Marketing Logistics: Opportunities and Limitations


 Camron Gilbert
 3 years ago
 Views:
Transcription
1 Mketig Logistics: Oppotuities d Limittios Pethip Vdhsidhu 1, Ugul Lpted 2 1 Gdute School, MBA i Itetiol Busiess, The Uivesity of the Thi Chmbe of Commece VibhvdeeRgsit Rod, Dideg, Bgkok, 10400, Thild Tel: , Emil: 2 Logistics Egieeig Deptmet, School of Egieeig, The Uivesity of the Thi Chmbe of Commece VibhvdeeRgsit Rod, Dideg, Bgkok, 10400, Thild Tel: , Fx: , Emil: Abstct The bsic piciple of mketig is egdig custome stisfctio d custome eeds d logistics egdig the itegtio of ifomtio, tspottio, ivetoy, wehouse, mteil hdlig d pckgig. Whe mketig covege logistics, ide is esposiveess, elibility d eltioships. I developmet ide, thee e two es which e demd cetio (mketig) d demd fulfillmet (logistics). I the view of mketig dvtge, it is egdig custome fchise; bd vlue, iovtio d beefit focus, custome vlue; cost of oweship, vlue ddig eltioship d sevice qulity d the lst oe, supply chi effectiveess; low cost supplie, gile espose, etwok mgemet. This ppe focuses o some of these thee sttegies pocess d mgig mketig logistics which e to gi competitive dvtge. Thee sttegies e custome eltioship, custome vlue d demd dive supply chi mgemet. They hve to coect togethe with model of mgig cossfuctiol pocess. Ad lso model tdeoff show tht how to cete custome vlue. Oe model is developed to be moe efficietly of competitive dvtge. Filly, key issues of mgig mketig logistics tht is the eed fo ogiztio chge, mge pocess, to mge supply d demd d wht gets mesued set hdled. It is expected tht these exploe the wy e iteested to joi d go o to be stegth ogiztios i positioig. Key Wods: Mketig logistics, demd dive supply chi, custome eltioship, custome vlue 211
2 Itoductio Tditiolly, mketig d logistic hve bee mged septely i most busiess becuse it is hd to udestd d sttegic impotce of custome sevice. My compies focus i the mketig i the clssic 4 Ps of poduct, pice, plce d pomotio. Now i the mket hve high competitio so thee is widesped ecogitio tht is ot so much though wht they do, but though how they do it. Oe moe thig is which key busiess pocesses e mged d how those pocesses liged with the custome demd d c be s impott s qulity of the poduct o its pice. I dditiol, mkets become commoditized d s customes become moe time d sevice sesitive so the eed to mge the mketig d logistics itefce icese. Review of Litetue Philip Kotle hve climed tht Mketig Logistic is egdig iboud d outboud distibutio d ivolves the eties supply chi mgemet system which lik mketig logistic i fou items. Fist, is why gete emphsis I beig plced o logistics. It offes compy competitive dvtge such s cost svig, qulity of poduct, impovig logistic d distibutio efficiecy. Secod, gol of logistic system: compies hve to vege the beefits of highe sevice gist the cost tht should be lesed. Thid, mjo logistic fuctio, it coces wehousig, ivetoy mgemet, tspottio d logistic ifomtio mgemet. Foth, itegted logistic mgemet though shed pojective d outsoucig of logistic fim to thidpty is becomig moe commo. PMS Ltd. cocettes o delivey mteil, poductio though the ssembly of items ito cmpig pck. It povides the skilled esouce to mge cucil clee such s dt collectio d espose hdlig. NV.Afsyev,G.L. Bgi, G.Leidg hve metioed tht mketig hve developed to be mket logistic. It should fcilitte itectio of the two mgemet cocept. Mket Oieted cocept d Flow Oieted logistic eble poduce ise mteil d ifomtio popeties of poduct evlute. This itegity stimultes emegece of the so clled mket logistic withi stuctue of logistic tht povides the custome with wide choice optios Thoms Cig (1998) hve evluted tht mketig sttegy bsed o logistics d effectiveess which should hve two pts. Fist, the compies must hve solid logistic pogm d ledig edge. The, they e ble to tilo to meet the equiemet of idividul customes. They hve to do wht ech of custome s demd d lso c ppoch the stdd. Cocept of Mketig Logistic Mketig Logistic focuses o the wys i which custome sevice c be leveged to gi competitive dvtge. Compies hve mged mketig d logistic ctivities lig thei espective sttegies withi the cotext of the wide supply chi. Logistic efes to physicl distibutio which e plig, implemetig d cotollig i tspottio, mteils hdlig, ode pocessig, ivetoy cotol, wehousig d pckgig. Mketig is to espod the custome demd d them to get the high vlue d wothwhile to exchge. Logistic is demd fulfillmet fo demd cetio tht is mketig to mke ely complete i custome stisfctio. 212
3 Whe mketig logistic covege togethe, they e bsed upo to be sttegiclly coected: the cosume fchise, custome vlue, d the supply chi. This study pupose d develop ew model to fulfill d suppot theoy of mketig logistics d illusttes itectio betwee idividul ogiztios. Poposed Model of Mketig Logistic This sectio coves poposed model of mketig logistic. The model hs focused o two items which e to cocette o mgig cossfuctiol pocess i the busiess to povide efficiet use of esouces to be output d lig with custome stisfctio. The lst oe is to povide logistic d to itegte i the begiig of pocess to the custome. Logistic is ble to be developed d implemeted i specilty fo y busiess. This model ws dpted fom thee citicl which e mgig cossfuctio pocess, supply chi pocess d demd mgemet itefce. Thee e fom bse o bsic d to be developed to idetify the fuctio pecisely. They e peset o figue 12 d the lst oe is dpted fom thee bove. Figue 1 Mgig CossFuctio Pocess This digm is mgemet to pocess mgemet so it hs five mi coe pocesses which e dpted to Figue
4 Figue 2 Demd Chi Mgemet Adpted fom Tditiol Itefce Implictios fo ogiztio, cultue d wys of wod of wokig Mgig supplie Reltioships L o g i s t i c B d m k e t g Mufctuig Buyig/ Sellig Wholesle/ Retiles Retil Tde mk Ctegoy d Joit Demd B d Sttegic busiess plig Mketig Admiistt io Fice Iovtio/ Bd Fchise Competitive dvtge Retetio Logtem Pofitbility Figue 3 Popose Model of Mketig Logistic 214
5 Mketig Logistic model is ssumed tht it pesets logistic ivolve to ll of pocess so it c gi efficiecy competitive dvtge fo both of itel d extel ogiztio. Its fuctio suppot ogiztio to pl, cotol d implemet whole of the pocess. Mketig mgemet lwys ecogized custome stisfctio d oe moe thig is ot too less ecessy tht is bd weess. Tody, bdig is such stog vey much. This shows tht if bdig c lig with custome ely, tht busiess is tke dvtge i gme. O bove ppoches i ll pocess tht begis o supplie util to custome becuse it c peset chcteistic pecisely to be emided by custome s well. It is impott wht it should to be. Implemetig the Model ito Pctices Fo this popose mketig logistic eed to defie logistic ito whole of pocess becuse it helps compies fo plig, implemet d cotollig tht chieve gol of ogiztio. It c pply to implemet i whole of fuctios. Supply chi pocess is developed to be mketig logistic with logistic d mketig mgemet tht is bd weess. Bsic, Logistics mge should udestd custome sevice d the tdeoff oppotuities i distibutio. The they c lik to beyod the wehouse d lso to mge custome o time. The demd chi mgemet is expded oveview pecisely of mgig the supply chi o oigil this pt. It is lso icludig bd weess tht is geelly ot climed i this pt. It is coce idiectly to thei custome becuse to be hed i me d ot ideed the detil of poduct. Actully, it begis iput to output of this pocess. Ctegoy is oe impott becuse is good sttegic mgemet of poduct ctegoies to mximize pofit d stisfy cosume. It cocludes i the lik of demd mgemet itefce. Its effective should pool d levege the kowledge of etile d supplies to led to bette collective demd mgemet d moe ttctive offe fo the cosume. All this is to coopete i ogize i the sme wy d c chieve competitive dvtge to be gi mket she d logtem pofitbility. Summy The theoy d model peseted hee is expected to gi competitive dvtge i itel d extel ogiztio. Mketig logistic model is eltioship with ogiztio. It is liked supply chi pocess so it is dditiol the logistic to lig i ech item. This model expected tht if the ptes i ogiztio coopete to dpted logistic system i busiess, it esue to gi efficiecy implemet so especilly, mketig mgemet is gi efficiecy to wok s well. Ad lso, ctegoy mgemet c impove its opetig efficiecy ll of thee which e mufctueetile/buyeselle itefce. This elte though custome stisfctio. Fom bove, big them to joit, If they c cotol itel ogiztio, it is good to suppot implemet d develop sttegies to competitive with othes. Refeeces Mti C. (1997). Mketig Logistics, Buttewoth Heiem. Mti C. (1998). Logistics d Supply Chi Mgemet (2 d Eds), Pitms. Mti C. & Hele P. (2002). Mketig Logistics (2d Eds), Buttewoth Heiem. 215
Geometric Sequences. Definition: A geometric sequence is a sequence of the form
Geometic equeces Aothe simple wy of geetig sequece is to stt with umbe d epetedly multiply it by fixed ozeo costt. This type of sequece is clled geometic sequece. Defiitio: A geometic sequece is sequece
More informationSection 3.3: Geometric Sequences and Series
ectio 3.3: Geometic equeces d eies Geometic equeces Let s stt out with defiitio: geometic sequece: sequece i which the ext tem is foud by multiplyig the pevious tem by costt (the commo tio ) Hee e some
More informationSummary: Vectors. This theorem is used to find any points (or position vectors) on a given line (direction vector). Two ways RT can be applied:
Summ: Vectos ) Rtio Theoem (RT) This theoem is used to find n points (o position vectos) on given line (diection vecto). Two ws RT cn e pplied: Cse : If the point lies BETWEEN two known position vectos
More informationTHE GEOMETRIC SERIES
Mthemtics Revisio Guides The Geometic eies Pge of M.K. HOME TUITION Mthemtics Revisio Guides Level: A / A Level AQA : C Edexcel: C OCR: C OCR MEI: C THE GEOMETRIC ERIE Vesio :. Dte: 8060 Exmples 7 d
More informationArithmetic Sequences
Arithmetic equeces A simple wy to geerte sequece is to strt with umber, d dd to it fixed costt d, over d over gi. This type of sequece is clled rithmetic sequece. Defiitio: A rithmetic sequece is sequece
More informationOrbits and Kepler s Laws
Obits nd Keple s Lws This web pge intoduces some of the bsic ides of obitl dynmics. It stts by descibing the bsic foce due to gvity, then consides the ntue nd shpe of obits. The next section consides how
More informationMATHEMATICS FOR ENGINEERING BASIC ALGEBRA
MATHEMATICS FOR ENGINEERING BASIC ALGEBRA TUTORIAL  INDICES, LOGARITHMS AND FUNCTION This is the oe of series of bsic tutorils i mthemtics imed t begiers or yoe wtig to refresh themselves o fudmetls.
More informationN V V L. R a L I. Transformer Equation Notes
Tnsfome Eqution otes This file conts moe etile eivtion of the tnsfome equtions thn the notes o the expeiment 3 witeup. t will help you to unestn wht ssumptions wee neee while eivg the iel tnsfome equtions
More informationScreentrade Car Insurance Policy Summary
Sceentde C Insunce Policy Summy This is summy of the policy nd does not contin the full tems nd conditions of the cove, which cn be found in the policy booklet nd schedule. It is impotnt tht you ed the
More informationSTUDENT S COMPANIONS IN BASIC MATH: THE SECOND. Basic Identities in Algebra. Let us start with a basic identity in algebra:
STUDENT S COMPANIONS IN BASIC MATH: THE SECOND Bsic Idetities i Algebr Let us strt with bsic idetity i lgebr: 2 b 2 ( b( + b. (1 Ideed, multiplyig out the right hd side, we get 2 +b b b 2. Removig the
More informationA black line master of Example 3 You Try is on provided on page 10 for duplication or use with a projection system.
Grde Level/Course: Algebr Lesso/Uit Pl Nme: Geometric Sequeces Rtiole/Lesso Abstrct: Wht mkes sequece geometric? This chrcteristic is ddressed i the defiitio of geometric sequece d will help derive the
More informationIntro to Circle Geometry By Raymond Cheong
Into to Cicle Geomety By Rymond Cheong Mny poblems involving cicles cn be solved by constucting ight tingles then using the Pythgoen Theoem. The min chllenge is identifying whee to constuct the ight tingle.
More informationRepeated multiplication is represented using exponential notation, for example:
Appedix A: The Lws of Expoets Expoets re shorthd ottio used to represet my fctors multiplied together All of the rules for mipultig expoets my be deduced from the lws of multiplictio d divisio tht you
More informationA function f whose domain is the set of positive integers is called a sequence. The values
EQUENCE: A fuctio f whose domi is the set of positive itegers is clled sequece The vlues f ( ), f (), f (),, f (), re clled the terms of the sequece; f() is the first term, f() is the secod term, f() is
More informationProject Request & Project Plan
Poject Request & Poject Pla ITS Platfoms Cofiguatio Maagemet Pla Vesio: 0.3 Last Updated: 2009/01/07 Date Submitted: 2008/11/20 Submitted by: Stephe Smooge Executive Sposo: Gil Gozales/Moia Geety Expected
More informationRandom Variables and Distribution Functions
Topic 7 Rndom Vibles nd Distibution Functions 7.1 Intoduction Fom the univese of possible infomtion, we sk question. To ddess this question, we might collect quntittive dt nd ognize it, fo emple, using
More informationGFI EventsMnge vs Netikus.net EventSenty GFI Softwe www.gfi.com GFI EventsMnge vs Netikus.net EventSenty GFI EventsMnge EventSenty Who we e Suppot fo MS SQL Seve Suppot fo MSDE / MS SQL Expess Suppot fo
More informationby K.H. Rutsch*, P.J. Viljoen*, and H. Steyn* The need for systematic project portfolio selection
An investigtion into the cuent pctice of poject potfolio selection in esech nd development division of the South Aficn minels nd enegy industy by K.H. Rutsch*, P.J. Viljoen*, nd H. Steyn* J o u n l Synopsis
More informationA Simple Method for Generating Rational Triangles
A Simple Method fo Geneting Rtionl Tingles Konstntine Zelto Deptment Of Mthemtics College Of Ats And Sciences Mil Stop 94 Univesity Of Toledo Toledo,OH 436063390 U.S.A. Intoduction The pupose of this
More informationReducing accidents in the mining industry an integrated approach
Syopi Reducig ccidet i the miig iduty itegted ppoch by J.C. Je* d A.C. Bet* The pltium miig iduty h expeieced igifict icee i ftl ccidet. Mie ccidet e i piciple pevetble, d thee i eomou peue o employe to
More informationUnderstanding Financial Management: A Practical Guide Guideline Answers to the Concept Check Questions
Udestadig Fiacial Maagemet: A Pactical Guide Guidelie Aswes to the Cocept Check Questios Chapte 4 The Time Value of Moey Cocept Check 4.. What is the meaig of the tems isketu tadeoff ad time value of
More information16. Mean Square Estimation
6 Me Sque stmto Gve some fomto tht s elted to uow qutty of teest the poblem s to obt good estmte fo the uow tems of the obseved dt Suppose epeset sequece of dom vbles bout whom oe set of obsevtos e vlble
More informationChapter 3 Section 3 Lesson Additional Rules for Exponents
Chpter Sectio Lesso Additiol Rules for Epoets Itroductio I this lesso we ll eie soe dditiol rules tht gover the behvior of epoets The rules should be eorized; they will be used ofte i the reiig chpters
More informationI. Supplementary and Relevant Information
hte 9 Bod d Note Vlutio d Relted Iteest Rte Fouls witte fo Ecooics 04 Ficil Ecooics by Pofesso Gy R. Evs Fist editio 2008, this editio Octobe 28, 203 Gy R. Evs The iy uose of this docuet is to show d justify
More informationGFI MilEssentils & GFI MilSecuity vs Bcud Spm Fiewll GFI Softwe www.gfi.com GFIMilEssentils & GFI MilSecuity vs Bcud Spm Fiewll GFI MilEssentils 12 & GFI MilSecuity 10 Bcud Spm Fiewll Who we e Integtes
More informationCircles and Tangents with Geometry Expressions
icles nd Tngents with eomety xpessions IRLS N TNNTS WITH OMTRY XPRSSIONS... INTROUTION... 2 icle common tngents... 3 xmple : Loction of intesection of common tngents... 4 xmple 2: yclic Tpezium defined
More informationChapter 2 Sequences and Series
Chapte 7 Sequece ad seies Chapte Sequeces ad Seies. Itoductio: The INVENTOR of chess asked the Kig of the Kigdom that he may be ewaded i lieu of his INVENTION with oe gai of wheat fo the fist squae of
More informationGaussian Elimination Autar Kaw
Gussi Elimitio Autr Kw After redig this chpter, you should be ble to:. solve set of simulteous lier equtios usig Nïve Guss elimitio,. ler the pitflls of the Nïve Guss elimitio method,. uderstd the effect
More informationbetween Modern Degree Model Logistics Industry in Gansu Province 2. Measurement Model 1. Introduction 2.1 Synergetic Degree
www.ijcsi.og 385 Calculatio adaalysis alysis of the Syegetic Degee Model betwee Mode Logistics ad Taspotatio Idusty i Gasu Povice Ya Ya 1, Yogsheg Qia, Yogzhog Yag 3,Juwei Zeg 4 ad Mi Wag 5 1 School of
More informationtools for Web data extraction
HTMLwe tools fo Web dt extction Thesis pesenttion 1 Student: Xvie Azg Supeviso: Andes Tho Tble of contents Intoduction Dt Extction Pocess Dt Extction Tools Relized tests Futue Wok 2 Intoduction We e going
More informationMoney Math for Teens. Introduction to Earning Interest: 11th and 12th Grades Version
Moey Math fo Tees Itoductio to Eaig Iteest: 11th ad 12th Gades Vesio This Moey Math fo Tees lesso is pat of a seies ceated by Geeatio Moey, a multimedia fiacial liteacy iitiative of the FINRA Ivesto Educatio
More informationr (1+cos(θ)) sin(θ) C θ 2 r cos θ 2
icles xmple 66: Rounding one ssume we hve cone of ngle θ, nd we ound it off with cuve of dius, how f wy fom the cone does the ound stt? nd wht is the chod length? (1+cos(θ)) sin(θ) θ 2 cos θ 2 xmple 67:
More informationMath 1105: Calculus II (Math/Sci majors) MWF 11am / 12pm, Campion 235 Written homework 5
Mth 5: Clculus II Mth/Sci mjos) MWF m / pm, Cmpion 35 Witten homewok 5 6.6, p. 458 3,33), 6.7, p. 467 8,3), 6.875), 7.58,6,6), 7.44,48) Fo pctice not to tun in): 6.6, p. 458,8,,3,4), 6.7, p. 467 4,6,8),
More information(Ch. 22.5) 2. What is the magnitude (in pc) of a point charge whose electric field 50 cm away has a magnitude of 2V/m?
Em I Solutions PHY049 Summe 0 (Ch..5). Two smll, positively chged sphees hve combined chge of 50 μc. If ech sphee is epelled fom the othe by n electosttic foce of N when the sphees e.0 m pt, wht is the
More informationSummation Notation The sum of the first n terms of a sequence is represented by the summation notation i the index of summation
Lesso 0.: Sequeces d Summtio Nottio Def. of Sequece A ifiite sequece is fuctio whose domi is the set of positive rel itegers (turl umers). The fuctio vlues or terms of the sequece re represeted y, 2, 3,...,....
More informationSTATISTICS: MODULE 12122. Chapter 3  Bivariate or joint probability distributions
STATISTICS: MODULE Chapte  Bivaiate o joit pobabilit distibutios I this chapte we coside the distibutio of two adom vaiables whee both adom vaiables ae discete (cosideed fist) ad pobabl moe impotatl whee
More informationChannel selection in ecommerce age: A strategic analysis of coop advertising models
Jounal of Industial Engineeing and Management JIEM, 013 6(1):89103 Online ISSN: 0130953 Pint ISSN: 013843 http://dx.doi.og/10.396/jiem.664 Channel selection in ecommece age: A stategic analysis of
More informationGFI MilAchive 6 vs H&S Exchnge@PAM GFI Softwe www.gfi.com GFI MilAchive 6 vs H&S Exchnge@PAM GFI MilAchive 6 H&S Exchnge@PAM Who we e Genel fetues Suppots Micosoft Exchnge 2000, 2003 & 2007 Suppots distibuted
More informationAdaptive Control of a Production and Maintenance System with Unknown Deterioration and Obsolescence Rates
Int J of Mthemtic Sciences nd Appictions, Vo, No 3, Septembe Copyight Mind Rede Pubictions wwwjounshubcom Adptive Conto of Poduction nd Mintennce System with Unknown Deteiotion nd Obsoescence Rtes Fwzy
More informationKnowledge and Time Management for Manufacturing to Enhance CRM
Itertiol Jourl of Computer Applictios (0975 8887) Kowledge d Time Mgemet for Mufcturig to Ehce CRM P. Mek Reserch scholr Momim Sudrr Uiversity, Idi. K. Thgduri Phd, Assistt professor Computer Sciece Govt.
More informationChisquared goodnessoffit test.
Sectio 1 Chisquaed goodessoffit test. Example. Let us stat with a Matlab example. Let us geeate a vecto X of 1 i.i.d. uifom adom vaiables o [, 1] : X=ad(1,1). Paametes (1, 1) hee mea that we geeate
More informationPREMIUMS CALCULATION FOR LIFE INSURANCE
ls of the Uiversity of etroşi, Ecoomics, 2(3), 202, 97204 97 REIUS CLCULTIO FOR LIFE ISURCE RE, RI GÎRBCI * BSTRCT: The pper presets the techiques d the formuls used o itertiol prctice for estblishig
More informationMATH 150 HOMEWORK 4 SOLUTIONS
MATH 150 HOMEWORK 4 SOLUTIONS Section 1.8 Show tht the product of two of the numbers 65 1000 8 2001 + 3 177, 79 1212 9 2399 + 2 2001, nd 24 4493 5 8192 + 7 1777 is nonnegtive. Is your proof constructive
More informationPolynomial Functions. Polynomial functions in one variable can be written in expanded form as ( )
Polynomil Functions Polynomil functions in one vrible cn be written in expnded form s n n 1 n 2 2 f x = x + x + x + + x + x+ n n 1 n 2 2 1 0 Exmples of polynomils in expnded form re nd 3 8 7 4 = 5 4 +
More informationv o a y = = * Since H < 1m, the electron does not reach to the top plate.
. The uniom electic ield between two conducting chged pltes shown in the igue hs mgnitude o.40 N/C. The plte seption is m, nd we lunch n electon om the bottom plte diectl upwd with v o 6 m/s. Will the
More informationShowing Recursive Sequences Converge
Showig Recursive Sequeces Coverge Itroductio My studets hve sked me bout how to prove tht recursively defied sequece coverges. Hopefully, fter redig these otes, you will be ble to tckle y such problem.
More informationUniversity Physics AI No. 1 Rectilinear Motion
Uniesity Physics AI No. Rectiline Motion Clss Numbe Nme I.Choose the Coect Answe. An object is moing long the is with position s function of time gien by (. Point O is t. The object is efinitely moing
More informationGFI MilEssentils & GFI MilSecuity vs Tend Mico ScnMil Suite fo Micosoft Exchnge GFI Softwe www.gfi.com GFI MilEssentils & GFI MilSecuity vs Tend Mico ScnMil Suite fo Micosoft Exchnge Exchnge Seve 2000/2003
More informationSECTION 54 Trigonometric Functions
Tigonometic Functions 78. Engineeing. In Polem 77, though wht ngle in dins will the ck wheel tun if the font wheel tuns though dins? The c length on cicle is esy to compute if the coesponding centl ngle
More informationDevelopment of Customer Value Model for Healthcare Services
96 Developmet of Custome Value Model fo Healthcae Sevices Developmet of Custome Value Model fo Healthcae Sevices WaI Lee ad BihYaw Shih Depatmet of Maetig ad Distibutio Maagemet, Natioal Kaohsiug Fist,
More information(1) continuity equation: 0. momentum equation: u v g (2) u x. 1 a
Comment on The effect of vible viscosity on mied convection het tnsfe long veticl moving sufce by M. Ali [Intentionl Jounl of Theml Sciences, 006, Vol. 45, pp. 6069] Asteios Pntoktos Associte Pofesso
More informationDerivation of Annuity and Perpetuity Formulae. A. Present Value of an Annuity (Deferred Payment or Ordinary Annuity)
Aity Deivatios 4/4/ Deivatio of Aity ad Pepetity Fomlae A. Peset Vale of a Aity (Defeed Paymet o Odiay Aity 3 4 We have i the show i the lecte otes ad i ompodi ad Discoti that the peset vale of a set of
More informationFinance Practice Problems
Iteest Fiace Pactice Poblems Iteest is the cost of boowig moey. A iteest ate is the cost stated as a pecet of the amout boowed pe peiod of time, usually oe yea. The pevailig maket ate is composed of: 1.
More informationTwo special Righttriangles 1. The
Mth Right Tringle Trigonometry Hndout B (length of )  c  (length of side ) (Length of side to ) Pythgoren s Theorem: for tringles with right ngle ( side + side = ) + = c Two specil Righttringles. The
More informationFOURIER SERIES PART I: DEFINITIONS AND EXAMPLES. To a 2πperiodic function f(x) we will associate a trigonometric series. a n cos(nx) + b n sin(nx),
FOURIER SERIES PART I: DEFINITIONS AND EXAMPLES To periodic fuctio f() we will ssocite trigoometric series + cos() + b si(), or i terms of the epoetil e i, series of the form c e i. Z For most of the
More informationTHE PRINCIPLE OF THE ACTIVE JMC SCATTERER. Seppo Uosukainen
THE PRINCIPLE OF THE ACTIVE JC SCATTERER Seppo Uoukaie VTT Buildig ad Tapot Ai Hadlig Techology ad Acoutic P. O. Bo 1803, FIN 02044 VTT, Filad Seppo.Uoukaie@vtt.fi ABSTRACT The piciple of fomulatig the
More informationThe Casino Experience. Let us entertain you
The Csio Expeiee Let us eteti you The Csio Expeiee If you e lookig fo get ight out, Csio Expeiee is just fo you. 10 The Stight Flush Expeiee 25 pe peso This is get itodutio to gmig tht sves you moey Kik
More information11. Fourier series. sin mx cos nx dx = 0 for any m, n, sin 2 mx dx = π.
. Fourier series Summry of the bsic ides The following is quick summry of the introductory tretment of Fourier series in MATH. We consider function f with period π, tht is, stisfying f(x + π) = f(x) for
More informationOperations with Polynomials
38 Chpter P Prerequisites P.4 Opertions with Polynomils Wht you should lern: Write polynomils in stndrd form nd identify the leding coefficients nd degrees of polynomils Add nd subtrct polynomils Multiply
More informationLecture 3 Gaussian Probability Distribution
Lecture 3 Gussin Probbility Distribution Introduction l Gussin probbility distribution is perhps the most used distribution in ll of science. u lso clled bell shped curve or norml distribution l Unlike
More informationHighest Pefomnce Lowest Pice PRODUCT COMPARISON GFI MilAchive vs Symntec Entepise Vult GFI Softwe www.gfi.com GFI MilAchive vs Symntec Entepise Vult GFI MilAchive 6 Symntec Entepise Vult Who we e Genel
More informationFactoring Polynomials
Fctoring Polynomils Some definitions (not necessrily ll for secondry school mthemtics): A polynomil is the sum of one or more terms, in which ech term consists of product of constnt nd one or more vribles
More informationThe strategic and tactical value of a 3D geotechnical model for mining optimization, Anglo Platinum, Sandsloot open pit
The sttegic nd tcticl vlue of 3D geotechnicl model fo mining optimiztion, Anglo Pltinum, Sndsloot open pit by A. Bye* J o u n l Synopsis Sndsloot open pit is situted on the nothen limb of the Bushveld
More informationRidgewood South Natural Areas Priority Evaluation. Background Report
Ridgewood South Nturl Ares Priority Evlution Bckground Report September 2013 Ridgewood South Nturl Ares Priority Evlution Bckground Report Ridgewood South Nturl Ares Priority Evlution Bckground Report
More informationGFI MilEssentils & GFI MilSecuity vs Symntec Bightmil 6 & Anti Vius GFI Softwe www.gfi.com GFI MilEssentils & GFI MilSecuity vs Symntec Bightmil 6 & Anti Vius GFI MilEssentils & GFI MilSecuity Bightmil
More informationAn Introduction to Logistics and the Supply Chain. An Introduction To Logistics And The Supply Chain
Departmet of Global Busiess ad Trasportatio A Itroductio to Logistics ad the Supply Chai Itroductio Cosider bottled water. Abstract Oft times I have foud that studets come ito a course that assumes they
More informationThe Handbook of Essential Mathematics
Fo Puic Relese: Distiutio Ulimited The Ai Foce Resech Lotoy The Hdook of Essetil Mthemtics Fomuls, Pocesses, d Tles Plus Applictios i Pesol Fice X Y Y XY Y X X XY X Y X XY Y Compiltio d Epltios: Joh C.
More informationMaking training work for your business
Makig traiig work for your busiess Itegratig core skills of laguage, literacy ad umeracy ito geeral workplace traiig makes sese. The iformatio i this pamphlet will help you pla for ad build a successful
More informationm n Use technology to discover the rules for forms such as a a, various integer values of m and n and a fixed integer value a.
TIth.co Alger Expoet Rules ID: 988 Tie required 25 iutes Activity Overview This ctivity llows studets to work idepedetly to discover rules for workig with expoets, such s Multiplictio d Divisio of Like
More informationLecture 3 Basic Probability and Statistics
Lecture 3 Bsic Probbility nd Sttistics The im of this lecture is to provide n extremely speedy introduction to the probbility nd sttistics which will be needed for the rest of this lecture course. The
More informationApplication: Volume. 6.1 Overture. Cylinders
Applictio: Volume 61 Overture I this chpter we preset other pplictio of the defiite itegrl, this time to fid volumes of certi solids As importt s this prticulr pplictio is, more importt is to recogize
More informationA. Description: A simple queueing system is shown in Fig. 161. Customers arrive randomly at an average rate of
Queueig Theory INTRODUCTION Queueig theory dels with the study of queues (witig lies). Queues boud i rcticl situtios. The erliest use of queueig theory ws i the desig of telehoe system. Alictios of queueig
More informationAlgebra Review. How well do you remember your algebra?
Algebr Review How well do you remember your lgebr? 1 The Order of Opertions Wht do we men when we write + 4? If we multiply we get 6 nd dding 4 gives 10. But, if we dd + 4 = 7 first, then multiply by then
More informationn Using the formula we get a confidence interval of 80±1.64
9.52 The professor of sttistics oticed tht the rks i his course re orlly distributed. He hs lso oticed tht his orig clss verge is 73% with stdrd devitio of 12% o their fil exs. His fteroo clsses verge
More informationUNIT FIVE DETERMINANTS
UNIT FIVE DETERMINANTS. INTRODUTION I uit oe the determit of mtrix ws itroduced d used i the evlutio of cross product. I this chpter we exted the defiitio of determit to y size squre mtrix. The determit
More informationLecture 5. Inner Product
Lecture 5 Inner Product Let us strt with the following problem. Given point P R nd line L R, how cn we find the point on the line closest to P? Answer: Drw line segment from P meeting the line in right
More informationCurvature. (Com S 477/577 Notes) YanBin Jia. Oct 8, 2015
Cuvtue Com S 477/577 Notes YnBin Ji Oct 8, 205 We wnt to find mesue of how cuved cuve is. Since this cuvtue should depend only on the shpe of the cuve, it should not be chnged when the cuve is epmetized.
More informationThe transport performance evaluation system building of logistics enterprises
Jounal of Industial Engineeing and Management JIEM, 213 6(4): 194114 Online ISSN: 213953 Pint ISSN: 2138423 http://dx.doi.og/1.3926/jiem.784 The tanspot pefomance evaluation system building of logistics
More information2.016 Hydrodynamics Prof. A.H. Techet
.016 Hydodynmics Reding #5.016 Hydodynmics Po. A.H. Techet Fluid Foces on Bodies 1. Stedy Flow In ode to design oshoe stuctues, suce vessels nd undewte vehicles, n undestnding o the bsic luid oces cting
More informationGray level image enhancement using the Bernstein polynomials
Buletiul Ştiiţiic l Uiersităţii "Politehic" di Timişor Seri ELECTRONICĂ şi TELECOMUNICAŢII TRANSACTIONS o ELECTRONICS d COMMUNICATIONS Tom 47(6), Fscicol , 00 Gry leel imge ehcemet usig the Berstei polyomils
More informationReasoning to Solve Equations and Inequalities
Lesson4 Resoning to Solve Equtions nd Inequlities In erlier work in this unit, you modeled situtions with severl vriles nd equtions. For exmple, suppose you were given usiness plns for concert showing
More informationEXPONENTS AND RADICALS
Expoets d Rdicls MODULE  EXPONENTS AND RADICALS We hve lert bout ultiplictio of two or ore rel ubers i the erlier lesso. You c very esily write the followig, d Thik of the situtio whe is to be ultiplied
More informationOn the Optimality and Interconnection of Valiant LoadBalancing Networks
O the Optimality ad Itecoectio of Valiat LoadBalacig Netwoks Moshe Babaioff ad Joh Chuag School of Ifomatio Uivesity of Califoia at Bekeley Bekeley, Califoia 94720 4600 {moshe,chuag}@sims.bekeley.edu
More informationGFI MilAchive 6 vs EMC EmilXtende Achive Edition GFI Softwe www.gfi.com GFI MilAchive 6 vs EMC EmilXtende Achive Edition GFI MilAchive 6 EMC EmilXtende Achive Edition Who we e Genel fetues Suppots Micosoft
More informationExponents base exponent power exponentiation
Exonents We hve seen counting s reeted successors ddition s reeted counting multiliction s reeted ddition so it is nturl to sk wht we would get by reeting multiliction. For exmle, suose we reetedly multily
More informationSearching Algorithm Efficiencies
Efficiecy of Liear Search Searchig Algorithm Efficiecies Havig implemeted the liear search algorithm, how would you measure its efficiecy? A useful measure (or metric) should be geeral, applicable to ay
More informationr Curl is associated w/rotation X F
13.5 ul nd ivegence ul is ssocited w/ottion X F ivegence is F Tody we define two opetions tht cn e pefomed on vecto fields tht ply sic ole in the pplictions of vecto clculus to fluid flow, electicity,
More informationInnovative concepts in underground materials handling
Innovtive concepts in undegound mteils hndling by M. Fuchs* J o u n l Synopsis Thee is still dive woldwide to impove on existing methods of mining. The demnd is fo mining volumes to be incesed while the
More information4.11 Inner Product Spaces
314 CHAPTER 4 Vector Spces 9. A mtrix of the form 0 0 b c 0 d 0 0 e 0 f g 0 h 0 cnnot be invertible. 10. A mtrix of the form bc d e f ghi such tht e bd = 0 cnnot be invertible. 4.11 Inner Product Spces
More informationA framework for the selection of enterprise resource planning (ERP) system based on fuzzy decision making methods
A famewok fo the selection of entepise esouce planning (ERP) system based on fuzzy decision making methods Omid Golshan Tafti M.s student in Industial Management, Univesity of Yazd Omidgolshan87@yahoo.com
More informationleader a r n e preview
ld &By Stphi Hish d Shily M. Hod pviw Picipls bfit fom schoolwid pofssiol lig commuitis (PLCs) with thi tchs so tht vyo is lig d wokig towd th sm gol. Picipls lso fid vlu i joiig dmiistto PLCs to wok o
More informationBreakeven Holding Periods for Tax Advantaged Savings Accounts with Early Withdrawal Penalties
Beakeve Holdig Peiods fo Tax Advataged Savigs Accouts with Ealy Withdawal Pealties Stephe M. Hoa Depatmet of Fiace St. Boavetue Uivesity St. Boavetue, New Yok 4778 Phoe: 76375209 Fax: 7637529 email:
More informationGFI MilAchive 6 vs Wtefod Technologies MilMete Achive GFI Softwe www.gfi.com GFI MilAchive 6 vs Wtefod Technologies MilMete Achive Genel fetues Suppots Micosoft Exchnge 2000, 2003 & 2007 Suppots distibuted
More informationThe LCOE is defined as the energy price ($ per unit of energy output) for which the Net Present Value of the investment is zero.
Poject Decision Metics: Levelized Cost of Enegy (LCOE) Let s etun to ou wind powe and natual gas powe plant example fom ealie in this lesson. Suppose that both powe plants wee selling electicity into the
More informationSmall Business Cloud Services
Smll Business Cloud Services Summry. We re thick in the midst of historic sechnge in computing. Like the emergence of personl computers, grphicl user interfces, nd mobile devices, the cloud is lredy profoundly
More informationThe dinner table problem: the rectangular case
The ie table poblem: the ectagula case axiv:math/009v [mathco] Jul 00 Itouctio Robeto Tauaso Dipatimeto i Matematica Uivesità i Roma To Vegata 00 Roma, Italy tauaso@matuiomait Decembe, 0 Assume that people
More information4. Greed. Algorithm Design by Éva Tardos and Jon Kleinberg Slides by Kevin Wayne (modified by Neil Rhodes)
4 Greed Greed is good Greed is right Greed works Greed clrifies, cuts through, nd cptures the essence of the evolutionry spirit  Gordon Gecko (Michel Dougls) Algorithm Design by Év Trdos nd Jon Kleinberg
More informationBINOMIAL THEOREM. 1. Introduction. 2. The Binomial Coefficients. ( x + 1), we get. and. When we expand
BINOMIAL THEOREM Itoductio Whe we epad ( + ) ad ( + ), we get ad ( + ) = ( + )( + ) = + + + = + + ( + ) = ( + )( + ) = ( + )( + + ) = + + + + + = + + + 4 5 espectively Howeve, whe we ty to epad ( + ) ad
More informationGraphs on Logarithmic and Semilogarithmic Paper
0CH_PHClter_TMSETE_ 3//00 :3 PM Pge Grphs on Logrithmic nd Semilogrithmic Pper OBJECTIVES When ou hve completed this chpter, ou should be ble to: Mke grphs on logrithmic nd semilogrithmic pper. Grph empiricl
More informations = 1 2 at2 + v 0 t + s 0
Mth A UCB, Sprig A. Ogus Solutios for Problem Set 4.9 # 5 The grph of the velocity fuctio of prticle is show i the figure. Sketch the grph of the positio fuctio. Assume s) =. A sketch is give below. Note
More information