# FINANCE 1. DESS Gestion des Risques/Ingéniérie Mathématique Université d EVRY VAL D ESSONNE EXERCICES CORRIGES. Philippe PRIAULET

Save this PDF as:

Size: px
Start display at page:

Download "FINANCE 1. DESS Gestion des Risques/Ingéniérie Mathématique Université d EVRY VAL D ESSONNE EXERCICES CORRIGES. Philippe PRIAULET"

## Transcription

1 FINANCE 1 DESS Gestion des Risques/Ingéniérie Mathématique Université d EVRY VAL D ESSONNE EXERCICES CORRIGES Philippe PRIAULET 1

2 Exercise 1 On 12/04/01 consider a fixed coupon bond whose features are the following: face value: \$1,000 coupon rate: 8% coupon frequency: semi-annual maturity: 05/06/04 What are the future cash-flows delivered by this bond? Solution 2 The coupon cash-flow is equal to \$40 Coupon = 8% \$1, =\$40 It is delivered on the following future dates: 05/06/02, 11/06/02, 05/06/03, 11/06/03 and 05/06/04. The redemption value is equal to the face value \$1,000 and is delivered on maturity date 05/06/04. Exercise 3 Consider the same bond as in the previous exercise. We are still on 12/04/ Compute the accrued interest taking into account the Actual/Actual day-count basis. 2- Same question if we are now on 09/06/02. Solution 4 1- The last coupon has been delivered on 11/06/01. There are 28 days between 11/06/01 and 12/04/01, and 181 days between the last coupon date (11/06/01) and the next coupon date (05/06/02). Hence the accrued interest is equal to \$6.188 Accrued Interest = 28 \$40 = \$ The last coupon has been delivered on 05/06/02. There are 123 days between 05/06/02 and 09/06/02, and 184 days between the last coupon date (05/06/02) and the next coupon date (11/06/02). Hence the accrued interest is equal to \$ Accrued Interest = 123 \$40 = \$

3 Exercise 5 An investor has a cash of \$10,000,000 at disposal. He wants to invest in a bond with \$1,000 nominal value and whose dirty price is equal to %. 1- What is the number of bonds he will buy? 2- Same question if the nominal value and the dirty price of the bond are respectively \$100 and %. Solution 6 1- The number of bonds he will buy is given by the following formula Number of bonds bought = Here the number of bonds is equal to n is equal to 101,562 n = n = Cash Nomin al Value of the bond dirty price 10, 000, 000 1, % = , 000, % = Exercise 7 On 10/25/99 consider a fixed coupon bond whose features are the following: face value: Eur 100 coupon rate: 10% coupon frequency: annual maturity: 04/15/08 Compute the accrued interest taking into account the four different day-count bases: Actual/Actual, Actual/365, Actual/360 and 30/360. Solution 8 The last coupon has been delivered on 04/15/99. There are 193 days between 04/15/99 and 10/25/99, and 366 days between the last coupon date (04/15/99) and the next coupon date (04/15/00). the accrued interest with the Actual/Actual day-count basis is equal to Eur % Eur 100 = Eur

4 the accrued interest with the Actual/365 day-count basis is equal to Eur % Eur 100 = Eur the accrued interest with the Actual/360 day-count basis is equal to Eur % Eur 100 = Eur There are 15 days between 04/15/99 and 04/30/99, five months between May and September, and 25 days between 09/30/99 and 10/25/99, so that there are 190 days between 04/15/99 and 10/25/99 on the 30/360 day-count basis 15 + (5 30) + 25 = 190 finally the accrued interest with the 30/360 day-count basis is equal to Eur % Eur 100 = Eur Exercise 9 Treasury bills are quoted using the yield on a discount basis or on a money market basis. 1- The yield on a discount basis denoted y d is computed as y d = F P F B n where F is the face value, P the price, B the year-basis (365 or 360) and n is the number of calendar days remaining to maturity. Prove in this case that the price of the T-bill is obtained using the following equation µ P = F 1 n y d B 4

5 2- The yield on a money market basis denoted y m is computed as y m = B y d B n y d Prove in this case that the price of the T-bill is obtained using the following equation P = ³ F 1+ n ym B Solution From the equation y d = F P F B n we deduce n y d B 1= P F and finally we obtain µ P = F 1 n y d B 2- From the equation y m = B y d B n y d we deduce y m = B F F P B n F F P B n B n = ³ B n F F P 1 F P F Then we have Finally we obtain n y m B = F P F P F P = ³ = F P P F 1+ n ym B = F P 1 Exercise What is the yield on a discount basis of a bill whose face value F is 1,000, price P is 975 and n the number of calendar days remaining to maturity is 126? We assume that the year-basis is What is the yield on a money market basis of the same bill? 5

6 Solution The yield y d on a discount basis which satisfies the following equation is equal to 7.143% y d = 1, , =7.143% 2- The yield y m on a money market basis which satisfies the following equation is equal to 7.326% y m = % % =7.326% Exercise 13 Suppose the interest rate is 12% per year compounded continuously. What is the effective annual interest rate? Solution 14 The effective annual interest rate is obtained as R = e = = 12.74%. Exercise 15 If you deposit \$2,500 in a bank account which earns 8% annually on a continuously compounded basis, what will be the account balance in 7.14 years. Solution 16 The account balance in 7.14 years will be \$2500.e 8%.7.14 = \$ Exercise 17 If an investment has a cumulative 63.45% rate of return over 3.78 years, what is the annual continuously compounded rate of return? Solution 18 The annual continuously compounded rate of return R C is such that = e 3.78RC We deduce R C =ln(1.6345)/3.78 = 13%. Exercise 19 How long does it take to double a \$100 initial investment when investing at a 5% continuously compounded interest rate? 6

7 Solution 20 In general, the solution is given by xe RCT =2x or T = ln 2 R C Note that this does not depend on the principle x. In this example, we obtain T = ln 2 = years 0.05 Exercise 21 A invests \$1000 at 5% per annum continuously compounded. B invests \$200 at 20% per annum continuously compounded. Does B ever catch up? How long does it take? Solution 22 B catches up if the difference between them becomes zero, Alternatively if the ratio of their amounts becomes 1. The equality condition can be stated as 1000e 0.05t =200e 0.2t equivalent to ln(5) t =0.2t or t = ln(5) 0.15 =10.73 Exercise What is the price of a 5-year bond with a nominal value of \$100, a yield to maturity of 7%, a 10% coupon rate, and an annual coupon frequency? 2- Same question for a yield to maturity of 8%, 9% and 10%. Conclude Solution The price P of a bond is given by the following formula P = nx i=1 N c N (1 + y) n + (1 + y) n 7

8 which simplifies into P = N c y 1 1 (1 + y) n + N (1 + y) n where N, c, y and n are respectively the nominal value, the coupon rate, the yield to maturity and the number of years to maturity of the bond. Here we obtain for P P = 10 " 1 7% # 1 (1 + 7%) (1 + 7%) 5 P is then equal to % of the nominal value or \$ Note that we can also use the Excel function Price to obtain P. 2- Prices of the bond for different yields to maturity (YTM) are given in the following table YTM Price 8% \$ % \$ % \$100 Bond prices decrease with an increase in rates. Exercise What is the price of a 5-year bond with a nominal value of \$100, a yield to maturity of 7%, a 10% coupon rate, and semi-annual coupon payments? 2- Same question for a yield to maturity of 8%, 9% and 10%. Solution The price P of this bond is given by the following formula which simplifies into P = P = N c y 2nX i=1 " N c/2 (1 + y/2) i + N (1 + y/2) 2n 1 # 1 N (1 + y/2) 2n + (1 + y/2) 2n where N, c, y and n are respectively the nominal value, the coupon rate, the yield to maturity and the number of years to maturity of the bond. 8

9 Here we obtain for P P = 10 7% 1 1 ³ 1+ 7% ³ 1+ 7% 2 10 P is then equal to % of the nominal value or \$ Note that we can also use the Excel function Price to obtain P. 2- Prices of the bond for different yields to maturity (YTM) are given in the following table YTM Price 8% \$ % \$ % \$100 Exercise 27 We consider the following zero-coupon curve Maturity Zero-Coupon Rate 1year 4.00% 2years 4.50% 3years 4.75% 4years 4.90% 5years 5.00% 1- What is the price of a 5-year bond with a \$100 face value which delivers a 5% annual coupon rate? 2- What is the yield to maturity of this bond? 3- We suppose that the zero-coupon curve increases instantaneously and uniformly by 0.5%. What is the new price and the new yield to maturity of the bond? What is the impact of this rates increase for the bondholder? 4- We suppose now that the zero-coupon curve will remain stable over time. You hold the bond until maturity. What is the annual return rate of your investment? Why is this rate different from the yield to maturity? 9

10 Solution The price P of the bond is equal to the sum of its discounted cash-flows and given by the following formula P = 5 1+4% + 5 ( %) ( %) ( %) (1 + 5%) 5 = \$ The yield to maturity R of this bond verifies the following equation = 4X i=1 5 (1 + R) i (1 + R) 5 Using the Excel function yield, we obtain % for R. 3-ThenewpricePofthebondisgivenbythefollowingformula P = % + 5 (1 + 5%) ( %) ( %) ( %) 5 =\$ The new yield to maturity R of this bond verifies the following equation = 4X i=1 5 (1 + R) i (1 + R) 5 Using the Excel function yield, we obtain % for R. The impact of this rates increase for the bondholder is an absolute capital loss of \$2.137 Absolute Loss = = \$2.137 and a relative capital loss of 2.134% Re lative Loss = = 2.134% 4-Before maturity, the bondholder receives intermediate coupons that he reinvests on the market: - after one year, he receives \$5 that he reinvests for 4 years at the 4-year zero-coupon rate 10

11 to obtain at the maturity date of the bond 5 ( %) 4 =\$ after two years, he receives \$5 that he reinvests for 3 years at the 3-year zero-coupon rate to obtain at the maturity date of the bond 5 ( %) 3 =\$ after three years, he receives \$5 that he reinvests for 2 years at the 2-year zero-coupon rate to obtain at the maturity date of the bond 5 ( %) 2 =\$ after four years, he receives \$5 that he reinvests for 1 year at the 1-year zero-coupon rate to obtain at the maturity date of the bond 5 (1 + 4%) = \$5.2 - after five years, he receives the final cash-flow equal to \$105. The bondholder finally obtains \$ five years later = \$ which corresponds to a 4.944% annual return rate µ /5 1=4.944% This return rate is different from the yield to maturity of this bond (4.9686%) because the curve is not flat at a % level. With a flat curve at a %, we obtain \$ five years later = \$

12 which corresponds exactly to a % annual return rate. µ /5 1=4.9686% Exercise 29 We consider the three zero-coupon bonds (strips) with the following features Bond Maturity Price Bond 1 1year Bond 2 2years Bond 3 3years Each strip delivers \$100 at maturity. 1- Deduce the zero-coupon yield curve from the bond prices 2- We anticipate a rates increase in one year so the prices of strips with residual maturity 1 year, 2 years and three years are respectively 95.89, and What is the zero-coupon yield curve anticipated in one year? Solution The 1-year zero-coupon rate denoted R(0,1) is equal to 3.702% R(0, 1) = =3.702% The 2-year zero-coupon rate denoted R(0,2) is equal to 3.702% R(0, 2) = µ 100 1/2 1=3.992% The 3-year zero-coupon rate denoted R(0,3) is equal to 3.702% R(0, 2) = µ 100 1/3 1=4.365% The 1-year, 2-year and 3-year zero-coupon rates become respectively 4.286%, 4.846% and 5.887%. 12

13 Exercise 31 We consider the following increasing zero-coupon yield curve Maturity R(0,t) Maturity R(0,t) 1year 5.000% 6years 6.550% 2years 5.500% 7years 6.650% 3years 5.900% 8years 6.741% 4years 6.200% 9years 6.830% 5years 6.382% 10 years 6.900% where R(0,t) is the zero-coupon rate at date 0 with maturity t. 1- Compute the par curve. 2- Compute the forward rate curve in one year. 3- Draw the three curves in the same graph. Wwhat can you say about their relative position? Solution Recall that the par yield c(n) for maturity n is given by the following formula c(n) = 1 1 (1+R(0,n)) n np i=1 1 (1+R(0,i)) i Using this equation we obtain the following par yields Maturity c(n) Maturity c(n) % % % % % % % % % % 2- Recall that F (0,x,y x), the forward rate as seen from date t =0,startingatdatet = x, andwithresidualmaturityy x is defined as (1 + R(0,y)) y F (0,x,y x) (1 + R(0,x)) x 1 y x 1 13

14 Using the previous equation,we obtain the forward rate curve in one year Maturity F(0,1,n) Maturity F(0,1,n) % % % % % % % % % 3- The graph of the three curves shows that the forward yield curve is above the zero-coupon yield curve, which is above the par yield curve. This is always the case when the par yield curve is increasing. 7,5% 7,0% 6,5% Yield 6,0% Par Yield Curve 5,5% Zero-Coupon Yield Curve Forward Yield Curve 5,0% Maturity Exercise 33 At date t=0, we get in the market three bonds with the following features Coupon Maturity Price Bond years P0 1 = Bond years P0 2 = Bond years P0 3 =

15 Derive the zero-coupon curve until the five-year maturity. Solution 34 Using the no-arbitrage relation, we obtain the following equations for the five bond prices 108 = 10B(0, 1) + 110B(0, 2) = 7.5B(0, 1) + 7.5B(0, 2) B(0, 3) =9B(0, 1) + 9B(0, 2) + 109B(0, 3) which can be expressed in a matrix form = B(0, 1) B(0, 2) B(0, 3) Then we get the following discount factors B(0, 1) B(0, 2) B(0, 3) = we deduce the zero-coupon rates R(0, 1) = 5.901% R(0, 2) = 5.646% R(0, 3) = 7.288% Exercise 35 Suppose we know from market prices the following zero-coupon rates with matu- 15

16 rities inferior or equal to one year: Maturity Zero-Coupon Rate 1Day 3.20% 1Month 3.30% 2Months 3.40% 3Months 3.50% 6Months 3.60% 9Months 3.80% 1Year 4.00% Now we consider bonds priced by the market until the 4-year maturity: Maturity Coupon Gross Price 1Yearand3Months 4% Yearand6Months 4.5% Years 3.5% Years 4% Years 5% Using the bootstrapping method, compute the zero-coupon rates for the following maturities1yearand3months,1yearand6months,2years,3yearsand4years. 2- Draw the zero-coupon yield curve using a linear interpolation Solution We first extract the one-year-and-three-month maturity zero-coupon rate. In the absence of arbitrage opportunities, the price of this bond is the sum of its future discounted cash-flows: = 4 ( %) 1/ (1 + x) 1+1/4 where x is the one-year-and-three-month maturity zero-coupon rate to be determined. Solving this equation (for example with the Excel solver) we obtain 4.16% for x. Applying the same procedure with the one-year-and-six-month maturity and the two-year maturity bonds we obtain respectively 4.32% and 4.41% for x. Next we have to extract the 3-year maturity zero-coupon 16

17 rate solving the following equation 98.7 = 4 (1 + 4%) + 4 ( %) (1 + y%) 3 y is equal to 4.48% and finally we extract the 4-year maturity zero-coupon rate denoted z by solving the following equation z is equal to 4.57% = 5 (1 + 4%) + 5 ( %) ( %) (1 + z%) 4 2- Using the linear graph option in Excel we draw the zero-coupon yield curve 4,80% 4,60% 4,40% 4,20% Zero-Coupon Rate 4,00% 3,80% 3,60% 3,40% 3,20% 3,00% Maturity Exercise 37 From the prices of zero-coupon bonds quoted in the market, we obtain the following 17

18 zero-coupon curve Maturity Zero-Coupon Rate R(0,t) Discount Factor B(0,t) 1year 5.000% years 5.500% years 5.900% years 6.200% years?? 6years 6.550% years 6.650% years?? 9years 6.830% years 6.900% where R(0,t) is the zero-coupon rate at date 0 for maturity t, and B(0,t) is the discount factor at date 0 for maturity t. We need to know the value for the 5-year and the 8-year zero-coupon rates. We have to estimate them, and test four different methods. 1- We use a linear interpolation with the zero-coupon rates. Deduce R(0,5), R(0,8) and the corresponding values for B(0,5) and B(0,8). 2- We use a linear interpolation with the discount factors. Deduce B(0,5), B(0,8) and the corresponding values for R(0,5) and R(0,8). 3- We postulate the following form for the zero-coupon rate function R _ (0,t): _ R (0,t)=a + bt + ct 2 + dt 3 Estimate the coefficients a, b, c and d which best approximate the given zero-coupon rates using the following optimization program Min a,b,c,d X i ³ R(0,i) R _ 2 (0,i) 18

19 where R(0,i) are the zero-coupon rates given by the market. Deduce the value for R(0, 5) = R _ (0, 5), R(0, 8) = R _ (0, 8), and the corresponding values for B(0,5) and B(0,8). 4- We postulate the following form for the discount factor function B _ (0,t): _ B (0,t)=a + bt + ct 2 + dt 3 Estimate the coefficients a, b, c and d which best approximate the given discount factors using the following optimization program Min a,b,c,d X i ³ B(0,i) B _ 2 (0,i) where B(0,i) are the discount factors given by the market. Deduce the value for B(0, 5) = _ B (0, 5), B(0, 8) = _ B (0, 8), and the corresponding values for R(0,5) and R(0,8). 5- Conclude Solution Consider that we know R(0,x) and R(0,z), respectively, the x-year and the z-year maturity zero-coupon rates and that we need R(0,y) the y-years maturity zero-coupon rate with y [x; z]. Using the linear interpolation, R(0,y) is given by the following formula R(0,y)= (z y)r(0,x)+(y x)r(0,z) z x From this equation, we deduce the value for R(0,5) and R(0,8) R(0, 5) = R(0, 8) = (6 5)R(0, 4) + (5 4)R(0, 6) 6 4 (9 8)R(0, 7) + (8 7)R(0, 9) 9 7 = = R(0, 4) + R(0, 6) 2 R(0, 7) + R(0, 9) 2 =6.375% =6.740% Using the standard following equation which lies the zero-coupon rate R(0,t) and the discount factor B(0,t) B(0,t)= 1 (1 + R(0,t)) t 19

20 we obtain for B(0,5) and for B(0,8). 2- We use the same formula as in question 1 but adapted to discount factors B(0,y)= (z y)b(0,x)+(y x)b(0,z) z x we obtain for B(0,5) and for B(0,8). Using the standard following equation which lies the zero-coupon rate R(0,t) and the discount factor B(0,t) R(0,t)= µ 1 1/t 1 B(0,t) we obtain 6.358% for R(0,5) and 6.717% for R(0,8). 3- Using the Excel function DroiteReg, we obtain the following values for the parameters Parameters Value a b c d E-05 which provides us with the following values for the zero-coupon rates and associated discount factors Maturity R(0,t) _ R (0,t) B(0,t) _ B (0,t) % 4.998% % 5.507% % 5.899% % 6.191% ? 6.403%? % 6.553% % 6.659% ? 6.741%? % 6.817% % 6.906%

21 4- We first note that there is a constraint in the minimization because we must have B(0, 0) = 1 So the value for a is necessarily equal to 1. Using the Excel function DroiteReg, we obtain the following values for the parameters Parameters Value a 1 b c d which provides us with the following values for the discount factors and associated zero-coupon rates Maturity B(0,t) _ B (0,t) R(0,t) _ R (0,t) % 5.346% % 5.613% % 5.867% % 6.107% 5? ? 6.328% % 6.523% % 6.686% 8? ? 6.805% % 6.871% % 6.869% 5- The table below provides the results obtained using the four different methods of interpo- 21

22 lation and minimization Rates Interpol. DF Interpol. Rates Min. DF Min. R(0,5) 6.375% 6.358% 6.403% 6.328% R(0,8) 6.740% 6.717% 6.741% 6.805% B(0,5) B(0,8) Rates Interpol. is for interpolation on rates (question 1). DF Interpol. is for interpolation on discount factors (question 2). Rates Min is for minimization with rates (question 3). DF Min. is for minimization with discount factors (question 4). The table shows that results are quite similar according to the two methods based on rates. Differences appear when we compare the four methods. In particular, we can obtain a spread of 7.5 bps for the estimation of R(0,5) between Rates Min. and DF Min., and a spread of 8.8 bps for the estimation of R(0,8) between the two methods based on discount factors. We conclude that the zero-coupon rates and discount factors estimations are sensitive to the method of interpolation or minimization used. Exercise 39 We want to derive the current zero-coupon yield curve for maturities inferior to 10 years. For that goal, we use a basket of bonds quoted by the market and a discount function modelled as a three-order polynomial spline. The features of the bonds used to derive this curve 22

23 are summarized in the following table Bond Coupon Rate Maturity Market Price Bond 1 0% 7/365 year Bond 2 0% 1/12 year Bond 3 0% 0.25 year Bond 4 0% 0.5 year Bond 5 5% 1year Bond 6 6% 2years Bond 7 5% 2.5 years Bond 8 7% 3.25 years Bond 9 8% 4years Bond 10 5% 4.5 years Bond 11 7% 5.5 years Bond 12 7% 7years Bond 13 6% 8.75 years Bond 14 7% 10 years The coupon frequency of these bonds is annual, and the face value is Eur 100. We model the discount function B(0,s) as a standard polynomial spline with two splines B 0 (s) =1+c 0 s + b 0 s 2 + a 0 s 3 for s [0, 3] B (0,s)= B 10 (s) =1+c 0 s + b 0 s 2 + a 0 hs 3 (s 3) 3i + a 1 (s 3) 3 for s [3, 10] 1- Write the theoretical price of bond Calculate the coefficients behind each parameter and the constant number for bond 1 3- Do the same job for bond 2 to bond Estimate the coefficients c 0,b 0,a 0 and a 1 which best approximate the market prices of given bonds using the following optimization program Min c 0,b 0,a 0,a 1 14X i=1 ³ P i P _ 2 i 23

24 where P i are the market prices and _ P ithe theoretical prices. We suppose that residual are homoscedastic so that each bond has the same weight in the minimization program. 5- Calculate P 14 i=1 ³P i P _ 2 i 6- For each bond, calculate the spread between the market price and the theoretical price. 7- Draw the graph of the zero-coupon yield curve. 8- Draw the graph of the forward yield curve in one, two and three months. Solution The theoretical price _ P 1ofbond1is µ " _ 7 P i= 100.B 0, = c b 0. µ 7 2 µ # a From question 1, we deduce the coefficients behind each parameter and the constant number for bond 1 constant number c 0 b 0 a ³ ³ For each bond, we obtain the coefficients behind each parameter and the constant number 24

25 in the following table Bond constant number c 0 b 0 a 0 a 1 Bond Bond Bond Bond Bond Bond Bond Bond Bond Bond Bond Bond Bond Bond Note that Z, what we call the coefficients matrix; is the matrix with dimension 14 4 which is represented by the four last columns of the table. We give below the details for Bond 8: constant number n n = = 128 coefficient behind c 0 7 [(3.25 3) + (3.25 2) + (3.25 1)] = 374 coefficient behind b 0 h 7 (3.25 3) 2 +(3.25 2) 2 +(3.25 1) 2i =

26 coefficient behind a 0 7 h (3.25 3) 3 +(3.25 2) 3 +(3.25 1) 3i +107 h (3.25 3) 3i = coefficient behind a (3.25 3) 3 = β =(c 0,b 0,a 0,a 1 ) T, the vector of parameters is the solution of the standard OLS (Ordinary Least Squared) procedure. It is the result of the following matricial calculation β = ³ Z T Z 1 Z T P where Z T is the transposed matrix of Z, X 1 is the inverse matrix of X and P is the following vector resulting for each bond of the difference between the constant number and the market price of the bond. P = =

27 We finally obtain for β β T = E 05 β. Note that we can also use the Excel function Droitereg to obtain the vector of parameters 5- The sum of squared spreads P 14 i=1 ³P i P _ i 2is equal to In the following table we examine for each bond the spread between the market price and the theoretical price Bond Market Price Theoretical Price Spread Bond Bond Bond Bond Bond Bond Bond Bond Bond Bond Bond Bond Bond Bond

28 7- We draw below the graph of the zero-coupon yield curve 6,25% 5,75% Zero-Coupon Rate 5,25% 4,75% 4,25% Maturity We draw below the graph of the three forward yields curves beginining in one, two and three months. Recall first that F (0,x,y x), the forward rate as seen from date t =0,startingat date t = x, and with residual maturity y x is defined as (1 + R(0,y)) y F (0,x,y x) (1 + R(0,x)) x 1 y x 1 28

29 We give successively the values 1/12, 2/12 and 3/12 to x. 6,10% 5,90% 5,70% Forward Yield 5,50% 5,30% 5,10% 4,90% Forward Yield Curve in 3 Months Forward Yield Curve in 2 Months Forward Yield Curve in 1 Month 4,70% 4,50% Maturity in Months Because the zero-coupon curve is increasing, the forward yield curve in three months is above the forward yield curve in two months, which is above the forward yield curve in one month. Exercise 41 We consider three bonds with the following features: Bond Maturity Coupon Rate YTM Bond 1 2years 5% 5% Bond 2 10 years 6% 5.5% Bond 3 30 years 7% 6% YTM is for yield to maturity. Coupon frequency is annual. 1- Compute the dirty price and the modified duration of each bond 2- a) The YTM of each of these bonds decreases instantaneously by 0.2%. For each bond, compute the new exact price given by discounting its future cash-flows, the price approximation given using the first order Taylor expansion, and the difference between these two prices. b) Same question if the YTM of each of these bonds decreases instantaneously by 1%. Conclude 29

30 c) For bond 3, draw the difference between the two prices (the new exact price given by discounting its future cash-flowsandthepricegivenusingthefirst order Taylor expansion) depending on the YTM change. 3- Compute the convexity of each bond 4- We suppose that the YTM of each of these bonds decreases instantaneously by 1%. Compute the price approximation given using the second order Taylor expansion. Compare it to the exact price given by discounting its future cash-flows. Solution 42 1-Thedirtypriceandthemodified duration of each of these bonds is given in the following table: Bond Price Modified Duration Bond Bond Bond a) When the YTM of each of these bonds decreases by 0.2%, we obtain the following results Bond New Exact Price FOTE Price Spread Bond Bond Bond Recall that the FOTE price is given by the following formula FOTE Pr ice = P + MD y P where P is the original price, MD the modified duration and y, the YTM change. b) When the YTM of each of these bonds decreases by 1%, we obtain the following results Bond New Exact Price FOTE Price Spread Bond Bond Bond

31 When the YTM change is high, the spread between the two prices is not negligible. We have to use the second order approximation. c) For bond 3, we draw below the difference between the new exact price given by discounting its future cash-flows and the price given using the first order Taylor expansion depending on the YTM change. 20 Difference between the Two Prices % 3.3% 3.6% 3.9% 4.2% 4.5% 4.8% 5.1% 5.4% 5.7% 6.0% YTM Level 3- The convexity of each of these bonds is given in the following table 6.3% 6.6% 6.9% 7.2% 7.5% 7.8% 8.1% 8.4% 8.7% 9.0% Bond Convexity Bond Bond Bond Recall that the SOTE (second order Taylor expansion) price is given by the following formula SOTE Pr ice = P + MD P y + RC P ( y) 2 /2 where RC is the (relative) convexity. 31

32 When the YTM of each of these bonds decreases by 1%, we obtain the following results Bond Exact Price SOTE Price Spread Bond Bond Bond Exercise 43 Today is 1/1/98. On 6/30/99 we will have to make a payment of \$100. We can only invest in a riskfree pure discount bond (nominal \$100) that matures on 12/31/98 and in a riskfree coupon bond, nominal \$100 that pays an annual interest (on 12/31) of 8% and matures on 12/31/00. Assume a flat term structure of 7%. How many units of each of the bonds should we buy in order to be perfectly immunized? Solution 44 We first have to compute the present value PV of the debt, which is the amount we will have to deposit PV = =90.35 (1.07) We also compute the price P 1 of the one-year pure discount bond P 1 = =93.46 Similarly, the price P 3 of the three year coupon bond is P 3 = (1.07) (1.07) 3 =102.6 The duration of the one-year pure discount bond is obviously one. three-year coupon bond is The duration D 3 of the D 3 = (1.07) (1.07) =2.786 We now compute the number of units of the one-year and the tree-year bonds (q 1 and q 3 respectively), so as to achieve a dollar duration equal to that of debt, and also a present value of the portfolio equal to that of debt. We know that the duration of the debt we are trying to 32

### Problems and Solutions

1 CHAPTER 1 Problems 1.1 Problems on Bonds Exercise 1.1 On 12/04/01, consider a fixed-coupon bond whose features are the following: face value: \$1,000 coupon rate: 8% coupon frequency: semiannual maturity:

### Problems and Solutions

Problems and Solutions CHAPTER Problems. Problems on onds Exercise. On /04/0, consider a fixed-coupon bond whose features are the following: face value: \$,000 coupon rate: 8% coupon frequency: semiannual

### Analysis of Deterministic Cash Flows and the Term Structure of Interest Rates

Analysis of Deterministic Cash Flows and the Term Structure of Interest Rates Cash Flow Financial transactions and investment opportunities are described by cash flows they generate. Cash flow: payment

Chapter Bond Prices and Yields McGraw-Hill/Irwin Copyright 2008 by The McGraw-Hill Companies, Inc. All rights reserved. Bond Prices and Yields Our goal in this chapter is to understand the relationship

### FIXED-INCOME SECURITIES. Chapter 11. Forwards and Futures

FIXED-INCOME SECURITIES Chapter 11 Forwards and Futures Outline Futures and Forwards Types of Contracts Trading Mechanics Trading Strategies Futures Pricing Uses of Futures Futures and Forwards Forward

### 550.444 Introduction to Financial Derivatives

550.444 Introduction to Financial Derivatives Week of October 7, 2013 Interest Rate Futures Where we are Last week: Forward & Futures Prices/Value (Chapter 5, OFOD) This week: Interest Rate Futures (Chapter

### Fixed Income: Practice Problems with Solutions

Fixed Income: Practice Problems with Solutions Directions: Unless otherwise stated, assume semi-annual payment on bonds.. A 6.0 percent bond matures in exactly 8 years and has a par value of 000 dollars.

### YIELD CURVE GENERATION

1 YIELD CURVE GENERATION Dr Philip Symes Agenda 2 I. INTRODUCTION II. YIELD CURVES III. TYPES OF YIELD CURVES IV. USES OF YIELD CURVES V. YIELD TO MATURITY VI. BOND PRICING & VALUATION Introduction 3 A

### Zero-Coupon Bonds (Pure Discount Bonds)

Zero-Coupon Bonds (Pure Discount Bonds) The price of a zero-coupon bond that pays F dollars in n periods is F/(1 + r) n, where r is the interest rate per period. Can meet future obligations without reinvestment

### Fixed Income Portfolio Management. Interest rate sensitivity, duration, and convexity

Fixed Income ortfolio Management Interest rate sensitivity, duration, and convexity assive bond portfolio management Active bond portfolio management Interest rate swaps 1 Interest rate sensitivity, duration,

### Lecture 12. Options Strategies

Lecture 12. Options Strategies Introduction to Options Strategies Options, Futures, Derivatives 10/15/07 back to start 1 Solutions Problem 6:23: Assume that a bank can borrow or lend money at the same

### CHAPTER 22: FUTURES MARKETS

CHAPTER 22: FUTURES MARKETS PROBLEM SETS 1. There is little hedging or speculative demand for cement futures, since cement prices are fairly stable and predictable. The trading activity necessary to support

### Learning Curve Forward Rate Agreements Anuk Teasdale

Learning Curve Forward Rate Agreements Anuk Teasdale YieldCurve.com 2004 Page 1 In this article we review the forward rate agreement. Money market derivatives are priced on the basis of the forward rate,

### CHAPTER 15: THE TERM STRUCTURE OF INTEREST RATES

CHAPTER 15: THE TERM STRUCTURE OF INTEREST RATES 1. Expectations hypothesis. The yields on long-term bonds are geometric averages of present and expected future short rates. An upward sloping curve is

### Determination of Forward and Futures Prices

Determination of Forward and Futures Prices Options, Futures, and Other Derivatives, 8th Edition, Copyright John C. Hull 2012 Short selling A popular trading (arbitrage) strategy is the shortselling or

### Solutions 2. 1. For the benchmark maturity sectors in the United States Treasury bill markets,

FIN 472 Professor Robert Hauswald Fixed-Income Securities Kogod School of Business, AU Solutions 2 1. For the benchmark maturity sectors in the United States Treasury bill markets, Bloomberg reported the

### FIN 472 Fixed-Income Securities Forward Rates

FIN 472 Fixed-Income Securities Forward Rates Professor Robert B.H. Hauswald Kogod School of Business, AU Interest-Rate Forwards Review of yield curve analysis Forwards yet another use of yield curve forward

### ASSET LIABILITY MANAGEMENT Significance and Basic Methods. Dr Philip Symes. Philip Symes, 2006

1 ASSET LIABILITY MANAGEMENT Significance and Basic Methods Dr Philip Symes Introduction 2 Asset liability management (ALM) is the management of financial assets by a company to make returns. ALM is necessary

### 10. Fixed-Income Securities. Basic Concepts

0. Fixed-Income Securities Fixed-income securities (FIS) are bonds that have no default risk and their payments are fully determined in advance. Sometimes corporate bonds that do not necessarily have certain

### Assumptions: No transaction cost, same rate for borrowing/lending, no default/counterparty risk

Derivatives Why? Allow easier methods to short sell a stock without a broker lending it. Facilitates hedging easily Allows the ability to take long/short position on less available commodities (Rice, Cotton,

### Global Financial Management

Global Financial Management Bond Valuation Copyright 999 by Alon Brav, Campbell R. Harvey, Stephen Gray and Ernst Maug. All rights reserved. No part of this lecture may be reproduced without the permission

### Bond Price Arithmetic

1 Bond Price Arithmetic The purpose of this chapter is: To review the basics of the time value of money. This involves reviewing discounting guaranteed future cash flows at annual, semiannual and continuously

### FNCE 301, Financial Management H Guy Williams, 2006

REVIEW We ve used the DCF method to find present value. We also know shortcut methods to solve these problems such as perpetuity present value = C/r. These tools allow us to value any cash flow including

### Chapter 3 Fixed Income Securities

Chapter 3 Fixed Income Securities Road Map Part A Introduction to finance. Part B Valuation of assets, given discount rates. Fixed-income securities. Stocks. Real assets (capital budgeting). Part C Determination

### CHAPTER 15: THE TERM STRUCTURE OF INTEREST RATES

CHAPTER : THE TERM STRUCTURE OF INTEREST RATES CHAPTER : THE TERM STRUCTURE OF INTEREST RATES PROBLEM SETS.. In general, the forward rate can be viewed as the sum of the market s expectation of the future

### FIN 472 Fixed-Income Securities Forward Rates

FIN 472 Fixed-Income Securities Forward Rates Professor Robert B.H. Hauswald Kogod School of Business, AU Interest-Rate Forwards Review of yield curve analysis Forwards yet another use of yield curve forward

### Alliance Consulting BOND YIELDS & DURATION ANALYSIS. Bond Yields & Duration Analysis Page 1

BOND YIELDS & DURATION ANALYSIS Bond Yields & Duration Analysis Page 1 COMPUTING BOND YIELDS Sources of returns on bond investments The returns from investment in bonds come from the following: 1. Periodic

### Yield Measures, Spot Rates & Forward Rates

Fixed Income Yield Measures, Spot Rates & Forward Rates Reading - 57 www.proschoolonline.com/ 1 Sources of Return Coupon interest payment: Periodic coupon interest is paid on the par value of the bond

### Forward Contracts and Forward Rates

Forward Contracts and Forward Rates Outline and Readings Outline Forward Contracts Forward Prices Forward Rates Information in Forward Rates Reading Veronesi, Chapters 5 and 7 Tuckman, Chapters 2 and 16

### 14 Greeks Letters and Hedging

ECG590I Asset Pricing. Lecture 14: Greeks Letters and Hedging 1 14 Greeks Letters and Hedging 14.1 Illustration We consider the following example through out this section. A financial institution sold

### FIXED-INCOME SECURITIES. Chapter 10. Swaps

FIXED-INCOME SECURITIES Chapter 10 Swaps Outline Terminology Convention Quotation Uses of Swaps Pricing of Swaps Non Plain Vanilla Swaps Terminology Definition Agreement between two parties They exchange

### CHAPTER 7: FIXED-INCOME SECURITIES: PRICING AND TRADING

CHAPTER 7: FIXED-INCOME SECURITIES: PRICING AND TRADING Topic One: Bond Pricing Principles 1. Present Value. A. The present-value calculation is used to estimate how much an investor should pay for a bond;

### 1 Interest rates, and risk-free investments

Interest rates, and risk-free investments Copyright c 2005 by Karl Sigman. Interest and compounded interest Suppose that you place x 0 (\$) in an account that offers a fixed (never to change over time)

Equity-index-linked swaps Equivalent to portfolios of forward contracts calling for the exchange of cash flows based on two different investment rates: a variable debt rate (e.g. 3-month LIBOR) and the

### Eurodollar Futures, and Forwards

5 Eurodollar Futures, and Forwards In this chapter we will learn about Eurodollar Deposits Eurodollar Futures Contracts, Hedging strategies using ED Futures, Forward Rate Agreements, Pricing FRAs. Hedging

### Options/1. Prof. Ian Giddy

Options/1 New York University Stern School of Business Options Prof. Ian Giddy New York University Options Puts and Calls Put-Call Parity Combinations and Trading Strategies Valuation Hedging Options2

### Interest Rate Futures. Chapter 6

Interest Rate Futures Chapter 6 1 Day Count Convention The day count convention defines: The period of time to which the interest rate applies. The period of time used to calculate accrued interest (relevant

### Coupon Bonds and Zeroes

Coupon Bonds and Zeroes Concepts and Buzzwords Coupon bonds Zero-coupon bonds Bond replication No-arbitrage price relationships Zero rates Zeroes STRIPS Dedication Implied zeroes Semi-annual compounding

### 2 Stock Price. Figure S1.1 Profit from long position in Problem 1.13

Problem 1.11. A cattle farmer expects to have 12, pounds of live cattle to sell in three months. The livecattle futures contract on the Chicago Mercantile Exchange is for the delivery of 4, pounds of cattle.

### FINANCIAL MATHEMATICS MONEY MARKET

FINANCIAL MATHEMATICS MONEY MARKET 1. Methods of Interest Calculation, Yield Curve and Quotation... 2 1.1 Methods to Calculate Interest... 2 1.2 The Yield Curve... 6 1.3 Interpolation... 8 1.4 Quotation...

### Options: Valuation and (No) Arbitrage

Prof. Alex Shapiro Lecture Notes 15 Options: Valuation and (No) Arbitrage I. Readings and Suggested Practice Problems II. Introduction: Objectives and Notation III. No Arbitrage Pricing Bound IV. The Binomial

### Maturity and interest-rate risk

Interest rate risk, page 1 Maturity and interest-rate risk Suppose you buy one of these three bonds, originally selling at a yield to maturity of 8 percent. Yield to One-year 30-year 30-year maturity 8%

### Bond valuation and bond yields

RELEVANT TO ACCA QUALIFICATION PAPER P4 AND PERFORMANCE OBJECTIVES 15 AND 16 Bond valuation and bond yields Bonds and their variants such as loan notes, debentures and loan stock, are IOUs issued by governments

### CHAPTER 15: THE TERM STRUCTURE OF INTEREST RATES

Chapter - The Term Structure of Interest Rates CHAPTER : THE TERM STRUCTURE OF INTEREST RATES PROBLEM SETS.. In general, the forward rate can be viewed as the sum of the market s expectation of the future

### Analytical Research Series

EUROPEAN FIXED INCOME RESEARCH Analytical Research Series INTRODUCTION TO ASSET SWAPS Dominic O Kane January 2000 Lehman Brothers International (Europe) Pub Code 403 Summary An asset swap is a synthetic

### Chapter 4 Interest Rates. Options, Futures, and Other Derivatives 8th Edition, Copyright John C. Hull

Chapter 4 Interest Rates 1 Types of Rates Treasury rates LIBOR rates Repo rates 2 Treasury Rates Rates on instruments issued by a government in its own currency 3 LIBOR and LIBID LIBOR is the rate of interest

### Understanding duration and convexity of fixed income securities. Vinod Kothari

Understanding duration and convexity of fixed income securities Vinod Kothari Notation y : yield p: price of the bond T: total maturity of the bond t: any given time during T C t : D m : Cashflow from

### In this chapter we will learn about. Treasury Notes and Bonds, Treasury Inflation Protected Securities,

2 Treasury Securities In this chapter we will learn about Treasury Bills, Treasury Notes and Bonds, Strips, Treasury Inflation Protected Securities, and a few other products including Eurodollar deposits.

### 1.2 Structured notes

1.2 Structured notes Structured notes are financial products that appear to be fixed income instruments, but contain embedded options and do not necessarily reflect the risk of the issuing credit. Used

### CHAPTER 11 INTRODUCTION TO SECURITY VALUATION TRUE/FALSE QUESTIONS

1 CHAPTER 11 INTRODUCTION TO SECURITY VALUATION TRUE/FALSE QUESTIONS (f) 1 The three step valuation process consists of 1) analysis of alternative economies and markets, 2) analysis of alternative industries

### Practice Set #1 and Solutions.

Bo Sjö 14-05-03 Practice Set #1 and Solutions. What to do with this practice set? Practice sets are handed out to help students master the material of the course and prepare for the final exam. These sets

### ANALYSIS OF FIXED INCOME SECURITIES

ANALYSIS OF FIXED INCOME SECURITIES Valuation of Fixed Income Securities Page 1 VALUATION Valuation is the process of determining the fair value of a financial asset. The fair value of an asset is its

### Finance 350: Problem Set 6 Alternative Solutions

Finance 350: Problem Set 6 Alternative Solutions Note: Where appropriate, the final answer for each problem is given in bold italics for those not interested in the discussion of the solution. I. Formulas

### Chapter 6 Interest Rates and Bond Valuation

Chapter 6 Interest Rates and Bond Valuation Solutions to Problems P6-1. P6-2. LG 1: Interest Rate Fundamentals: The Real Rate of Return Basic Real rate of return = 5.5% 2.0% = 3.5% LG 1: Real Rate of Interest

### CHAPTER 8 INTEREST RATES AND BOND VALUATION

CHAPTER 8 INTEREST RATES AND BOND VALUATION Answers to Concept Questions 1. No. As interest rates fluctuate, the value of a Treasury security will fluctuate. Long-term Treasury securities have substantial

### t = 1 2 3 1. Calculate the implied interest rates and graph the term structure of interest rates. t = 1 2 3 X t = 100 100 100 t = 1 2 3

MØA 155 PROBLEM SET: Summarizing Exercise 1. Present Value [3] You are given the following prices P t today for receiving risk free payments t periods from now. t = 1 2 3 P t = 0.95 0.9 0.85 1. Calculate

### Introduction to Options. Derivatives

Introduction to Options Econ 422: Investment, Capital & Finance University of Washington Summer 2010 August 18, 2010 Derivatives A derivative is a security whose payoff or value depends on (is derived

### Hedging. An Undergraduate Introduction to Financial Mathematics. J. Robert Buchanan. J. Robert Buchanan Hedging

Hedging An Undergraduate Introduction to Financial Mathematics J. Robert Buchanan 2010 Introduction Definition Hedging is the practice of making a portfolio of investments less sensitive to changes in

### Treasury Bond Futures

Treasury Bond Futures Concepts and Buzzwords Basic Futures Contract Futures vs. Forward Delivery Options Reading Veronesi, Chapters 6 and 11 Tuckman, Chapter 14 Underlying asset, marking-to-market, convergence

### Chapter 4 Interest Rates. Options, Futures, and Other Derivatives 9th Edition, Copyright John C. Hull

Chapter 4 Interest Rates 1 Types of Rates! Treasury rate! LIBOR! Fed funds rate! Repo rate 2 Treasury Rate! Rate on instrument issued by a government in its own currency 3 LIBOR! LIBOR is the rate of interest

### Debt Instruments Set 2

Debt Instruments Set 2 Backus/October 29, 1998 Bond Arithmetic 0. Overview Zeros and coupon bonds Spot rates and yields Day count conventions Replication and arbitrage Forward rates Yields and returns

### Financial-Institutions Management. Solutions 1. 6. A financial institution has the following market value balance sheet structure:

FIN 683 Professor Robert Hauswald Financial-Institutions Management Kogod School of Business, AU Solutions 1 Chapter 7: Bank Risks - Interest Rate Risks 6. A financial institution has the following market

### Callable Bonds - Structure

1.1 Callable bonds A callable bond is a fixed rate bond where the issuer has the right but not the obligation to repay the face value of the security at a pre-agreed value prior to the final original maturity

### SOCIETY OF ACTUARIES FINANCIAL MATHEMATICS. EXAM FM SAMPLE QUESTIONS Financial Economics

SOCIETY OF ACTUARIES EXAM FM FINANCIAL MATHEMATICS EXAM FM SAMPLE QUESTIONS Financial Economics June 2014 changes Questions 1-30 are from the prior version of this document. They have been edited to conform

### Introduction to swaps

Introduction to swaps Steven C. Mann M.J. Neeley School of Business Texas Christian University incorporating ideas from Teaching interest rate and currency swaps" by Keith C. Brown (Texas-Austin) and Donald

### Caput Derivatives: October 30, 2003

Caput Derivatives: October 30, 2003 Exam + Answers Total time: 2 hours and 30 minutes. Note 1: You are allowed to use books, course notes, and a calculator. Question 1. [20 points] Consider an investor

### INTEREST RATE SWAPS September 1999

INTEREST RATE SWAPS September 1999 INTEREST RATE SWAPS Definition: Transfer of interest rate streams without transferring underlying debt. 2 FIXED FOR FLOATING SWAP Some Definitions Notational Principal:

### NATIONAL STOCK EXCHANGE OF INDIA LIMITED

NATIONAL STOCK EXCHANGE OF INDIA LIMITED Capital Market FAQ on Corporate Bond Date : September 29, 2011 1. What are securities? Securities are financial instruments that represent a creditor relationship

### n(n + 1) 2 1 + 2 + + n = 1 r (iii) infinite geometric series: if r < 1 then 1 + 2r + 3r 2 1 e x = 1 + x + x2 3! + for x < 1 ln(1 + x) = x x2 2 + x3 3

ACTS 4308 FORMULA SUMMARY Section 1: Calculus review and effective rates of interest and discount 1 Some useful finite and infinite series: (i) sum of the first n positive integers: (ii) finite geometric

### BOND FUTURES. 1. Terminology... 2 2. Application... 11. FINANCE TRAINER International Bond Futures / Page 1 of 12

BOND FUTURES 1. Terminology... 2 2. Application... 11 FINANCE TRAINER International Bond Futures / Page 1 of 12 1. Terminology A future is a contract to either sell or buy a certain underlying on a specified

### ACI THE FINANCIAL MARKETS ASSOCIATION

ACI THE FINANCIAL MARKETS ASSOCIATION EXAMINATION FORMULAE 2009 VERSION page number INTEREST RATE..2 MONEY MARKET..... 3 FORWARD-FORWARDS & FORWARD RATE AGREEMENTS..4 FIXED INCOME.....5 FOREIGN EXCHANGE

### Bootstrapping the interest-rate term structure

Bootstrapping the interest-rate term structure Marco Marchioro www.marchioro.org October 20 th, 2012 Bootstrapping the interest-rate term structure 1 Summary (1/2) Market quotes of deposit rates, IR futures,

### SOCIETY OF ACTUARIES FINANCIAL MATHEMATICS EXAM FM SAMPLE QUESTIONS

SOCIETY OF ACTUARIES EXAM FM FINANCIAL MATHEMATICS EXAM FM SAMPLE QUESTIONS This page indicates changes made to Study Note FM-09-05. April 28, 2014: Question and solutions 61 were added. January 14, 2014:

### Interest Rate and Currency Swaps

Interest Rate and Currency Swaps Eiteman et al., Chapter 14 Winter 2004 Bond Basics Consider the following: Zero-Coupon Zero-Coupon One-Year Implied Maturity Bond Yield Bond Price Forward Rate t r 0 (0,t)

### VALUATION IN DERIVATIVES MARKETS

VALUATION IN DERIVATIVES MARKETS September 2005 Rawle Parris ABN AMRO Property Derivatives What is a Derivative? A contract that specifies the rights and obligations between two parties to receive or deliver

### Exercise 6 Find the annual interest rate if the amount after 6 years is 3 times bigger than the initial investment (3 cases).

Exercise 1 At what rate of simple interest will \$500 accumulate to \$615 in 2.5 years? In how many years will \$500 accumulate to \$630 at 7.8% simple interest? (9,2%,3 1 3 years) Exercise 2 It is known that

### Chapter 1 - Introduction

Chapter 1 - Introduction Derivative securities Futures contracts Forward contracts Futures and forward markets Comparison of futures and forward contracts Options contracts Options markets Comparison of

### FIN 472 Fixed-Income Securities Debt Instruments

FIN 472 Fixed-Income Securities Debt Instruments Professor Robert B.H. Hauswald Kogod School of Business, AU The Most Famous Bond? Bond finance raises the most money fixed income instruments types of bonds

### Chapter 1: Financial Markets and Financial Derivatives

Chapter 1: Financial Markets and Financial Derivatives 1.1 Financial Markets Financial markets are markets for financial instruments, in which buyers and sellers find each other and create or exchange

### Chapter 11. Bond Pricing - 1. Bond Valuation: Part I. Several Assumptions: To simplify the analysis, we make the following assumptions.

Bond Pricing - 1 Chapter 11 Several Assumptions: To simplify the analysis, we make the following assumptions. 1. The coupon payments are made every six months. 2. The next coupon payment for the bond is

### 2. How is a fund manager motivated to behave with this type of renumeration package?

MØA 155 PROBLEM SET: Options Exercise 1. Arbitrage [2] In the discussions of some of the models in this course, we relied on the following type of argument: If two investment strategies have the same payoff

### b. June expiration: 95-23 = 95 + 23/32 % = 95.71875% or.9571875.9571875 X \$100,000 = \$95,718.75.

ANSWERS FOR FINANCIAL RISK MANAGEMENT A. 2-4 Value of T-bond Futures Contracts a. March expiration: The settle price is stated as a percentage of the face value of the bond with the final "27" being read

### Topics in Chapter. Key features of bonds Bond valuation Measuring yield Assessing risk

Bond Valuation 1 Topics in Chapter Key features of bonds Bond valuation Measuring yield Assessing risk 2 Determinants of Intrinsic Value: The Cost of Debt Net operating profit after taxes Free cash flow

### Learning Curve Using Bond Futures Contracts for Trading and Hedging Moorad Choudhry

Learning Curve Using Bond Futures Contracts for Trading and Hedging Moorad Choudhry YieldCurve.com 2004 Page 1 A widely used risk management instrument in the debt capital markets is the government bond

### The properties of interest rate swaps An investigation of the price setting of illiquid interest rates swaps and the perfect hedging portfolios.

The properties of interest rate swaps An investigation of the price setting of illiquid interest rates swaps and the perfect hedging portfolios. Max Lindquist 12/23/211 Abstract The main purpose of this

### FINANCIAL ECONOMICS OPTION PRICING

OPTION PRICING Options are contingency contracts that specify payoffs if stock prices reach specified levels. A call option is the right to buy a stock at a specified price, X, called the strike price.

### Vilnius University. Faculty of Mathematics and Informatics. Gintautas Bareikis

Vilnius University Faculty of Mathematics and Informatics Gintautas Bareikis CONTENT Chapter 1. SIMPLE AND COMPOUND INTEREST 1.1 Simple interest......................................................................

### FIN-40008 FINANCIAL INSTRUMENTS SPRING 2008. Options

FIN-40008 FINANCIAL INSTRUMENTS SPRING 2008 Options These notes describe the payoffs to European and American put and call options the so-called plain vanilla options. We consider the payoffs to these

### C(t) (1 + y) 4. t=1. For the 4 year bond considered above, assume that the price today is 900\$. The yield to maturity will then be the y that solves

Economics 7344, Spring 2013 Bent E. Sørensen INTEREST RATE THEORY We will cover fixed income securities. The major categories of long-term fixed income securities are federal government bonds, corporate

### Pricing Forwards and Swaps

Chapter 7 Pricing Forwards and Swaps 7. Forwards Throughout this chapter, we will repeatedly use the following property of no-arbitrage: P 0 (αx T +βy T ) = αp 0 (x T )+βp 0 (y T ). Here, P 0 (w T ) is

### 11 Option. Payoffs and Option Strategies. Answers to Questions and Problems

11 Option Payoffs and Option Strategies Answers to Questions and Problems 1. Consider a call option with an exercise price of \$80 and a cost of \$5. Graph the profits and losses at expiration for various

### I. Readings and Suggested Practice Problems. II. Risks Associated with Default-Free Bonds

Prof. Alex Shapiro Lecture Notes 13 Bond Portfolio Management I. Readings and Suggested Practice Problems II. Risks Associated with Default-Free Bonds III. Duration: Details and Examples IV. Immunization

### Lecture 09: Multi-period Model Fixed Income, Futures, Swaps

Lecture 09: Multi-period Model Fixed Income, Futures, Swaps Prof. Markus K. Brunnermeier Slide 09-1 Overview 1. Bond basics 2. Duration 3. Term structure of the real interest rate 4. Forwards and futures

### The Term Structure of Interest Rates CHAPTER 13

The Term Structure of Interest Rates CHAPTER 13 Chapter Summary Objective: To explore the pattern of interest rates for different-term assets. The term structure under certainty Forward rates Theories

### Bond Valuation. Capital Budgeting and Corporate Objectives

Bond Valuation Capital Budgeting and Corporate Objectives Professor Ron Kaniel Simon School of Business University of Rochester 1 Bond Valuation An Overview Introduction to bonds and bond markets» What

### Finance 436 Futures and Options Review Notes for Final Exam. Chapter 9

Finance 436 Futures and Options Review Notes for Final Exam Chapter 9 1. Options: call options vs. put options, American options vs. European options 2. Characteristics: option premium, option type, underlying

### Chapter 8. Step 2: Find prices of the bonds today: n i PV FV PMT Result Coupon = 4% 29.5 5? 100 4 84.74 Zero coupon 29.5 5? 100 0 23.

Chapter 8 Bond Valuation with a Flat Term Structure 1. Suppose you want to know the price of a 10-year 7% coupon Treasury bond that pays interest annually. a. You have been told that the yield to maturity