Marketing Logistics: Opportunities and Limitations

Size: px
Start display at page:

Download "Marketing Logistics: Opportunities and Limitations"

Transcription

1 Mketig Logistics: Oppotuities d Limittios Pethip Vdhsidhu 1, Ugul Lpted 2 1 Gdute School, MBA i Itetiol Busiess, The Uivesity of the Thi Chmbe of Commece Vibhvdee-Rgsit Rod, Dideg, Bgkok, 10400, Thild Tel: , Emil: 2 Logistics Egieeig Deptmet, School of Egieeig, The Uivesity of the Thi Chmbe of Commece Vibhvdee-Rgsit Rod, Dideg, Bgkok, 10400, Thild Tel: , Fx: , Emil: Abstct The bsic piciple of mketig is egdig custome stisfctio d custome eeds d logistics egdig the itegtio of ifomtio, tspottio, ivetoy, wehouse, mteil hdlig d pckgig. Whe mketig covege logistics, ide is esposiveess, elibility d eltioships. I developmet ide, thee e two es which e demd cetio (mketig) d demd fulfillmet (logistics). I the view of mketig dvtge, it is egdig custome fchise; bd vlue, iovtio d beefit focus, custome vlue; cost of oweship, vlue ddig eltioship d sevice qulity d the lst oe, supply chi effectiveess; low cost supplie, gile espose, etwok mgemet. This ppe focuses o some of these thee sttegies pocess d mgig mketig logistics which e to gi competitive dvtge. Thee sttegies e custome eltioship, custome vlue d demd dive supply chi mgemet. They hve to coect togethe with model of mgig coss-fuctiol pocess. Ad lso model tde-off show tht how to cete custome vlue. Oe model is developed to be moe efficietly of competitive dvtge. Filly, key issues of mgig mketig logistics tht is the eed fo ogiztio chge, mge pocess, to mge supply d demd d wht gets mesued set hdled. It is expected tht these exploe the wy e iteested to joi d go o to be stegth ogiztios i positioig. Key Wods: Mketig logistics, demd dive supply chi, custome eltioship, custome vlue 211

2 Itoductio Tditiolly, mketig d logistic hve bee mged septely i most busiess becuse it is hd to udestd d sttegic impotce of custome sevice. My compies focus i the mketig i the clssic 4 Ps of poduct, pice, plce d pomotio. Now i the mket hve high competitio so thee is widesped ecogitio tht is ot so much though wht they do, but though how they do it. Oe moe thig is which key busiess pocesses e mged d how those pocesses liged with the custome demd d c be s impott s qulity of the poduct o its pice. I dditiol, mkets become commoditized d s customes become moe time d sevice sesitive so the eed to mge the mketig d logistics itefce icese. Review of Litetue Philip Kotle hve climed tht Mketig Logistic is egdig iboud d outboud distibutio d ivolves the eties supply chi mgemet system which lik mketig logistic i fou items. Fist, is why gete emphsis I beig plced o logistics. It offes compy competitive dvtge such s cost svig, qulity of poduct, impovig logistic d distibutio efficiecy. Secod, gol of logistic system: compies hve to vege the beefits of highe sevice gist the cost tht should be lesed. Thid, mjo logistic fuctio, it coces wehousig, ivetoy mgemet, tspottio d logistic ifomtio mgemet. Foth, itegted logistic mgemet though shed pojective d outsoucig of logistic fim to thid-pty is becomig moe commo. PMS Ltd. cocettes o delivey mteil, poductio though the ssembly of items ito cmpig pck. It povides the skilled esouce to mge cucil clee such s dt collectio d espose hdlig. NV.Afsyev,G.L. Bgi, G.Leidg hve metioed tht mketig hve developed to be mket logistic. It should fcilitte itectio of the two mgemet cocept. Mket Oieted cocept d Flow Oieted logistic eble poduce ise mteil d ifomtio popeties of poduct evlute. This itegity stimultes emegece of the so clled mket logistic withi stuctue of logistic tht povides the custome with wide choice optios Thoms Cig (1998) hve evluted tht mketig sttegy bsed o logistics d effectiveess which should hve two pts. Fist, the compies must hve solid logistic pogm d ledig edge. The, they e ble to tilo to meet the equiemet of idividul customes. They hve to do wht ech of custome s demd d lso c ppoch the stdd. Cocept of Mketig Logistic Mketig Logistic focuses o the wys i which custome sevice c be leveged to gi competitive dvtge. Compies hve mged mketig d logistic ctivities lig thei espective sttegies withi the cotext of the wide supply chi. Logistic efes to physicl distibutio which e plig, implemetig d cotollig i tspottio, mteils hdlig, ode pocessig, ivetoy cotol, wehousig d pckgig. Mketig is to espod the custome demd d them to get the high vlue d wothwhile to exchge. Logistic is demd fulfillmet fo demd cetio tht is mketig to mke ely complete i custome stisfctio. 212

3 Whe mketig logistic covege togethe, they e bsed upo to be sttegiclly coected: the cosume fchise, custome vlue, d the supply chi. This study pupose d develop ew model to fulfill d suppot theoy of mketig logistics d illusttes itectio betwee idividul ogiztios. Poposed Model of Mketig Logistic This sectio coves poposed model of mketig logistic. The model hs focused o two items which e to cocette o mgig coss-fuctiol pocess i the busiess to povide efficiet use of esouces to be output d lig with custome stisfctio. The lst oe is to povide logistic d to itegte i the begiig of pocess to the custome. Logistic is ble to be developed d implemeted i specilty fo y busiess. This model ws dpted fom thee citicl which e mgig coss-fuctio pocess, supply chi pocess d demd mgemet itefce. Thee e fom bse o bsic d to be developed to idetify the fuctio pecisely. They e peset o figue 1-2 d the lst oe is dpted fom thee bove. Figue 1 Mgig Coss-Fuctio Pocess This digm is mgemet to pocess mgemet so it hs five mi coe pocesses which e dpted to Figue

4 Figue 2 Demd Chi Mgemet Adpted fom Tditiol Itefce Implictios fo ogiztio, cultue d wys of wod of wokig Mgig supplie Reltioships L o g i s t i c B d m k e t g Mufctuig Buyig/ Sellig Wholesle/ Retiles Retil Tde mk Ctegoy d Joit Demd B d Sttegic busiess plig Mketig Admiistt io Fice Iovtio/ Bd Fchise Competitive dvtge Retetio Log-tem Pofitbility Figue 3 Popose Model of Mketig Logistic 214

5 Mketig Logistic model is ssumed tht it pesets logistic ivolve to ll of pocess so it c gi efficiecy competitive dvtge fo both of itel d extel ogiztio. Its fuctio suppot ogiztio to pl, cotol d implemet whole of the pocess. Mketig mgemet lwys ecogized custome stisfctio d oe moe thig is ot too less ecessy tht is bd weess. Tody, bdig is such stog vey much. This shows tht if bdig c lig with custome ely, tht busiess is tke dvtge i gme. O bove ppoches i ll pocess tht begis o supplie util to custome becuse it c peset chcteistic pecisely to be emided by custome s well. It is impott wht it should to be. Implemetig the Model ito Pctices Fo this popose mketig logistic eed to defie logistic ito whole of pocess becuse it helps compies fo plig, implemet d cotollig tht chieve gol of ogiztio. It c pply to implemet i whole of fuctios. Supply chi pocess is developed to be mketig logistic with logistic d mketig mgemet tht is bd weess. Bsic, Logistics mge should udestd custome sevice d the tdeoff oppotuities i distibutio. The they c lik to beyod the wehouse d lso to mge custome o time. The demd chi mgemet is expded oveview pecisely of mgig the supply chi o oigil this pt. It is lso icludig bd weess tht is geelly ot climed i this pt. It is coce idiectly to thei custome becuse to be hed i me d ot ideed the detil of poduct. Actully, it begis iput to output of this pocess. Ctegoy is oe impott becuse is good sttegic mgemet of poduct ctegoies to mximize pofit d stisfy cosume. It cocludes i the lik of demd mgemet itefce. Its effective should pool d levege the kowledge of etile d supplies to led to bette collective demd mgemet d moe ttctive offe fo the cosume. All this is to coopete i ogize i the sme wy d c chieve competitive dvtge to be gi mket she d log-tem pofitbility. Summy The theoy d model peseted hee is expected to gi competitive dvtge i itel d extel ogiztio. Mketig logistic model is eltioship with ogiztio. It is liked supply chi pocess so it is dditiol the logistic to lig i ech item. This model expected tht if the ptes i ogiztio coopete to dpted logistic system i busiess, it esue to gi efficiecy implemet so especilly, mketig mgemet is gi efficiecy to wok s well. Ad lso, ctegoy mgemet c impove its opetig efficiecy ll of thee which e mufctueetile/buye-selle itefce. This elte though custome stisfctio. Fom bove, big them to joit, If they c cotol itel ogiztio, it is good to suppot implemet d develop sttegies to competitive with othes. Refeeces Mti C. (1997). Mketig Logistics, Buttewoth Heiem. Mti C. (1998). Logistics d Supply Chi Mgemet (2 d Eds), Pitms. Mti C. & Hele P. (2002). Mketig Logistics (2d Eds), Buttewoth Heiem. 215

Geometric Sequences. Definition: A geometric sequence is a sequence of the form

Geometric Sequences. Definition: A geometric sequence is a sequence of the form Geometic equeces Aothe simple wy of geetig sequece is to stt with umbe d epetedly multiply it by fixed ozeo costt. This type of sequece is clled geometic sequece. Defiitio: A geometic sequece is sequece

More information

Section 3.3: Geometric Sequences and Series

Section 3.3: Geometric Sequences and Series ectio 3.3: Geometic equeces d eies Geometic equeces Let s stt out with defiitio: geometic sequece: sequece i which the ext tem is foud by multiplyig the pevious tem by costt (the commo tio ) Hee e some

More information

Summary: Vectors. This theorem is used to find any points (or position vectors) on a given line (direction vector). Two ways RT can be applied:

Summary: Vectors. This theorem is used to find any points (or position vectors) on a given line (direction vector). Two ways RT can be applied: Summ: Vectos ) Rtio Theoem (RT) This theoem is used to find n points (o position vectos) on given line (diection vecto). Two ws RT cn e pplied: Cse : If the point lies BETWEEN two known position vectos

More information

THE GEOMETRIC SERIES

THE GEOMETRIC SERIES Mthemtics Revisio Guides The Geometic eies Pge of M.K. HOME TUITION Mthemtics Revisio Guides Level: A / A Level AQA : C Edexcel: C OCR: C OCR MEI: C THE GEOMETRIC ERIE Vesio :. Dte: 8-06-0 Exmples 7 d

More information

Arithmetic Sequences

Arithmetic Sequences Arithmetic equeces A simple wy to geerte sequece is to strt with umber, d dd to it fixed costt d, over d over gi. This type of sequece is clled rithmetic sequece. Defiitio: A rithmetic sequece is sequece

More information

Orbits and Kepler s Laws

Orbits and Kepler s Laws Obits nd Keple s Lws This web pge intoduces some of the bsic ides of obitl dynmics. It stts by descibing the bsic foce due to gvity, then consides the ntue nd shpe of obits. The next section consides how

More information

MATHEMATICS FOR ENGINEERING BASIC ALGEBRA

MATHEMATICS FOR ENGINEERING BASIC ALGEBRA MATHEMATICS FOR ENGINEERING BASIC ALGEBRA TUTORIAL - INDICES, LOGARITHMS AND FUNCTION This is the oe of series of bsic tutorils i mthemtics imed t begiers or yoe wtig to refresh themselves o fudmetls.

More information

N V V L. R a L I. Transformer Equation Notes

N V V L. R a L I. Transformer Equation Notes Tnsfome Eqution otes This file conts moe etile eivtion of the tnsfome equtions thn the notes o the expeiment 3 wite-up. t will help you to unestn wht ssumptions wee neee while eivg the iel tnsfome equtions

More information

Screentrade Car Insurance Policy Summary

Screentrade Car Insurance Policy Summary Sceentde C Insunce Policy Summy This is summy of the policy nd does not contin the full tems nd conditions of the cove, which cn be found in the policy booklet nd schedule. It is impotnt tht you ed the

More information

STUDENT S COMPANIONS IN BASIC MATH: THE SECOND. Basic Identities in Algebra. Let us start with a basic identity in algebra:

STUDENT S COMPANIONS IN BASIC MATH: THE SECOND. Basic Identities in Algebra. Let us start with a basic identity in algebra: STUDENT S COMPANIONS IN BASIC MATH: THE SECOND Bsic Idetities i Algebr Let us strt with bsic idetity i lgebr: 2 b 2 ( b( + b. (1 Ideed, multiplyig out the right hd side, we get 2 +b b b 2. Removig the

More information

A black- line master of Example 3 You Try is on provided on page 10 for duplication or use with a projection system.

A black- line master of Example 3 You Try is on provided on page 10 for duplication or use with a projection system. Grde Level/Course: Algebr Lesso/Uit Pl Nme: Geometric Sequeces Rtiole/Lesso Abstrct: Wht mkes sequece geometric? This chrcteristic is ddressed i the defiitio of geometric sequece d will help derive the

More information

Intro to Circle Geometry By Raymond Cheong

Intro to Circle Geometry By Raymond Cheong Into to Cicle Geomety By Rymond Cheong Mny poblems involving cicles cn be solved by constucting ight tingles then using the Pythgoen Theoem. The min chllenge is identifying whee to constuct the ight tingle.

More information

Repeated multiplication is represented using exponential notation, for example:

Repeated multiplication is represented using exponential notation, for example: Appedix A: The Lws of Expoets Expoets re short-hd ottio used to represet my fctors multiplied together All of the rules for mipultig expoets my be deduced from the lws of multiplictio d divisio tht you

More information

A function f whose domain is the set of positive integers is called a sequence. The values

A function f whose domain is the set of positive integers is called a sequence. The values EQUENCE: A fuctio f whose domi is the set of positive itegers is clled sequece The vlues f ( ), f (), f (),, f (), re clled the terms of the sequece; f() is the first term, f() is the secod term, f() is

More information

Project Request & Project Plan

Project Request & Project Plan Poject Request & Poject Pla ITS Platfoms Cofiguatio Maagemet Pla Vesio: 0.3 Last Updated: 2009/01/07 Date Submitted: 2008/11/20 Submitted by: Stephe Smooge Executive Sposo: Gil Gozales/Moia Geety Expected

More information

Random Variables and Distribution Functions

Random Variables and Distribution Functions Topic 7 Rndom Vibles nd Distibution Functions 7.1 Intoduction Fom the univese of possible infomtion, we sk question. To ddess this question, we might collect quntittive dt nd ognize it, fo emple, using

More information

GFI EventsMnge vs Netikus.net EventSenty GFI Softwe www.gfi.com GFI EventsMnge vs Netikus.net EventSenty GFI EventsMnge EventSenty Who we e Suppot fo MS SQL Seve Suppot fo MSDE / MS SQL Expess Suppot fo

More information

by K.-H. Rutsch*, P.J. Viljoen*, and H. Steyn* The need for systematic project portfolio selection

by K.-H. Rutsch*, P.J. Viljoen*, and H. Steyn* The need for systematic project portfolio selection An investigtion into the cuent pctice of poject potfolio selection in esech nd development division of the South Aficn minels nd enegy industy by K.-H. Rutsch*, P.J. Viljoen*, nd H. Steyn* J o u n l Synopsis

More information

A Simple Method for Generating Rational Triangles

A Simple Method for Generating Rational Triangles A Simple Method fo Geneting Rtionl Tingles Konstntine Zelto Deptment Of Mthemtics College Of Ats And Sciences Mil Stop 94 Univesity Of Toledo Toledo,OH 43606-3390 U.S.A. Intoduction The pupose of this

More information

Reducing accidents in the mining industry an integrated approach

Reducing accidents in the mining industry an integrated approach Syopi Reducig ccidet i the miig iduty itegted ppoch by J.C. Je* d A.C. Bet* The pltium miig iduty h expeieced igifict icee i ftl ccidet. Mie ccidet e i piciple pevetble, d thee i eomou peue o employe to

More information

Understanding Financial Management: A Practical Guide Guideline Answers to the Concept Check Questions

Understanding Financial Management: A Practical Guide Guideline Answers to the Concept Check Questions Udestadig Fiacial Maagemet: A Pactical Guide Guidelie Aswes to the Cocept Check Questios Chapte 4 The Time Value of Moey Cocept Check 4.. What is the meaig of the tems isk-etu tadeoff ad time value of

More information

16. Mean Square Estimation

16. Mean Square Estimation 6 Me Sque stmto Gve some fomto tht s elted to uow qutty of teest the poblem s to obt good estmte fo the uow tems of the obseved dt Suppose epeset sequece of dom vbles bout whom oe set of obsevtos e vlble

More information

Chapter 3 Section 3 Lesson Additional Rules for Exponents

Chapter 3 Section 3 Lesson Additional Rules for Exponents Chpter Sectio Lesso Additiol Rules for Epoets Itroductio I this lesso we ll eie soe dditiol rules tht gover the behvior of epoets The rules should be eorized; they will be used ofte i the reiig chpters

More information

I. Supplementary and Relevant Information

I. Supplementary and Relevant Information hte 9 Bod d Note Vlutio d Relted Iteest Rte Fouls witte fo Ecooics 04 Ficil Ecooics by Pofesso Gy R. Evs Fist editio 2008, this editio Octobe 28, 203 Gy R. Evs The iy uose of this docuet is to show d justify

More information

GFI MilEssentils & GFI MilSecuity vs Bcud Spm Fiewll GFI Softwe www.gfi.com GFIMilEssentils & GFI MilSecuity vs Bcud Spm Fiewll GFI MilEssentils 12 & GFI MilSecuity 10 Bcud Spm Fiewll Who we e Integtes

More information

Circles and Tangents with Geometry Expressions

Circles and Tangents with Geometry Expressions icles nd Tngents with eomety xpessions IRLS N TNNTS WITH OMTRY XPRSSIONS... INTROUTION... 2 icle common tngents... 3 xmple : Loction of intesection of common tngents... 4 xmple 2: yclic Tpezium defined

More information

Chapter 2 Sequences and Series

Chapter 2 Sequences and Series Chapte 7 Sequece ad seies Chapte Sequeces ad Seies. Itoductio: The INVENTOR of chess asked the Kig of the Kigdom that he may be ewaded i lieu of his INVENTION with oe gai of wheat fo the fist squae of

More information

Gaussian Elimination Autar Kaw

Gaussian Elimination Autar Kaw Gussi Elimitio Autr Kw After redig this chpter, you should be ble to:. solve set of simulteous lier equtios usig Nïve Guss elimitio,. ler the pitflls of the Nïve Guss elimitio method,. uderstd the effect

More information

between Modern Degree Model Logistics Industry in Gansu Province 2. Measurement Model 1. Introduction 2.1 Synergetic Degree

between Modern Degree Model Logistics Industry in Gansu Province 2. Measurement Model 1. Introduction 2.1 Synergetic Degree www.ijcsi.og 385 Calculatio adaalysis alysis of the Syegetic Degee Model betwee Mode Logistics ad Taspotatio Idusty i Gasu Povice Ya Ya 1, Yogsheg Qia, Yogzhog Yag 3,Juwei Zeg 4 ad Mi Wag 5 1 School of

More information

tools for Web data extraction

tools for Web data extraction HTML-we tools fo Web dt extction Thesis pesenttion 1 Student: Xvie Azg Supeviso: Andes Tho Tble of contents Intoduction Dt Extction Pocess Dt Extction Tools Relized tests Futue Wok 2 Intoduction We e going

More information

Money Math for Teens. Introduction to Earning Interest: 11th and 12th Grades Version

Money Math for Teens. Introduction to Earning Interest: 11th and 12th Grades Version Moey Math fo Tees Itoductio to Eaig Iteest: 11th ad 12th Gades Vesio This Moey Math fo Tees lesso is pat of a seies ceated by Geeatio Moey, a multimedia fiacial liteacy iitiative of the FINRA Ivesto Educatio

More information

r (1+cos(θ)) sin(θ) C θ 2 r cos θ 2

r (1+cos(θ)) sin(θ) C θ 2 r cos θ 2 icles xmple 66: Rounding one ssume we hve cone of ngle θ, nd we ound it off with cuve of dius, how f wy fom the cone does the ound stt? nd wht is the chod length? (1+cos(θ)) sin(θ) θ 2 cos θ 2 xmple 67:

More information

Math 1105: Calculus II (Math/Sci majors) MWF 11am / 12pm, Campion 235 Written homework 5

Math 1105: Calculus II (Math/Sci majors) MWF 11am / 12pm, Campion 235 Written homework 5 Mth 5: Clculus II Mth/Sci mjos) MWF m / pm, Cmpion 35 Witten homewok 5 6.6, p. 458 3,33), 6.7, p. 467 8,3), 6.875), 7.58,6,6), 7.44,48) Fo pctice not to tun in): 6.6, p. 458,8,,3,4), 6.7, p. 467 4,6,8),

More information

(Ch. 22.5) 2. What is the magnitude (in pc) of a point charge whose electric field 50 cm away has a magnitude of 2V/m?

(Ch. 22.5) 2. What is the magnitude (in pc) of a point charge whose electric field 50 cm away has a magnitude of 2V/m? Em I Solutions PHY049 Summe 0 (Ch..5). Two smll, positively chged sphees hve combined chge of 50 μc. If ech sphee is epelled fom the othe by n electosttic foce of N when the sphees e.0 m pt, wht is the

More information

Summation Notation The sum of the first n terms of a sequence is represented by the summation notation i the index of summation

Summation Notation The sum of the first n terms of a sequence is represented by the summation notation i the index of summation Lesso 0.: Sequeces d Summtio Nottio Def. of Sequece A ifiite sequece is fuctio whose domi is the set of positive rel itegers (turl umers). The fuctio vlues or terms of the sequece re represeted y, 2, 3,...,....

More information

STATISTICS: MODULE 12122. Chapter 3 - Bivariate or joint probability distributions

STATISTICS: MODULE 12122. Chapter 3 - Bivariate or joint probability distributions STATISTICS: MODULE Chapte - Bivaiate o joit pobabilit distibutios I this chapte we coside the distibutio of two adom vaiables whee both adom vaiables ae discete (cosideed fist) ad pobabl moe impotatl whee

More information

Channel selection in e-commerce age: A strategic analysis of co-op advertising models

Channel selection in e-commerce age: A strategic analysis of co-op advertising models Jounal of Industial Engineeing and Management JIEM, 013 6(1):89-103 Online ISSN: 013-0953 Pint ISSN: 013-843 http://dx.doi.og/10.396/jiem.664 Channel selection in e-commece age: A stategic analysis of

More information

GFI MilAchive 6 vs H&S Exchnge@PAM GFI Softwe www.gfi.com GFI MilAchive 6 vs H&S Exchnge@PAM GFI MilAchive 6 H&S Exchnge@PAM Who we e Genel fetues Suppots Micosoft Exchnge 2000, 2003 & 2007 Suppots distibuted

More information

Adaptive Control of a Production and Maintenance System with Unknown Deterioration and Obsolescence Rates

Adaptive Control of a Production and Maintenance System with Unknown Deterioration and Obsolescence Rates Int J of Mthemtic Sciences nd Appictions, Vo, No 3, Septembe Copyight Mind Rede Pubictions wwwjounshubcom Adptive Conto of Poduction nd Mintennce System with Unknown Deteiotion nd Obsoescence Rtes Fwzy

More information

Knowledge and Time Management for Manufacturing to Enhance CRM

Knowledge and Time Management for Manufacturing to Enhance CRM Itertiol Jourl of Computer Applictios (0975 8887) Kowledge d Time Mgemet for Mufcturig to Ehce CRM P. Mek Reserch scholr Momim Sudrr Uiversity, Idi. K. Thgduri Phd, Assistt professor Computer Sciece Govt.

More information

Chi-squared goodness-of-fit test.

Chi-squared goodness-of-fit test. Sectio 1 Chi-squaed goodess-of-fit test. Example. Let us stat with a Matlab example. Let us geeate a vecto X of 1 i.i.d. uifom adom vaiables o [, 1] : X=ad(1,1). Paametes (1, 1) hee mea that we geeate

More information

PREMIUMS CALCULATION FOR LIFE INSURANCE

PREMIUMS CALCULATION FOR LIFE INSURANCE ls of the Uiversity of etroşi, Ecoomics, 2(3), 202, 97-204 97 REIUS CLCULTIO FOR LIFE ISURCE RE, RI GÎRBCI * BSTRCT: The pper presets the techiques d the formuls used o itertiol prctice for estblishig

More information

MATH 150 HOMEWORK 4 SOLUTIONS

MATH 150 HOMEWORK 4 SOLUTIONS MATH 150 HOMEWORK 4 SOLUTIONS Section 1.8 Show tht the product of two of the numbers 65 1000 8 2001 + 3 177, 79 1212 9 2399 + 2 2001, nd 24 4493 5 8192 + 7 1777 is nonnegtive. Is your proof constructive

More information

Polynomial Functions. Polynomial functions in one variable can be written in expanded form as ( )

Polynomial Functions. Polynomial functions in one variable can be written in expanded form as ( ) Polynomil Functions Polynomil functions in one vrible cn be written in expnded form s n n 1 n 2 2 f x = x + x + x + + x + x+ n n 1 n 2 2 1 0 Exmples of polynomils in expnded form re nd 3 8 7 4 = 5 4 +

More information

v o a y = = * Since H < 1m, the electron does not reach to the top plate.

v o a y = = * Since H < 1m, the electron does not reach to the top plate. . The uniom electic ield between two conducting chged pltes shown in the igue hs mgnitude o.40 N/C. The plte seption is m, nd we lunch n electon om the bottom plte diectl upwd with v o 6 m/s. Will the

More information

Showing Recursive Sequences Converge

Showing Recursive Sequences Converge Showig Recursive Sequeces Coverge Itroductio My studets hve sked me bout how to prove tht recursively defied sequece coverges. Hopefully, fter redig these otes, you will be ble to tckle y such problem.

More information

University Physics AI No. 1 Rectilinear Motion

University Physics AI No. 1 Rectilinear Motion Uniesity Physics AI No. Rectiline Motion Clss Numbe Nme I.Choose the Coect Answe. An object is moing long the is with position s function of time gien by (. Point O is t. The object is efinitely moing

More information

GFI MilEssentils & GFI MilSecuity vs Tend Mico ScnMil Suite fo Micosoft Exchnge GFI Softwe www.gfi.com GFI MilEssentils & GFI MilSecuity vs Tend Mico ScnMil Suite fo Micosoft Exchnge Exchnge Seve 2000/2003

More information

SECTION 5-4 Trigonometric Functions

SECTION 5-4 Trigonometric Functions Tigonometic Functions 78. Engineeing. In Polem 77, though wht ngle in dins will the ck wheel tun if the font wheel tuns though dins? The c length on cicle is esy to compute if the coesponding centl ngle

More information

Development of Customer Value Model for Healthcare Services

Development of Customer Value Model for Healthcare Services 96 Developmet of Custome Value Model fo Healthcae Sevices Developmet of Custome Value Model fo Healthcae Sevices Wa-I Lee ad Bih-Yaw Shih Depatmet of Maetig ad Distibutio Maagemet, Natioal Kaohsiug Fist,

More information

(1) continuity equation: 0. momentum equation: u v g (2) u x. 1 a

(1) continuity equation: 0. momentum equation: u v g (2) u x. 1 a Comment on The effect of vible viscosity on mied convection het tnsfe long veticl moving sufce by M. Ali [Intentionl Jounl of Theml Sciences, 006, Vol. 45, pp. 60-69] Asteios Pntoktos Associte Pofesso

More information

Derivation of Annuity and Perpetuity Formulae. A. Present Value of an Annuity (Deferred Payment or Ordinary Annuity)

Derivation of Annuity and Perpetuity Formulae. A. Present Value of an Annuity (Deferred Payment or Ordinary Annuity) Aity Deivatios 4/4/ Deivatio of Aity ad Pepetity Fomlae A. Peset Vale of a Aity (Defeed Paymet o Odiay Aity 3 4 We have i the show i the lecte otes ad i ompodi ad Discoti that the peset vale of a set of

More information

Finance Practice Problems

Finance Practice Problems Iteest Fiace Pactice Poblems Iteest is the cost of boowig moey. A iteest ate is the cost stated as a pecet of the amout boowed pe peiod of time, usually oe yea. The pevailig maket ate is composed of: 1.

More information

Two special Right-triangles 1. The

Two special Right-triangles 1. The Mth Right Tringle Trigonometry Hndout B (length of ) - c - (length of side ) (Length of side to ) Pythgoren s Theorem: for tringles with right ngle ( side + side = ) + = c Two specil Right-tringles. The

More information

FOURIER SERIES PART I: DEFINITIONS AND EXAMPLES. To a 2π-periodic function f(x) we will associate a trigonometric series. a n cos(nx) + b n sin(nx),

FOURIER SERIES PART I: DEFINITIONS AND EXAMPLES. To a 2π-periodic function f(x) we will associate a trigonometric series. a n cos(nx) + b n sin(nx), FOURIER SERIES PART I: DEFINITIONS AND EXAMPLES To -periodic fuctio f() we will ssocite trigoometric series + cos() + b si(), or i terms of the epoetil e i, series of the form c e i. Z For most of the

More information

THE PRINCIPLE OF THE ACTIVE JMC SCATTERER. Seppo Uosukainen

THE PRINCIPLE OF THE ACTIVE JMC SCATTERER. Seppo Uosukainen THE PRINCIPLE OF THE ACTIVE JC SCATTERER Seppo Uoukaie VTT Buildig ad Tapot Ai Hadlig Techology ad Acoutic P. O. Bo 1803, FIN 02044 VTT, Filad Seppo.Uoukaie@vtt.fi ABSTRACT The piciple of fomulatig the

More information

The Casino Experience. Let us entertain you

The Casino Experience. Let us entertain you The Csio Expeiee Let us eteti you The Csio Expeiee If you e lookig fo get ight out, Csio Expeiee is just fo you. 10 The Stight Flush Expeiee 25 pe peso This is get itodutio to gmig tht sves you moey Kik

More information

11. Fourier series. sin mx cos nx dx = 0 for any m, n, sin 2 mx dx = π.

11. Fourier series. sin mx cos nx dx = 0 for any m, n, sin 2 mx dx = π. . Fourier series Summry of the bsic ides The following is quick summry of the introductory tretment of Fourier series in MATH. We consider function f with period π, tht is, stisfying f(x + π) = f(x) for

More information

Operations with Polynomials

Operations with Polynomials 38 Chpter P Prerequisites P.4 Opertions with Polynomils Wht you should lern: Write polynomils in stndrd form nd identify the leding coefficients nd degrees of polynomils Add nd subtrct polynomils Multiply

More information

Lecture 3 Gaussian Probability Distribution

Lecture 3 Gaussian Probability Distribution Lecture 3 Gussin Probbility Distribution Introduction l Gussin probbility distribution is perhps the most used distribution in ll of science. u lso clled bell shped curve or norml distribution l Unlike

More information

Highest Pefomnce Lowest Pice PRODUCT COMPARISON GFI MilAchive vs Symntec Entepise Vult GFI Softwe www.gfi.com GFI MilAchive vs Symntec Entepise Vult GFI MilAchive 6 Symntec Entepise Vult Who we e Genel

More information

Factoring Polynomials

Factoring Polynomials Fctoring Polynomils Some definitions (not necessrily ll for secondry school mthemtics): A polynomil is the sum of one or more terms, in which ech term consists of product of constnt nd one or more vribles

More information

The strategic and tactical value of a 3D geotechnical model for mining optimization, Anglo Platinum, Sandsloot open pit

The strategic and tactical value of a 3D geotechnical model for mining optimization, Anglo Platinum, Sandsloot open pit The sttegic nd tcticl vlue of 3D geotechnicl model fo mining optimiztion, Anglo Pltinum, Sndsloot open pit by A. Bye* J o u n l Synopsis Sndsloot open pit is situted on the nothen limb of the Bushveld

More information

Ridgewood South Natural Areas Priority Evaluation. Background Report

Ridgewood South Natural Areas Priority Evaluation. Background Report Ridgewood South Nturl Ares Priority Evlution Bckground Report September 2013 Ridgewood South Nturl Ares Priority Evlution Bckground Report Ridgewood South Nturl Ares Priority Evlution Bckground Report

More information

GFI MilEssentils & GFI MilSecuity vs Symntec Bightmil 6 & Anti Vius GFI Softwe www.gfi.com GFI MilEssentils & GFI MilSecuity vs Symntec Bightmil 6 & Anti Vius GFI MilEssentils & GFI MilSecuity Bightmil

More information

An Introduction to Logistics and the Supply Chain. An Introduction To Logistics And The Supply Chain

An Introduction to Logistics and the Supply Chain. An Introduction To Logistics And The Supply Chain Departmet of Global Busiess ad Trasportatio A Itroductio to Logistics ad the Supply Chai Itroductio Cosider bottled water. Abstract Oft times I have foud that studets come ito a course that assumes they

More information

The Handbook of Essential Mathematics

The Handbook of Essential Mathematics Fo Puic Relese: Distiutio Ulimited The Ai Foce Resech Lotoy The Hdook of Essetil Mthemtics Fomuls, Pocesses, d Tles Plus Applictios i Pesol Fice X Y Y XY Y X X XY X Y X XY Y Compiltio d Epltios: Joh C.

More information

Making training work for your business

Making training work for your business Makig traiig work for your busiess Itegratig core skills of laguage, literacy ad umeracy ito geeral workplace traiig makes sese. The iformatio i this pamphlet will help you pla for ad build a successful

More information

m n Use technology to discover the rules for forms such as a a, various integer values of m and n and a fixed integer value a.

m n Use technology to discover the rules for forms such as a a, various integer values of m and n and a fixed integer value a. TIth.co Alger Expoet Rules ID: 988 Tie required 25 iutes Activity Overview This ctivity llows studets to work idepedetly to discover rules for workig with expoets, such s Multiplictio d Divisio of Like

More information

Lecture 3 Basic Probability and Statistics

Lecture 3 Basic Probability and Statistics Lecture 3 Bsic Probbility nd Sttistics The im of this lecture is to provide n extremely speedy introduction to the probbility nd sttistics which will be needed for the rest of this lecture course. The

More information

Application: Volume. 6.1 Overture. Cylinders

Application: Volume. 6.1 Overture. Cylinders Applictio: Volume 61 Overture I this chpter we preset other pplictio of the defiite itegrl, this time to fid volumes of certi solids As importt s this prticulr pplictio is, more importt is to recogize

More information

A. Description: A simple queueing system is shown in Fig. 16-1. Customers arrive randomly at an average rate of

A. Description: A simple queueing system is shown in Fig. 16-1. Customers arrive randomly at an average rate of Queueig Theory INTRODUCTION Queueig theory dels with the study of queues (witig lies). Queues boud i rcticl situtios. The erliest use of queueig theory ws i the desig of telehoe system. Alictios of queueig

More information

Algebra Review. How well do you remember your algebra?

Algebra Review. How well do you remember your algebra? Algebr Review How well do you remember your lgebr? 1 The Order of Opertions Wht do we men when we write + 4? If we multiply we get 6 nd dding 4 gives 10. But, if we dd + 4 = 7 first, then multiply by then

More information

n Using the formula we get a confidence interval of 80±1.64

n Using the formula we get a confidence interval of 80±1.64 9.52 The professor of sttistics oticed tht the rks i his course re orlly distributed. He hs lso oticed tht his orig clss verge is 73% with stdrd devitio of 12% o their fil exs. His fteroo clsses verge

More information

UNIT FIVE DETERMINANTS

UNIT FIVE DETERMINANTS UNIT FIVE DETERMINANTS. INTRODUTION I uit oe the determit of mtrix ws itroduced d used i the evlutio of cross product. I this chpter we exted the defiitio of determit to y size squre mtrix. The determit

More information

Lecture 5. Inner Product

Lecture 5. Inner Product Lecture 5 Inner Product Let us strt with the following problem. Given point P R nd line L R, how cn we find the point on the line closest to P? Answer: Drw line segment from P meeting the line in right

More information

Curvature. (Com S 477/577 Notes) Yan-Bin Jia. Oct 8, 2015

Curvature. (Com S 477/577 Notes) Yan-Bin Jia. Oct 8, 2015 Cuvtue Com S 477/577 Notes Yn-Bin Ji Oct 8, 205 We wnt to find mesue of how cuved cuve is. Since this cuvtue should depend only on the shpe of the cuve, it should not be chnged when the cuve is epmetized.

More information

The transport performance evaluation system building of logistics enterprises

The transport performance evaluation system building of logistics enterprises Jounal of Industial Engineeing and Management JIEM, 213 6(4): 194-114 Online ISSN: 213-953 Pint ISSN: 213-8423 http://dx.doi.og/1.3926/jiem.784 The tanspot pefomance evaluation system building of logistics

More information

2.016 Hydrodynamics Prof. A.H. Techet

2.016 Hydrodynamics Prof. A.H. Techet .016 Hydodynmics Reding #5.016 Hydodynmics Po. A.H. Techet Fluid Foces on Bodies 1. Stedy Flow In ode to design oshoe stuctues, suce vessels nd undewte vehicles, n undestnding o the bsic luid oces cting

More information

Gray level image enhancement using the Bernstein polynomials

Gray level image enhancement using the Bernstein polynomials Buletiul Ştiiţiic l Uiersităţii "Politehic" di Timişor Seri ELECTRONICĂ şi TELECOMUNICAŢII TRANSACTIONS o ELECTRONICS d COMMUNICATIONS Tom 47(6), Fscicol -, 00 Gry leel imge ehcemet usig the Berstei polyomils

More information

Reasoning to Solve Equations and Inequalities

Reasoning to Solve Equations and Inequalities Lesson4 Resoning to Solve Equtions nd Inequlities In erlier work in this unit, you modeled situtions with severl vriles nd equtions. For exmple, suppose you were given usiness plns for concert showing

More information

EXPONENTS AND RADICALS

EXPONENTS AND RADICALS Expoets d Rdicls MODULE - EXPONENTS AND RADICALS We hve lert bout ultiplictio of two or ore rel ubers i the erlier lesso. You c very esily write the followig, d Thik of the situtio whe is to be ultiplied

More information

On the Optimality and Interconnection of Valiant Load-Balancing Networks

On the Optimality and Interconnection of Valiant Load-Balancing Networks O the Optimality ad Itecoectio of Valiat Load-Balacig Netwoks Moshe Babaioff ad Joh Chuag School of Ifomatio Uivesity of Califoia at Bekeley Bekeley, Califoia 94720 4600 {moshe,chuag}@sims.bekeley.edu

More information

GFI MilAchive 6 vs EMC EmilXtende Achive Edition GFI Softwe www.gfi.com GFI MilAchive 6 vs EMC EmilXtende Achive Edition GFI MilAchive 6 EMC EmilXtende Achive Edition Who we e Genel fetues Suppots Micosoft

More information

Exponents base exponent power exponentiation

Exponents base exponent power exponentiation Exonents We hve seen counting s reeted successors ddition s reeted counting multiliction s reeted ddition so it is nturl to sk wht we would get by reeting multiliction. For exmle, suose we reetedly multily

More information

Searching Algorithm Efficiencies

Searching Algorithm Efficiencies Efficiecy of Liear Search Searchig Algorithm Efficiecies Havig implemeted the liear search algorithm, how would you measure its efficiecy? A useful measure (or metric) should be geeral, applicable to ay

More information

r Curl is associated w/rotation X F

r Curl is associated w/rotation X F 13.5 ul nd ivegence ul is ssocited w/ottion X F ivegence is F Tody we define two opetions tht cn e pefomed on vecto fields tht ply sic ole in the pplictions of vecto clculus to fluid flow, electicity,

More information

Innovative concepts in underground materials handling

Innovative concepts in underground materials handling Innovtive concepts in undegound mteils hndling by M. Fuchs* J o u n l Synopsis Thee is still dive woldwide to impove on existing methods of mining. The demnd is fo mining volumes to be incesed while the

More information

4.11 Inner Product Spaces

4.11 Inner Product Spaces 314 CHAPTER 4 Vector Spces 9. A mtrix of the form 0 0 b c 0 d 0 0 e 0 f g 0 h 0 cnnot be invertible. 10. A mtrix of the form bc d e f ghi such tht e bd = 0 cnnot be invertible. 4.11 Inner Product Spces

More information

A framework for the selection of enterprise resource planning (ERP) system based on fuzzy decision making methods

A framework for the selection of enterprise resource planning (ERP) system based on fuzzy decision making methods A famewok fo the selection of entepise esouce planning (ERP) system based on fuzzy decision making methods Omid Golshan Tafti M.s student in Industial Management, Univesity of Yazd Omidgolshan87@yahoo.com

More information

leader a r n e preview

leader a r n e preview ld &By Stphi Hish d Shily M. Hod pviw Picipls bfit fom schoolwid pofssiol lig commuitis (PLCs) with thi tchs so tht vyo is lig d wokig towd th sm gol. Picipls lso fid vlu i joiig dmiistto PLCs to wok o

More information

Breakeven Holding Periods for Tax Advantaged Savings Accounts with Early Withdrawal Penalties

Breakeven Holding Periods for Tax Advantaged Savings Accounts with Early Withdrawal Penalties Beakeve Holdig Peiods fo Tax Advataged Savigs Accouts with Ealy Withdawal Pealties Stephe M. Hoa Depatmet of Fiace St. Boavetue Uivesity St. Boavetue, New Yok 4778 Phoe: 76-375-209 Fax: 76-375-29 e-mail:

More information

GFI MilAchive 6 vs Wtefod Technologies MilMete Achive GFI Softwe www.gfi.com GFI MilAchive 6 vs Wtefod Technologies MilMete Achive Genel fetues Suppots Micosoft Exchnge 2000, 2003 & 2007 Suppots distibuted

More information

The LCOE is defined as the energy price ($ per unit of energy output) for which the Net Present Value of the investment is zero.

The LCOE is defined as the energy price ($ per unit of energy output) for which the Net Present Value of the investment is zero. Poject Decision Metics: Levelized Cost of Enegy (LCOE) Let s etun to ou wind powe and natual gas powe plant example fom ealie in this lesson. Suppose that both powe plants wee selling electicity into the

More information

Small Business Cloud Services

Small Business Cloud Services Smll Business Cloud Services Summry. We re thick in the midst of historic se-chnge in computing. Like the emergence of personl computers, grphicl user interfces, nd mobile devices, the cloud is lredy profoundly

More information

The dinner table problem: the rectangular case

The dinner table problem: the rectangular case The ie table poblem: the ectagula case axiv:math/009v [mathco] Jul 00 Itouctio Robeto Tauaso Dipatimeto i Matematica Uivesità i Roma To Vegata 00 Roma, Italy tauaso@matuiomait Decembe, 0 Assume that people

More information

4. Greed. Algorithm Design by Éva Tardos and Jon Kleinberg Slides by Kevin Wayne (modified by Neil Rhodes)

4. Greed. Algorithm Design by Éva Tardos and Jon Kleinberg Slides by Kevin Wayne (modified by Neil Rhodes) 4 Greed Greed is good Greed is right Greed works Greed clrifies, cuts through, nd cptures the essence of the evolutionry spirit - Gordon Gecko (Michel Dougls) Algorithm Design by Év Trdos nd Jon Kleinberg

More information

BINOMIAL THEOREM. 1. Introduction. 2. The Binomial Coefficients. ( x + 1), we get. and. When we expand

BINOMIAL THEOREM. 1. Introduction. 2. The Binomial Coefficients. ( x + 1), we get. and. When we expand BINOMIAL THEOREM Itoductio Whe we epad ( + ) ad ( + ), we get ad ( + ) = ( + )( + ) = + + + = + + ( + ) = ( + )( + ) = ( + )( + + ) = + + + + + = + + + 4 5 espectively Howeve, whe we ty to epad ( + ) ad

More information

Graphs on Logarithmic and Semilogarithmic Paper

Graphs on Logarithmic and Semilogarithmic Paper 0CH_PHClter_TMSETE_ 3//00 :3 PM Pge Grphs on Logrithmic nd Semilogrithmic Pper OBJECTIVES When ou hve completed this chpter, ou should be ble to: Mke grphs on logrithmic nd semilogrithmic pper. Grph empiricl

More information

s = 1 2 at2 + v 0 t + s 0

s = 1 2 at2 + v 0 t + s 0 Mth A UCB, Sprig A. Ogus Solutios for Problem Set 4.9 # 5 The grph of the velocity fuctio of prticle is show i the figure. Sketch the grph of the positio fuctio. Assume s) =. A sketch is give below. Note

More information