Definition A tree is a connected, acyclic graph. Alternately, a tree is a graph in which any two vertices are connected by exactly one simple path.


 Cory Roberts
 1 years ago
 Views:
Transcription
1 11.5 Trees
2 Examples
3 Definitions Definition A tree is a connected, acyclic graph. Alternately, a tree is a graph in which any two vertices are connected by exactly one simple path. Definition In an undirected tree, a pendent vertex is a vertex of degree one. Definition A forest is the disjoint union of trees.
4 Applications of Trees  Mail Sorting Starting with root, sort by most significant digit (10 branches), then sort by next digit (10 branches), etc
5 Applications of Trees  Binary Search Tree Properties 1 all of the values to the left are less than the root 2 all of the values on the right are greater than the root 3 each value only appears once in the tree 4 the left and right subtrees are binary search trees themselves
6 Properties of Trees Every tree with at least one edge has at least two pendent vertices.
7 Properties of Trees Every tree with at least one edge has at least two pendent vertices. Proof: Let P = {v 1, v 2,..., v n } be a maximal path in a tree T. Suppose one of its endpoints, say v 1, has degree greater than 1. Then v 1 is adjacent to vertex v 2 on path P and also some other vertex w. If w is different from all of the vertices v i then P could be extended, contradicting its maximality. w v 1 v 2... vn
8 Proof (cont.) On the other hand, if w is one of the vertices v i on the path, then the acyclic property of T would be contradicted. v 1 v 2 v 3 w... vn Thus, both endpoints of P must be pendent vertices of T.
9 Proof (cont.) On the other hand, if w is one of the vertices v i on the path, then the acyclic property of T would be contradicted. v 1 v 2 v 3 w... vn Thus, both endpoints of P must be pendent vertices of T. Corollary If the degree of every vertex of a graph is at least two, then that graph contains a cycle.
10 Number of Edges Every tree on n vertices contains exactly n 1 edges. Proof: A tree with one vertex is a trivial tree and has no edges.
11 Number of Edges Every tree on n vertices contains exactly n 1 edges. Proof: A tree with one vertex is a trivial tree and has no edges. Assume for some integer k 1, as an inductive hypothesis, that every tree on k vertices has exactly k 1 edges.
12 Number of Edges Every tree on n vertices contains exactly n 1 edges. Proof: A tree with one vertex is a trivial tree and has no edges. Assume for some integer k 1, as an inductive hypothesis, that every tree on k vertices has exactly k 1 edges. Next consider any tree T on k + 1 vertices. By our last theorem, T contains a pendent vertex, say v. Then, the graph T v is acyclic, since deleting a vertex from an acyclic graph cannot create a cycle. Moreover, T v is connected, since the vertex v had degree 1 in T. Thus, T v is a tree on k vertices, and hence T v has k 1 edges, by the inductive hypothesis. But since deg(v) = 1, it follows that T v has one fewer edge than T. Therefore, T has a total of k edges, which completes the proof.
13 Bridges Every edge of a tree T is a bridge.
14 Bridges Every edge of a tree T is a bridge. Proof: A tree T n has n 1 edges, which is the minimum required for any connected graph. Let e be any edge of T. Then, T e still has n vertices, but n 2 edges, making it impossible to be connected.
15 No Cycles A graph G is a tree iff it contains no cycles.
16 No Cycles A graph G is a tree iff it contains no cycles. Proof: Suppose G is a tree. Let u and v be vertices of G. Since G is connected, there must be a u v path in G. Suppose there are two distinct u v paths P 1 and P 2 in G. Then, we could traverse P 1 from u to v and then return to u via P 2, implying that G has a cycle. But, since G is a tree, we know each edge is a bridge, contradicting that the paths are unique. This, there is only one u v path in G and thus G is acyclic.
17 No Cycles A graph G is a tree iff it contains no cycles. Proof: Suppose G is a tree. Let u and v be vertices of G. Since G is connected, there must be a u v path in G. Suppose there are two distinct u v paths P 1 and P 2 in G. Then, we could traverse P 1 from u to v and then return to u via P 2, implying that G has a cycle. But, since G is a tree, we know each edge is a bridge, contradicting that the paths are unique. This, there is only one u v path in G and thus G is acyclic. Now suppose G has no cycles. Then there is exactly one path between any two vertices, say u and v. So, each edge of this path would therefore be a bridge, making G a tree.
18 Spanning Trees Definition A spanning tree of a graph G with order n is a connected subgraph of a graph G with the same order as G and n 1 edges.
19 Spanning Trees Definition A spanning tree of a graph G with order n is a connected subgraph of a graph G with the same order as G and n 1 edges. One application of spanning trees would be the power grid. For example, the electric company would want to minimize the amount of lines they would need in order to get to every house, so they would want to only have each house have one way to get the electricity. If we imagine a grid, the spanning tree would require the least number of edges (lines) to reach all houses (vertices).
20 Spanning Trees A spanning tree for this neighborhood could be
21 Spanning Trees A spanning tree for this neighborhood could be Another use of spanning trees would be the decisions about where to put highways and their on/off ramps.
22 One Spanning Graph Every connected graph has a spanning tree.
23 One Spanning Graph Every connected graph has a spanning tree. Proof: Suppose that G is connected. Every graph G has a spanning subgraph H of G with a minimum number of edges. Now, H can have no circuits. For if C is a circuit of H, removal of any edge of C (without removing the incident vertices) leaves a spanning subgraph of G that is still connected but has one less edge than H. This is impossible by the choice of H. Thus, H has no circuits. Also, by choice, H is connected. Thus, H is a spanning tree.
2. Determine each of the 11 nonisomorphic graphs of order 4, and give a planar representation of each.
Chapter 11 Homework. Determine each of the 11 nonisomorphic graphs of order 4, and give a planar representation of each. 3. Does there exist a graph of order 5 whose degree sequence equals (4, 4, 3,, )?
More informationCS 2336 Discrete Mathematics
CS 2336 Discrete Mathematics Lecture 16 Trees: Introduction 1 What is a Tree? Rooted Trees Properties of Trees Decision Trees Outline 2 What is a Tree? A path or a circuit is simple if it does not contain
More informationSection 7.4 Connectivity. We extent the notion of a path to undirected graphs. An informal definition (see the text for a formal definition):
Section 7.4 Connectivity We extent the notion of a path to undirected graphs. An informal definition (see the text for a formal definition): There is a path v0, v1, v2,..., vn from vertex v0 to vertex
More informationGRAPH THEORY: INTRODUCTION
GRAPH THEORY: INTRODUCTION DEFINITION 1: A graph G consists of two finite sets: a set V (G) of vertices a set E(G) of edges, where each edge is associated with a set consisting of either one or two vertices
More informationMAD 3105 PRACTICE TEST 2 SOLUTIONS
MAD 3105 PRACTICE TEST 2 SOLUTIONS 1. Define a graph G with V (G) = {a, b, c, d, e}, E(G) = {r, s, t, u, v, w, x, y, z} and γ, the function defining the edges, is given by the table ɛ r s t u v w x y z
More informationChapter 4. Trees. 4.1 Basics
Chapter 4 Trees 4.1 Basics A tree is a connected graph with no cycles. A forest is a collection of trees. A vertex of degree one, particularly in a tree, is called a leaf. Trees arise in a variety of applications.
More information1 Digraphs. Definition 1
1 Digraphs Definition 1 Adigraphordirected graphgisatriplecomprisedofavertex set V(G), edge set E(G), and a function assigning each edge an ordered pair of vertices (tail, head); these vertices together
More informationConnectivity. 5.1 Cut Vertices. Handout #Ch5 San Skulrattanakulchai Gustavus Adolphus College Oct 27, MCS236: Graph Theory
MCS236: Graph Theory Handout #Ch5 San Skulrattanakulchai Gustavus Adolphus College Oct 27, 2010 Connectivity 5.1 Cut Vertices Definition 1. A vertex v in a connected graph G is a cut vertex if G v is
More informationCS173 Lecture B, November 17, 2015
CS173 Lecture B, November 17, 2015 Tandy Warnow November 17, 2015 CS 173, Lecture B November 17, 2015 Tandy Warnow Today s material Adjacency matrices and adjacency lists (and a class exercise) Depthfirst
More informationMTH 548 Graph Theory Fall 2003
MTH 548 Graph Theory Fall 2003 Lesson 6  Planar graphs Planar graph plane drawing  plane graph face length of a face infinite face Thm 12: Euler. Let G be a plane drawing of a connected planar graph.
More informationModule 3. Trees. Contents
Module Trees Contents. Definitions and characterizations............... Number of trees (Optional)................. 5 Cayley s formula........................ Kirchoffmatrixtree theorem.................
More informationHonours Graph Theory
University of Zimbabwe HMTH215 Graph Theory Honours Graph Theory Author: P. Mafuta Department: Mathematics April 6, 2016 Chapter 1 Introduction: Basic Graph Theory This course serves to answer many questions
More informationFigure 1: A Planar Drawing of K 4. Figure 2: A Planar Drawing of K 5 minus one edge
1 Planar Graphs 1.1 Plane Drawings A plane drawing of a graph is a drawing of the graph in the plane such that edges only meet and at their endpoints. A graph is planar if it admits a plane drawing. For
More information1.5 Problems and solutions
15 PROBLEMS AND SOLUTIONS 11 15 Problems and solutions Homework 1: 01 Show by induction that n 1 + 2 2 + + n 2 = n(n + 1)(2n + 1) 01 Show by induction that n 1 + 2 2 + + n 2 = n(n + 1)(2n + 1) We ve already
More informationGraph Theory. 1 Defining and representing graphs
Graph Theory 1 Defining and representing graphs A graph is an ordered pair G = (V, E), where V is a finite, nonempty set of objects called vertices, and E is a (possibly empty) set of unordered pairs
More informationMinimum Spanning Trees. Based on Mahesh Viswanathan s notes
Minimum Spanning Trees Based on Mahesh Viswanathan s notes MST: the problem Input: Connected graph with edge costs Goal: find such that is connected and the total cost of all edges in is the smallest T
More informationSolutions to Exercises 8
Discrete Mathematics Lent 2009 MA210 Solutions to Exercises 8 (1) Suppose that G is a graph in which every vertex has degree at least k, where k 1, and in which every cycle contains at least 4 vertices.
More informationChapter 4: Trees. 2. Theorem: Let T be a graph with n vertices. Then the following statements are equivalent:
9 Properties of Trees. Definitions: Chapter 4: Trees forest  a graph that contains no cycles tree  a connected forest. Theorem: Let T be a graph with n vertices. Then the following statements are equivalent:
More informationHomework 15 Solutions
PROBLEM ONE (Trees) Homework 15 Solutions 1. Recall the definition of a tree: a tree is a connected, undirected graph which has no cycles. Which of the following definitions are equivalent to this definition
More information3. Euler and Hamilton Paths
3. EULER AND HAMILTON PATHS 82 3. Euler and Hamilton Paths 3.1. Euler and Hamilton Paths. Definitions 3.1.1. (1) An Euler Circuit in a graph G is a path in G that uses every edge exactly once and begins
More informationGraph Theory. Clemens Heuberger and Stephan Wagner. AIMS, January/February 2009
Graph Theory Clemens Heuberger and Stephan Wagner AIMS, January/February 2009 1 Basic Definitions Definition 1.1 A graph is a pair G = (V (G),E(G)) of a set of vertices V (G) and a set of edges E(G), where
More informationTrees. Definition: A tree is a connected undirected graph with no simple circuits. Example: Which of these graphs are trees?
Section 11.1 Trees Definition: A tree is a connected undirected graph with no simple circuits. Example: Which of these graphs are trees? Solution: G 1 and G 2 are trees both are connected and have no simple
More informationCMPSCI611: Greedy Algorithms and Matroids Lecture 4
CMPSCI611: Greedy Algorithms and Matroids Lecture 4 Our next algorithmic paradigm is greedy algorithms. A greedy algorithm tries to solve an optimization problem by always choosing a next step that is
More informationHomework #5. CMSC351  Spring 2013 PRINT Name :
Homework #5 CMSC351  Spring 2013 PRINT Name : Due: Thu May 9 th at the start of class o Grades depend on neatness and clarity. o Write your answers with enough detail about your approach and concepts
More informationMTH 548 Graph Theory Fall 2003 Lesson 4  Paths and Cycles Walk, Trail, Path length= number of edges Connected graph, components circuit=closed
MTH 548 Graph Theory Fall 2003 Lesson 4  Paths and Cycles Walk, Trail, Path length= number of edges Connected graph, components circuit=closed trail, cycle=closed path Thm 3: u, vwalk implies u, vpath.
More informationConnectivity. Definition 1 A separating set (vertex cut) of a connected G is a set S V (G) such that G S has more than one component.
Connectivity Definition 1 A separating set (vertex cut) of a connected G is a set S V (G) such that G S has more than one component. The connectivity, κ(g), is the minimum size of a vertex set S such that
More informationChapter 5: Connectivity Section 5.1: Vertex and EdgeConnectivity
Chapter 5: Connectivity Section 5.1: Vertex and EdgeConnectivity Let G be a connected graph. We want to measure how connected G is. Vertex cut: V 0 V such that G V 0 is not connected Edge cut: E 0 E
More informationIn this section, we shall assume (except where noted) that graphs are loopless.
6 Graph Colouring In this section, we shall assume (except where noted) that graphs are loopless. Upper and Lower Bounds Colouring: A kcolouring of a graph G is a map φ : V (G) S where S = k with the
More informationGRAPH THEORY and APPLICATIONS. Trees
GRAPH THEORY and APPLICATIONS Trees Properties Tree: a connected graph with no cycle (acyclic) Forest: a graph with no cycle Paths are trees. Star: A tree consisting of one vertex adjacent to all the others.
More informationSubgraphs and Paths and Cycles
15 October, 2015 Subgraphs Definition Let G = (V, E) be a graph. Graph H = (V, E ) is a subgraph of G if V V and E E. Subgraphs Definition Let G = (V, E) be a graph. Graph H = (V, E ) is a subgraph of
More information2. Graph Terminology
2. GRAPH TERMINOLOGY 186 2. Graph Terminology 2.1. Undirected Graphs. Definitions 2.1.1. Suppose G = (V, E) is an undirected graph. (1) Two vertices u, v V are adjacent or neighbors if there is an edge
More informationBipartite Graphs and Problem Solving
Bipartite Graphs and Problem Solving Jimmy Salvatore University of Chicago August 8, 2007 Abstract This paper will begin with a brief introduction to the theory of graphs and will focus primarily on the
More informationCMSC 451: Graph Properties, DFS, BFS, etc.
CMSC 451: Graph Properties, DFS, BFS, etc. Slides By: Carl Kingsford Department of Computer Science University of Maryland, College Park Based on Chapter 3 of Algorithm Design by Kleinberg & Tardos. Graphs
More informationMath 443/543 Graph Theory Notes 4: Connector Problems
Math 443/543 Graph Theory Notes 4: Connector Problems David Glickenstein September 19, 2012 1 Trees and the Minimal Connector Problem Here is the problem: Suppose we have a collection of cities which we
More informationCanonical Orders and Schnyder
Title: Name: Affil./Addr. Keywords: SumOriWork: Canonical Orders and Schnyder Realizers Stephen Kobourov Department of Computer Science, University of Arizona, Tucson, AZ, USA planar graph drawing algorithms,
More informationFull and Complete Binary Trees
Full and Complete Binary Trees Binary Tree Theorems 1 Here are two important types of binary trees. Note that the definitions, while similar, are logically independent. Definition: a binary tree T is full
More informationConsequences of Euler s Formula
Consequences of Euler s Formula Theorem 1 If G is a connected planar graph with V, then 2F E V 6 Proof Let G be planar and connected, with or more vertices Case 1 Suppose that G has a face bounded by fewer
More informationTheorem A graph T is a tree if, and only if, every two distinct vertices of T are joined by a unique path.
Chapter 3 Trees Section 3. Fundamental Properties of Trees Suppose your city is planning to construct a rapid rail system. They want to construct the most economical system possible that will meet the
More informationMATH 2420 Discrete Mathematics Lecture notes
MATH 2420 Discrete Mathematics Lecture notes Graphs Objectives Graphs 1. Identify loops, parallel edges, etc. in a graph. 2. Draw the complete graph on n vertices, and the complete bipartite graph on (m,n)
More informationEuleriantype properties of hypergraphs
Euleriantype properties of hypergraphs Mateja Šajna University of Ottawa Joint work with Amin Bahmanian CanaDAM 2013 Mateja Šajna (U of Ottawa) Eulerian hypergraphs 1 / 29 Outline Basic definitions. Walks,
More informationGRAPH CONNECTIVITY. 9 Elementary Properties
9 Elementary Properties 30 GRAPH CONNECTIVITY 9 Elementary Properties Definition 9.1: A graph G is said to be connected if for every pair of vertices there is a path joining them. The maximal connected
More informationTheorems Matching (independent) edge set A perfect matching edge cover Vertex cover Shadow
Theorems Matching (independent) edge set in agraphis a set ofedges without commonvertices. Aperfect matching is a matching which matches all vertices of the graph. That is, every vertex of the graph isincidentto
More informationPLANAR SEPARATOR AND GEOMETRIC EXTENSIONS. Presented by Himanshu Dutta
PLANAR SEPARATOR AND GEOMETRIC EXTENSIONS Presented by Himanshu Dutta Preliminaries: Why Study Separation: Separation is a fundamental tool in problem solving using divide and conquer paradigm. Good separators
More informationThe University of Sydney MATH2009
The University of Sydney MATH2009 GRAPH THEORY Tutorial Solutions 200 1. Find a solution to the hinese Postman Problem in this graph, given that every edge has equal weight. The problem is to find the
More informationMinimum Spanning Trees
Minimum Spanning Trees Yan Liu LDCSEE West Virginia University, Morgantown, WV {yanliu@csee.wvu.edu} 1 Statement of Problem Let G =< V, E > be a connected graph with realvalued edge weights: w : E R,
More informationHOMEWORK 4 SOLUTIONS. We then drop the leading 1 in the code and put 2 at the back of the code:
HOMEWORK 4 SOLUTIONS (1) Draw the tree whose Prüfer code is (1, 1, 1, 1, 6, 5) Solution: The given Prüfer code has six entries, therefore the corresponding tree will have 6 + = 8 entries The first number
More informationCharacterizations of Arboricity of Graphs
Characterizations of Arboricity of Graphs Ruth Haas Smith College Northampton, MA USA Abstract The aim of this paper is to give several characterizations for the following two classes of graphs: (i) graphs
More informationConnectivity and cuts
Math 104, Graph Theory February 19, 2013 Measure of connectivity How connected are each of these graphs? > increasing connectivity > I G 1 is a tree, so it is a connected graph w/minimum # of edges. Every
More informationCHAPTER 2. Graphs. 1. Introduction to Graphs and Graph Isomorphism
CHAPTER 2 Graphs 1. Introduction to Graphs and Graph Isomorphism 1.1. The Graph Menagerie. Definition 1.1.1. A simple graph G = (V, E) consists of a set V of vertices and a set E of edges, represented
More information1 Connected simple graphs on four vertices
1 Connected simple graphs on four vertices Here we briefly answer Exercise 3.3 of the previous notes. Please come to office hours if you have any questions about this proof. Theorem 1.1. There are exactly
More informationPlanarity Planarity
Planarity 8.1 71 Planarity Up until now, graphs have been completely abstract. In Topological Graph Theory, it matters how the graphs are drawn. Do the edges cross? Are there knots in the graph structure?
More informationTwoConnected Steiner Networks: Structural Properties
TwoConnected Steiner Networks: Structural Properties Pawel Winter and Martin Zachariasen Dept. of Computer Science, University of Copenhagen Universitetsparken, DK200 Copenhagen Ø, Denmark email: pawel,martinz
More informationMa/CS 6b Class 15: Ramsey Theory 2
Ma/CS 6b Class 15: Ramsey Theory 2 Frank P. Ramsey By Adam Sheffer Recall: Ramsey Numbers r, p 1,, p k positive integers. The Ramsey number R p 1,, p k ; r is the minimum integer N such that every coloring
More informationDiscrete Mathematics & Mathematical Reasoning Chapter 10: Graphs
Discrete Mathematics & Mathematical Reasoning Chapter 10: Graphs Kousha Etessami U. of Edinburgh, UK Kousha Etessami (U. of Edinburgh, UK) Discrete Mathematics (Chapter 6) 1 / 13 Overview Graphs and Graph
More informationCourse Notes for CS336: Graph Theory
Course Notes for CS336: Graph Theory Jayadev Misra The University of Texas at Austin 5/11/01 Contents 1 Introduction 1 1.1 Basics................................. 2 1.2 Elementary theorems.........................
More informationNeighborhood Unions and Independent Cycles
Neighborhood Unions and Independent Cycles Ronald J. Gould Kazuhide Hirohata Paul Horn Abstract In this paper, we investigate sufficient conditions on the neighborhood of independent vertices which imply
More informationProblem 1: Show that every planar graph has a vertex of degree at most 5.
Problem 1: Show that every planar graph has a vertex of degree at most 5. Proof. We will prove this statement by using a proof by contradiction. We will assume that G is planar and that all vertices of
More informationGRAPH THEORY LECTURE 4: TREES
GRAPH THEORY LECTURE 4: TREES Abstract. 3.1 presents some standard characterizations and properties of trees. 3.2 presents several different types of trees. 3.7 develops a counting method based on a bijection
More informationGraph Theory Notes. Vadim Lozin. Institute of Mathematics University of Warwick
Graph Theory Notes Vadim Lozin Institute of Mathematics University of Warwick 1 Introduction A graph G = (V, E) consists of two sets V and E. The elements of V are called the vertices and the elements
More informationHandout #Ch7 San Skulrattanakulchai Gustavus Adolphus College Dec 6, 2010. Chapter 7: Digraphs
MCS236: Graph Theory Handout #Ch7 San Skulrattanakulchai Gustavus Adolphus College Dec 6, 2010 Chapter 7: Digraphs Strong Digraphs Definitions. A digraph is an ordered pair (V, E), where V is the set
More informationMIDTERM MATH 38, SPRING 2012 SOLUTIONS
MIDTERM MATH 38, SPRING 2012 SOLUTIONS 1. [20 points] (a) Prove that if G is a simple graph of order n such that (G) + δ(g) n 1, then G is connected. (Hint: Consider a vertex of maximum degree.) (b) Show
More informationThus a digraph is a graph with oriented edges. D is strict if there are no loops or repeated edges.
Directed graphs Digraph D = (V, A). V ={vertices}, A={arcs} a g f e b h c d V={a,b,...,h}, A={(a,b),(b,a),...} (2 arcs with endpoints (c,d)) Thus a digraph is a graph with oriented edges. D is strict if
More informationMinimum Spanning Trees
Minimum Spanning Trees Algorithms and 18.304 Presentation Outline 1 Graph Terminology Minimum Spanning Trees 2 3 Outline Graph Terminology Minimum Spanning Trees 1 Graph Terminology Minimum Spanning Trees
More informationOn the minimal length of the longest trail in a fixed edgedensity graph
Cent Eur J Math 11(10 013 18311837 DOI: 10478/s11533013085x Central European Journal of Mathematics On the minimal length of the longest trail in a fixed edgedensity graph Research Article Vajk Szécsi
More informationHOMEWORK 3. e 1 K 1 K 2 SOLUTIONS
HOMEWORK 3 SOLUTIONS (1) Show that for each n N the complete graph K n is a contraction of K n,n. Solution: We describe the process for several small values of n. In this way, we can discern the inductive
More information4 Basics of Trees. Petr Hliněný, FI MU Brno 1 FI: MA010: Trees and Forests
4 Basics of Trees Trees, actually acyclic connected simple graphs, are among the simplest graph classes. Despite their simplicity, they still have rich structure and many useful application, such as in
More information2. Lecture notes on nonbipartite matching
Massachusetts Institute of Technology Handout 5 8.433: Combinatorial Optimization February 8th, 009 Michel X. Goemans. Lecture notes on nonbipartite matching Given a graph G = (V, E), we are interested
More informationIntroduction to NPComplete Problems. February 15, 2008
Introduction to NPComplete Problems Shant Karakashian Rahul Puranda February 15, 2008 Definitions The 4Step Proof Example 1: Vertex Cover Example 2: Jogger P, N P and N PComplete Given a problem, it
More informationChapter4: Perfect Domination. Chapter4: PERFECT DOMINATION
Chapter4: PERFECT DOMINATION 92 Perfect Domination is closely related to Perfect Codes and Perfect Codes have been used in Coding Theory. In this chapter we study the effect of removing a vertex from
More informationIntroduction to Algorithms
Thomas H. Cormen Charles E. Leiserson Ronald L. Rivest Clifford Stein Introduction to Algorithms Second Edition The MJT Press Cambridge, Massachusetts London, England McGrawHill Book Company Boston Burr
More informationThe Greedy Method. General Method. Most straightforward design technique
The Greedy Method General Method Most straightforward design technique Most problems have n inputs Solution contains a subset of inputs that satisfies a given constraint Feasible solution: Any subset that
More informationCSL851: Algorithmic Graph Theory Semester I Lecture 1: July 24
CSL851: Algorithmic Graph Theory Semester I 20132014 Lecture 1: July 24 Lecturer: Naveen Garg Scribes: Suyash Roongta Note: LaTeX template courtesy of UC Berkeley EECS dept. Disclaimer: These notes have
More informationGraph Algorithms: Applications
Graph Algorithms: Applications CptS 223 Advanced Data Structures Larry Holder School of Electrical Engineering and Computer Science Washington State University 1 Applications Depthfirst search Biconnectivity
More informationGraph Theory. Introduction. Distance in Graphs. Trees. Isabela Drămnesc UVT. Computer Science Department, West University of Timişoara, Romania
Graph Theory Introduction. Distance in Graphs. Trees Isabela Drămnesc UVT Computer Science Department, West University of Timişoara, Romania November 2016 Isabela Drămnesc UVT Graph Theory and Combinatorics
More informationAlgorithms and Data Structures: Minimum Spanning Trees (Kruskal) 7th Nov, 2014
Algorithms and Data Structures: Minimum Spanning Trees (Kruskal) 7th Nov, 2014 ADS: lect 14 slide 1 7th Nov, 2014 Minimum Spanning Tree Problem Given: Undirected connected weighted graph (G, W ) Output:
More informationChapter 23 Minimum Spanning Trees
Chapter 23 Kruskal Prim [Source: Cormen et al. textbook except where noted] This refers to a number of problems (many of practical importance) that can be reduced to the following abstraction: let G =
More informationCSE 373 Analysis of Algorithms April 6, Solutions to HW 3
CSE 373 Analysis of Algorithms April 6, 2014 Solutions to HW 3 PROBLEM 1 [5 4] Let T be the BFStree of the graph G. For any e in G and e / T, we have to show that e is a cross edge. Suppose not, suppose
More informationMinimum Spanning Trees
1 December 01 Minimum spanning trees (MST) One of the most famous greedy algorithms Given undirected graph G = (V, E), connected Weight function w : E R Spanning tree: tree that connects all nodes, hence
More informationGRAPH THEORY STUDY GUIDE
GRAPH THEORY STUDY GUIDE 1. Definitions Definition 1 (Partition of A). A set A = A 1,..., A k of disjoint subsets of a set A is a partition of A if A of all the sets A i A and A i for every i. Definition
More informationV. Adamchik : Concepts of Mathematics. Graph Theory. Victor Adamchik. Fall of 2005
Graph Theory Victor Adamchik Fall of 2005 Plan 1. Euler Cycles 2. Hamiltonian Cycles Euler Cycles Definition. An Euler cycle (or circuit) is a cycle that traverses every edge of a graph exactly once. If
More informationGraphs and modeling. CS124 Lecture 3 Spring 2011
CS124 Lecture 3 Spring 2011 Graphs and modeling Formulating a simple, precise specification of a computational problem is often a prerequisite to writing a computer program for solving the problem. Many
More informationQuadratic programming on graphs without long odd cycles
Quadratic programming on graphs without long odd cycles Marcin Kamiński Department of Computer Science Université Libre de Bruxelles, Belgium Marcin.Kaminski@ulb.ac.be Abstract We introduce a quadratic
More informationThe number of edges in a bipartite graph of given radius
The number of edges in a bipartite graph of given radius P. Dankelmann, Henda C. Swart, P. van den Berg University of KwaZuluNatal, Durban, South Africa Abstract Vizing established an upper bound on the
More information1 The Minimum Spanning Tree (MST) Problem
IEOR269: Lecture 3 1 Integer Programming and Combinatorial Optimization Lecture #3 IEOR 269 Feb 5, 2010 Lecturer: Dorit Hochbaum Scribe: Dogan Bilguvar Handouts: Game of Fiver and Fire Station Problems
More informationBasic Traversal and Search Techniques
Basic Traversal and Search Techniques Traversal vs Search Definition 1 Traversal of a binary tree involves examining every node in the tree. Definition 2 Search involves visiting nodes in a graph in a
More informationSpanning Trees. What is Tree? Minimum Spanning Tree, Kruskal s and Prim s Algorithms, Applications in Networking. Spanning Tree properties: Trees. No.
Minimum Spanning Tree, s and Prim s s, Applications in Networking Submitted by: Hardik Parikh Soujanya Soni OverView Tree definition Spanning Trees Minimum Spanning Trees s and s for Minimum Spanning Trees
More informationPractice Final Solutions
Introduction to Algorithms May 14, 2003 Massachusetts Institute of Technology 6.046J18.410J Professors Erik Demaine and Shafi Goldwasser Practice Final Solutions Practice Final Solutions Do not open this
More information(a) (b) (c) Figure 1 : Graphs, multigraphs and digraphs. If the vertices of the leftmost figure are labelled {1, 2, 3, 4} in clockwise order from
4 Graph Theory Throughout these notes, a graph G is a pair (V, E) where V is a set and E is a set of unordered pairs of elements of V. The elements of V are called vertices and the elements of E are called
More informationFigure 1: Example Matching: Matching consists of edges in bold.
CS 6505: Computability & Algorithms Lectures 3 & 4, January 20 & 22, 2010 Greedy Algorithms In this lecture we will examine a couple of famous greedy algorithms and then look at matroids, which are a class
More informationAnalysis of Algorithms, I
Analysis of Algorithms, I CSOR W4231.002 Eleni Drinea Computer Science Department Columbia University Thursday, February 26, 2015 Outline 1 Recap 2 Representing graphs 3 Breadthfirst search (BFS) 4 Applications
More informationINEQUALITIES OF NORDHAUS GADDUM TYPE FOR CONNECTED DOMINATION
INEQUALITIES OF NORDHAUS GADDUM TYPE FOR CONNECTED DOMINATION H. KARAMI DEPARTMENT OF MATHEMATICS SHARIF UNIVERSITY OF TECHNOLOGY P.O. BOX 11365915 TEHRAN, I.R. IRAN S.M. SHEIKHOLESLAMI DEPARTMENT OF
More information1 Basic Definitions and Concepts in Graph Theory
CME 305: Discrete Mathematics and Algorithms 1 Basic Definitions and Concepts in Graph Theory A graph G(V, E) is a set V of vertices and a set E of edges. In an undirected graph, an edge is an unordered
More informationGraph coloring, vertex coloring
Graph coloring, vertex coloring Vertex colorings A (proper) vertex coloring (or coloring) of a simple graph is a function such that adjacent vertices are assigned different numbers. Quiteoften the set
More informationPacking ThreeVertex Paths in a Subcubic Graph
EuroComb 2005 DMTCS proc. AE, 2005, 213 218 Packing ThreeVertex Paths in a Subcubic Graph Adrian Kosowski 1, Michał Małafiejski 1, and Paweł Żyliński 2 1 Gdańsk University of Technology, Department of
More informationWhen is a graph planar?
When is a graph planar? Theorem(Euler, 1758) If a plane multigraph G with k components has n vertices, e edges, and f faces, then n e + f = 1 + k. Corollary If G is a simple, planar graph with n(g) 3,
More informationA Randomized Algorithm to Find Minimum Spanning Tree
A Randomized Algorithm to Find Minimum Spanning Tree Yvette (ITing) Tsai Dec 5, 2013 In this report, we discuss a linear time algorithm to find a minimum spanning tree in a connected graph with weights.
More informationEE365: Shortest Paths
EE365: Shortest Paths Deterministic optimal control The simplest shortest path algorithm Dijkstra s algorithm 1 Deterministic optimal control 2 Deterministic optimal control T 1 minimize g t(x t, u t)
More information3. Representing Graphs and Graph Isomorphism. Discussion
3. REPRESENTING GRAPHS AND GRAPH ISOMORPHISM 195 3. Representing Graphs and Graph Isomorphism 3.1. Adjacency Matrix. Definition 3.1.1. The adjacency matrix, A = [a ij ], for a simple graph G = (V, E),
More informationAdvanced Combinatorial Optimization 8 October Lecture 8: Matroids
18.438 Advanced Combinatorial Optimization 8 October 2009 Lecture 8: Matroids Lecturer: Michel X. Goemans Scribe: Elette Boyle* (*Based on notes from Bridget Eileen Tenner and Nicole Immorlica.) 1 Matroids
More informationBasic Notions on Graphs. Planar Graphs and Vertex Colourings. Joe Ryan. Presented by
Basic Notions on Graphs Planar Graphs and Vertex Colourings Presented by Joe Ryan School of Electrical Engineering and Computer Science University of Newcastle, Australia Planar graphs Graphs may be drawn
More information