-hvac.com Chilled Beam Solutions ADVANCING THE SCIENCE OF AIR DISTRIBUTION k-12 education Redefine your comfort zone. www.titus-hvac.com woodgrains dual-function energy solutions table of contents The CBAL-24 is

More information

Radiant Temperature Sensor TY7321

Radiant Temperature Sensor TY7321 AB-5361-U Specifications/Instructions Radiant Temperature TY7321 General TY7321 Radiant Temperature s are designed to measure infrared radiation from perimeter windows and walls and provide a proportional

More information

ELIMINATING AIR CONDITIONERS IN NEW SOUTHERN CALIFORNIA HOUSING

ELIMINATING AIR CONDITIONERS IN NEW SOUTHERN CALIFORNIA HOUSING ELIMINATING AIR CONDITIONERS IN NEW SOUTHERN CALIFORNIA HOUSING Murray Milne, Research Professor Department of Architecture and Urban Design UCLA Los Angeles, CA 90095 milne@ucla.edu Tim Kohut, Project

More information

Energy Efficient HVAC-system and Building Design

Energy Efficient HVAC-system and Building Design Energy Efficient HVAC-system and Building Design Maija Virta 1, Harri Itkonen 1, Panu Mustakallio 1, Risto Kosonen 1 1 Halton Oy, Finland Corresponding email: maija.virta@halton.com SUMMARY This paper

More information

NEW CEILING MODULE DS-W1 WAVE : SUBSTANTIALLY HIGHER CAPACITY AND ENERGY EFFICIENCY

NEW CEILING MODULE DS-W1 WAVE : SUBSTANTIALLY HIGHER CAPACITY AND ENERGY EFFICIENCY NEW CEILING MODULE DS-W1 WAVE : SUBSTANTIALLY HIGHER CAPACITY AND ENERGY EFFICIENCY With the groundbreaking new heating and cooling module DS-W1 Wave, compared to conventional radiant solutions, the heating

More information

Residential HVAC Load Sizing Training October 14, 2015. David Kaiser Green Code Plan Reviewer

Residential HVAC Load Sizing Training October 14, 2015. David Kaiser Green Code Plan Reviewer Residential HVAC Load Sizing Training October 14, 2015 David Kaiser Green Code Plan Reviewer DCRA - Green Building Division Regulations of green codes including: Green Building Act Green Construction Code

More information

THE NATIONAL BUILDING REGULATIONS PART XA: ENERGY EFFICIENCY. Presentation by Peter Henshall-Howard: HEAD: BUILDING DEVELOPMENT MANAGEMENT.

THE NATIONAL BUILDING REGULATIONS PART XA: ENERGY EFFICIENCY. Presentation by Peter Henshall-Howard: HEAD: BUILDING DEVELOPMENT MANAGEMENT. THE NATIONAL BUILDING REGULATIONS PART XA: ENERGY EFFICIENCY. Presentation by Peter Henshall-Howard: HEAD: BUILDING DEVELOPMENT MANAGEMENT. A Diagrammatic representation of the relationship between the

More information

Federation of European Heating, Ventilation and Air-conditioning Associations

Federation of European Heating, Ventilation and Air-conditioning Associations Federation of European Heating, Ventilation and Air-conditioning Associations Address: Rue Washington 40 1050 Brussels Belgium www.rehva.eu info@rehva.eu Tel: +32 2 514 11 71 Fax: +32 2 512 90 62 Use of

More information

Lesson 36 Selection Of Air Conditioning Systems

Lesson 36 Selection Of Air Conditioning Systems Lesson 36 Selection Of Air Conditioning Systems Version 1 ME, IIT Kharagpur 1 The specific objectives of this chapter are to: 1. Introduction to thermal distribution systems and their functions (Section

More information

Kan behovsstyrt ventilasjon erstatte lokal varme? Axel Cablé, SINTEF Seminar 19.11.13

Kan behovsstyrt ventilasjon erstatte lokal varme? Axel Cablé, SINTEF Seminar 19.11.13 Kan behovsstyrt ventilasjon erstatte lokal varme? Axel Cablé, SINTEF Seminar 19.11.13 1 Kan behovsstyrt ventilasjon erstatte lokal varme? Principles Challenges VABAT Project 2 Principles Increased envelope

More information

Saving Heating Costs In Warehouses

Saving Heating Costs In Warehouses 2005, American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. (www.ashrae.org). Reprinted by permission from ASHRAE Journal, (Vol. 47, No. 12, December 2005). This article may not

More information

Selecting Energy Efficient New Windows in Texas

Selecting Energy Efficient New Windows in Texas Selecting Energy Efficient New Windows in Texas www.efficientwindows.org January 06 Zones. Meet the Energy Code & Look for the Windows must comply with your local energy code. Windows that are certified

More information

Information paper 20. Prepared by: David Clark. book:

Information paper 20. Prepared by: David Clark. book: Information paper 20 Ventilation rates in offices and natural mechanical Prepared by: David Clark A paper referenced in the book: Cundall Johnston & Partners LLP. 2013 Issue 1.0: 29 July 2013 This information

More information

THERMAL LOSSES Thermal Losses Calculations

THERMAL LOSSES Thermal Losses Calculations Calculations -1- THERMAL LOSSES Thermal Losses Calculations Employer : 4M SA Project Location : ASHRAE Office Room : Example from ASHRAE 2013 Handbook - Fundamentals : Chapter 18, Single Room Example Peak

More information

AIR CONDITIONING EFFICIENCY F8 Energy eco-efficiency opportunities in Queensland Foundries

AIR CONDITIONING EFFICIENCY F8 Energy eco-efficiency opportunities in Queensland Foundries AIR CONDITIONING EFFICIENCY F8 Energy eco-efficiency opportunities in Queensland Foundries Hot tips and cool ideas to save energy and money! Air conditioning units or systems are often used by foundries

More information

Radiant Panels and Chilled Sails. www.price-hvac.com

Radiant Panels and Chilled Sails. www.price-hvac.com Radiant Panels and Chilled Sails www.price-hvac.com Radiant Panels and Chilled Sails Introduction Radiant panels use thermal radiation to modify surface temperatures in order to provide sensible cooling

More information

Energy Efficiency HOSPITALITY. www.energia.ie

Energy Efficiency HOSPITALITY. www.energia.ie Energy Efficiency HOSPITALITY www.energia.ie Your chance to reduce your business energy usage by as much as 20%! 20% is a significant figure and reducing your energy bill by this amount could make a real

More information

CEN/TC 156. pren 15251. Date: 2006-07-31 CEN/TC 156. Secretariat: BSI ICS: Descriptors:

CEN/TC 156. pren 15251. Date: 2006-07-31 CEN/TC 156. Secretariat: BSI ICS: Descriptors: CEN/TC 156 Date: 2006-07-31 pren 15251 CEN/TC 156 Secretariat: BSI Indoor environmental input parameters for design and assessment of energy performance of buildingsaddressing indoor air quality, thermal

More information

Federation of European Heating, Ventilation and Air-conditioning Associations

Federation of European Heating, Ventilation and Air-conditioning Associations Federation of European Heating, Ventilation and Air-conditioning Associations Address: Rue Washington 40 1050 Brussels Belgium www.rehva.eu info@rehva.eu Tel: +32 2 514 11 71 Fax: +32 2 512 90 62 REHVA

More information

Creating Efficient HVAC Systems

Creating Efficient HVAC Systems Creating Efficient HVAC Systems Heating and Cooling Fundamentals for Commercial Buildings Heating, ventilating, and air conditioning (HVAC) systems account for nearly half of the energy used in a typical

More information

SELECTIVE GLAZING FOR SUN CONTROL

SELECTIVE GLAZING FOR SUN CONTROL SUN CONTROL GLAZING SELECTIVE GLAZING FOR SUN CONTROL Sun Factor 1st level performance for direct solar energy Solar energy control Solar control coating Only if the glass is exposed to sun rays! 2nd level

More information

DEVELOPMENT OF CONVECTIVE HEAT TRANSFER MODELS FOR HUMAN BODY SEGMENTS FOR THE CASE OF DISPLACEMENT VENTILATION IN ROOMS

DEVELOPMENT OF CONVECTIVE HEAT TRANSFER MODELS FOR HUMAN BODY SEGMENTS FOR THE CASE OF DISPLACEMENT VENTILATION IN ROOMS DEVELOPMENT OF CONVECTIVE HEAT TRANSFER MODELS FOR HUMAN BODY SEGMENTS FOR THE CASE OF DISPLACEMENT VENTILATION IN ROOMS S. R. Bolineni 1, S. Stratbücker 1, and C. van Treeck 2 1 Fraunhofer Institute for

More information

Dienstleistung. Certification as "Quality Approved Passive House" Criteria for Residential-Use Passive Houses

Dienstleistung. Certification as Quality Approved Passive House Criteria for Residential-Use Passive Houses Passiv Haus Institut Passivhaus Dienstleistung GmbH Dr. Wolfgang Feist Rheinstr. 44/46 Rheinstr. 44/46 D-64283 Darmstadt D-64283 Darmstadt www.passiv.de www.passivhaus-info.de Certification as "Quality

More information

HEALTHY BUILDINGS BUT LESS ENERGY CONSUMPTION How can Air Conditioning Technology help?

HEALTHY BUILDINGS BUT LESS ENERGY CONSUMPTION How can Air Conditioning Technology help? HEALTHY BUILDINGS BUT LESS ENERGY CONSUMPTION How can Air Conditioning Technology help? Proceedings of Healthy Buildings 94 Ben Bronsema, Consulting Engineer ONRI Ketel Consulting Engineers Ltd, DELFT

More information

Basic Selection & Proper Application of Overhead Air Distribution Devices

Basic Selection & Proper Application of Overhead Air Distribution Devices Basic Selection & Proper Application of Overhead Air Distribution Devices GRD Selection & Application Terms Selection Throw Sound Installation Variations affect Performance Inlet Effects Basics Return

More information

Climotion ensures a better climate. Better comfort and lower costs in all buildings. Bosch Energy and Building Solutions

Climotion ensures a better climate. Better comfort and lower costs in all buildings. Bosch Energy and Building Solutions Climotion ensures a better climate. Better comfort and lower costs in all buildings. Bosch Energy and Building Solutions 2 Smart control Smart control 3 Savings have seldom felt so good. Comfort Sustainability

More information

CFD MODELLING FOR SWIRL DIFFUSER AND ITS IMPLICATIONS ON AIR CHANGE EFFECTIVENESS ASSESSMENT TO GREEN STAR'S IEQ-2

CFD MODELLING FOR SWIRL DIFFUSER AND ITS IMPLICATIONS ON AIR CHANGE EFFECTIVENESS ASSESSMENT TO GREEN STAR'S IEQ-2 CFD MODELLING FOR SWIRL DIFFUSER AND ITS IMPLICATIONS ON AIR CHANGE EFFECTIVENESS ASSESSMENT TO GREEN STAR'S IEQ-2 Eddy Rusly 1 and Mirek Piechowski 2 1,2 Meinhardt (VIC), Melbourne, Australia ABSTRACT

More information

HVAC Systems: Overview

HVAC Systems: Overview HVAC Systems: Overview Michael J. Brandemuehl, Ph.D, P.E. University of Colorado Boulder, CO, USA Overview System Description Secondary HVAC Systems Air distribution Room diffusers and air terminals Duct

More information

Integrated Personalized Ventilation for Minimizing Cross Infection

Integrated Personalized Ventilation for Minimizing Cross Infection Integrated Personalized Ventilation for Minimizing Cross Infection by Peter V. Nielsen Peter V. Nielsen, Aalborg University pvn@civil.auc.dk 1 Personalized Ventilation Melikow et al. Peter V. Nielsen,

More information

Verizon SMARTS Data Center Design Phase 1 Conceptual Study Report Ms. Leah Zabarenko Verizon Business 2606A Carsins Run Road Aberdeen, MD 21001

Verizon SMARTS Data Center Design Phase 1 Conceptual Study Report Ms. Leah Zabarenko Verizon Business 2606A Carsins Run Road Aberdeen, MD 21001 Verizon SMARTS Data Center Design Phase 1 Conceptual Study Report Ms. Leah Zabarenko Verizon Business 2606A Carsins Run Road Aberdeen, MD 21001 Presented by: Liberty Engineering, LLP 1609 Connecticut Avenue

More information

Mechanical and Natural Ventilation

Mechanical and Natural Ventilation BBSE3006: Air Conditioning and Refrigeration II http://www.hku.hk/bse/bbse3006/ Mechanical and Natural Ventilation Dr. Sam C. M. Hui Department of Mechanical Engineering The University of Hong Kong E-mail:

More information

ResearcH JournaL 2009 / VOL 01.01. www.perkinswill.com

ResearcH JournaL 2009 / VOL 01.01. www.perkinswill.com ResearcH JournaL 2009 / VOL 01.01 www.perkinswill.com PERKINS+WILL RESEARCH JOURNAL / VOL 01.01 05. CONTEXT BASED DESIGN OF DOUBLE SKIN FACADES Climatic Considerations During the Design Process Ajla Aksamija,

More information

3-D Modeller Rendered Visualisations

3-D Modeller Rendered Visualisations Recognised energy Dynamic Simulation Modelling (DSM) software DesignBuilder is a user interface to the EnergyPlus DSM. EnergyPlus builds on the most popular features and capabilities of BLAST and DOE-2

More information

How To Control Humidity With A Humidifier

How To Control Humidity With A Humidifier Control of ventilation and air conditioning plants Building Technologies s Contents.Temperature control in air treatment systems 2. Humidity controls 3. Recirculated air mixing. Internal heat sources 6.2

More information

Energy Efficiency. Bars & RestauRants. www.energia.ie

Energy Efficiency. Bars & RestauRants. www.energia.ie Energy Efficiency Bars & RestauRants www.energia.ie 2 Your chance to reduce your business energy usage by as much as 20%! 20% is a significant figure and reducing your energy bill by this amount could

More information

WALLS Three common wall types are described below, with their insulation solutions.

WALLS Three common wall types are described below, with their insulation solutions. APPENDIX 5: Building Envelope Insulation is vitally important for temperature controlled buildings. If fuel (and therefore money) is being used to heat a building, less fuel (and money) will be used if

More information

CHAPTER 3. The sun and the seasons. Locating the position of the sun

CHAPTER 3. The sun and the seasons. Locating the position of the sun zenith 90 summer solstice 75 equinox 52 winter solstice 29 altitude angles observer Figure 3.1: Solar noon altitude angles for Melbourne SOUTH winter midday shadow WEST summer midday shadow summer EAST

More information

KNX TH65-AP. Thermo-Hygrometer. Technical specifications and installation instructions Item number 70184

KNX TH65-AP. Thermo-Hygrometer. Technical specifications and installation instructions Item number 70184 EN KNX TH65-AP Thermo-Hygrometer Technical specifications and installation instructions Item number 70184 Elsner Elektronik GmbH Control and Automation Engineering Herdweg 7 D 75391 Gechingen Phone +49

More information

DSRQ - DSRSQ - DSRSQ-THERM

DSRQ - DSRSQ - DSRSQ-THERM DSRQ - DSRSQ - DSRSQ-THERM Specification item: Variable geometry diffuser on 597x597 mm panel developed for rooms with high ceilings where a long throw and a high induction ratio are required. Made up

More information

Air management solutions at ceilings and facades

Air management solutions at ceilings and facades Air management solutions at ceilings and facades High-capacity cooling ceiling elements Radiant cooling ceiling elements Chilled beams Customized solutions Chilled sails Parapet air supply units Summary

More information

How To Model With Cfd Using Phoenics

How To Model With Cfd Using Phoenics The Use and Application of CFD in the Air Conditioning and Fire Protection Industry AIRAH NSW February 2008 The Use and Application of CFD in the Air Conditioning and Fire Protection Industry An Introduction

More information

Energy efficient home design

Energy efficient home design Energy efficient home design GUIDELINES How an energy efficient home can help you live in comfort and save money An energy efficient home is designed to provide shade and allow cooling breezes to enter

More information

HVAC air curtains. Type InduAir

HVAC air curtains. Type InduAir Air Conditioning Cooling Heating Ventilation HVAC air curtains Type InduAir The Energy Saving air curtain for Industrial Applications InduAir The solid, self-supporting housing of the energy saving air

More information

Thermal Environmental Conditions for Human Occupancy

Thermal Environmental Conditions for Human Occupancy ANSI/ASHRAE Standard 55-2004 (Supersedes ANSI/ASHRAE Standard 55-1992) Thermal Environmental Conditions for Human Occupancy Approved by the ASHRAE Standards Committee on January 24, 2004; by the ASHRAE

More information

Dual Maximum VAV Box Controls

Dual Maximum VAV Box Controls ASHRAE Golden Gate Chapter November 13, 2014 Dual Maximum VAV Box Controls Steven T. Taylor, PE FASHRAE Taylor Engineering LLC staylor@taylor engineering.com Agenda VAV Box basics Sizing VAV Boxes How

More information

Thermal destratification in buildings: The missing piece to the HVAC puzzle

Thermal destratification in buildings: The missing piece to the HVAC puzzle WHITE PAPER Thermal destratification in buildings: The missing piece to the HVAC puzzle January 2013 Thermal Destratification In Buildings: The missing piece to the HVAC puzzle 1. What is Thermal Destratification

More information

Methods for Effective Room Air Distribution. Dan Int-Hout Chief Engineer, Krueger Richardson, Texas

Methods for Effective Room Air Distribution. Dan Int-Hout Chief Engineer, Krueger Richardson, Texas Methods for Effective Room Air Distribution Dan Int-Hout Chief Engineer, Krueger Richardson, Texas Agenda Overview LEED issues and Update Perimeter Acoustics Thermal Comfort IAQ / Standard 62.1 Update

More information

The Sino-Italy Environment & Energy Building (SIEEB): A model for a new generation of sustainable buildings

The Sino-Italy Environment & Energy Building (SIEEB): A model for a new generation of sustainable buildings International Conference Passive and Low Energy Cooling 935 for the Built Environment, May 25, Santorini, Greece The Sino-Italy Environment & Energy Building (SIEEB): A model for a new generation of sustainable

More information

SPECIAL ISSUE: NATIONAL SCIENCE FOUNDATION WORKSHOP

SPECIAL ISSUE: NATIONAL SCIENCE FOUNDATION WORKSHOP research journal 2013 / VOL 05.01 www.perkinswill.com SPECIAL ISSUE: NATIONAL SCIENCE FOUNDATION WORKSHOP ARCHITECTURE AND ENGINEERING OF SUSTAINABLE BUILDINGS Current Trends in Low-Energy HVAC Design

More information

Development of Ventilation Strategy in Diesel Engine Power Plant by Using CFD Modelling

Development of Ventilation Strategy in Diesel Engine Power Plant by Using CFD Modelling Development of Ventilation Strategy in Diesel Engine Power Plant by Using CFD Modelling Panu Mustakallio and Risto Kosonen Halton Oy, Haltonintie 1-3, 47400 Kausala, Finland E-mail: panu.mustakallio@halton.com

More information

Energy savings in the residential area are essential in

Energy savings in the residential area are essential in Overheating and insufficient heating problems in low energy houses up to now call for improvements in future Requirements for improved energy performance have shifted major focus on energy calculations

More information

Selecting Energy Efficient New Windows in California

Selecting Energy Efficient New Windows in California Selecting Energy Efficient New Windows in California www.efficientwindows.org Janurary 016 Zones 1. Meet the Energy Code & Look for the Windows must comply with your local energy code. Windows that are

More information

Selecting Energy Efficient Replacement Windows in Nevada

Selecting Energy Efficient Replacement Windows in Nevada Selecting Energy Efficient Replacement Windows in Nevada www.efficientwindows.org January 06 STAR Zones. Meet the Energy Code & Look for the STAR Windows must comply with your local energy code. Windows

More information

Ducoterra Radiant Heating Panel Installation Manual

Ducoterra Radiant Heating Panel Installation Manual Ducoterra Radiant Heating Panel Installation Manual 1. Introduction Your new radiant heating panels are designed to heat living and working spaces rapidly and efficiently by radiant heating. Like the sun,

More information

Chapter 2 Indoor Air Standards and Models

Chapter 2 Indoor Air Standards and Models Chapter 2 Indoor Air Standards and Models 2.1 Indoor Air Standards 2.1.1 Introduction This chapter aims to reveal the main standards applicable for indoor environments at international level. Specifically,

More information

UDSA - UDSBD unit heater

UDSA - UDSBD unit heater APPLICATIONS Heating >> FACTORIES >> WAREHOUSES >> HALLS >> SHOWROOMS >> GREENHOUSES >> RETAIL >>... UDSA - UDSBD unit heater www.reznor.eu V3 gas fired unit heater Reznor V3 unit heaters are one of the

More information