# 1.054/1.541 Mechanics and Design of Concrete Structures (3-0-9) Outline 12 Reinforced Concrete Thin Shell Structures

Save this PDF as:

Size: px
Start display at page:

Download "1.054/1.541 Mechanics and Design of Concrete Structures (3-0-9) Outline 12 Reinforced Concrete Thin Shell Structures"

## Transcription

1 Prof. Oral Buyukozturk Massachusetts Institute of Technology Outline /1.541 Mechanics and Design of Concrete Structures (3-0-9) Outline 12 Reinforced Concrete Thin Shell Structures Thin shell o Definition A thin shell is a curved slab whose thickness h is small compared with its other dimensions and compared with its principal radius of curvature. o Middle surface The surface that bisects the shell is called the middle surface. It specifies the form of this surface and the thickness h at every point. o Analysis of thin shells consists the following steps: Establish equilibrium of a differential element cut from the shell Achieve strain compatibility so that each element remains continuous with each adjacent element after deformation. o Stress resultants and stress couples Shell theories o The Kirchhoff-Love theory The first-approimation of shells Assumptions: (1) The shell thickness is negligibly small in comparison with the least radius of curvature of the shell middle surface. (2) Strains and displacements that arise within the shells are small. (3) Straight lines that are normal to the middle surface prior to deformation remain straight and normal to the middle surface during deformation, and eperience no change in length. 1 / 11

2 (Analogous to Navier s hypothesis for beams Bernoulli-Euler theory for beams) (4) The direct stress acting in the direction normal to the shell middle surface is negligible. Results of the assumptions: Normal directions to the reference surface remain straight and normal to the deformed reference surface. The hypothesis precludes any transverse-shear strain, i.e., no change in the right angle between the normal and any line in the surface. It is strictly applicable to thin shells. It is not descriptive of the behavior near localized loads or junctions. (Assumption (4) is not valid in the vicinity of concentrated transverse loads.) o The Flügge-Byrne theory The second-approimation of shells Assumptions: It adopts only assumption (2). It is referred to as higher-order approimations of the Kirchhoff-Love assumptions Classification of shells: o Classified by governing equation of geometry: Paraboloid of revolution Hyperboloid of revolution Circular cylinder Elliptic paraboloid Hyperbolic paraboloid Circular cone 2 / 11

3 Geometrical analysis of shells: o Orthogonal curvilinear coordinates Consider the position vector r ( α, β ) = f ( α β ) u + f ( α β ) v + f ( ) 1, 2, α β w 3, where f1 ( α, β ), f2 ( α, β ), and 3 (, ) f α β are continuous, single-valued functions. The surface is determined by α and β uniquely. α and β are called curvilinear coordinates. u, v, and w are unit vectors in the Cartesian coordinate system. Orthogonality is addressed as r r = 0 Inner product is zero. α β The distance between ( α, β ) and ( α dαβ, dβ) r r ds = dα + dβ α β The scalar product of ds with itself is + + is r r r r ds ds = d + d = A d + B d = ds α α β β α β α β where A and B are called Lame s parameters or measure numbers. The formula shown above is the first quadratic form of the theory of surfaces. o Principal radii of curvature o Gaussian curvature 1 1 K = r r y where r and r are the principal radii of curvature. y K > 0: Synclastic shells, i.e., spherical domes and elliptic paraboloids. K = 0 (either r or r is zero): Single-curvature shells, i.e., cylinders and cones. y 3 / 11

4 K < 0: Anticlastic shells, i.e., hyperbolic paraboloids and hyperbolas of revolution. Analysis of cylindrical shell: o Discussion of behavior of singly curved vs. doubly curved shells o Definition: A cylindrical shell may be defined as a curved slab which has been cut form a full cylinder. The slab is bounded by two straight longitudinal edges parallel to the ais of the cylinder and by two curved transverse edges in planes perpendicular to the ais; the slab is curved in only one direction. The cylindrical shell is circular when the curvature is constant. o Effects of shell edges on the load carrying behavior o Stress resultants and stress couples of cylindrical shells L r d N N N + d N + d N N + N d N + d d N N N h d N r M M + d Q Q + d Q Q + d M M + d M M + d Q Q M M + d M M M M 4 / 11

5 10 unknowns: (N, N, N, N, ), (Q, Q ), (M, M, M, M ). The problem is statically indeterminate. In most R/C cylindrical shells, M will be small and Q will be small. M, M are negligible. 6 unknowns (N, N, N, N ), (Q, M ). o Line loads: Forces applied along the free edge. o Classification: L Long shells 2.5 r Line loads produce significant magnitudes of M and Q, membrane forces become insignificant. Stresses can be estimated using the beam theory. Intermediate shells 0.5 L < 2.5 r L Short shells 0.5 r < The line loads produce internal forces generally in the region near the longitudinal edge. Greater part of the shell behaves with membrane values. o Beam theory for long cylindrical shells For long shells the stresses can be estimated closely by beam theory. The shell is considered as a beam of a curved cross section between end supports. Assumption: Relative displacements within each transverse cross section are negligible. o The etension of the beam method of analysis to multiple shells 5 / 11

6 o Membrane theory For a certain class of shells which the stress couples are an order of magnitude smaller than the etensional and in-plane shear stress resultants, the transverse shear stress resultants are similarly small and may be neglected in the force equilibrium. The assumption is valid only if at least one radius of curvature is finite. (Flat plates are ecluded from resisting transverse loading in this manner.) The shell may achieve force equilibrium through the action of inplane forces alone. Hence, the state of stress in the shell is completely determined by equations of equilibrium, i.e., the shell is statically determinate. The boundary conditions must provide for those shell edge forces which are computed from the equations of equilibrium. The boundary conditions must also permit those shell edge displacements (translations and rotations) which are computed from the forces found by the membrane theory. o Approimation methods of analysis Energy method Strain energy and potential energy Rayleigh-Ritz methods Galerkin method Nonlinear analysis using doubly-curved isoparametric thin shell R/C elements o Assumptions: The actual reinforcing bars are represented by equivalent anisotropic steel layers by making appropriate adjustments to the elastic-plastic incremental strain-to-stress transformation matri. 6 / 11

7 These layers carry uniaial stress only in the same direction as the actual bars. Dowel action is neglected. Strain compatibility between steel and concrete is maintained. o Constitutive law for isotropic materials In matri form: { σ} = [ C ]{ ε} o Stress resultant-strain, and stress couple-curvature relations In matri form: { N} = [ D ]{ ε} More comple material properties can be represented through a modification of [ C ] and [ D ]. o Incremental stress-strain relation { dσ} = [ D]{ d ε} where { d σ} = increment of total stress vector, [ D ] = the elastic-plastic incremental strain-to-stress transformation matri, and { d ε} = increment of total strain vector. o Generalized stress-strain relation for full concrete elements [ M] [ ] [ M] h [ ] dn /2 ε0 = H M h d /2 2 dh H dm M h dk where dn = increment of direct stress resultant, dm = increment of bending stress resultant, d ε 0 = mid-wall component of strain increment, dk = bending component of the strain increment, and H = the wall thickness. o Numerical integration in finite element analysis 7 / 11

8 At each integration point of the element the shell wall is divided into a number of stations with constant intervals, T, through the thickness. Using [ D ], the matri [ M ] is evaluated at the start of each increment and for each of the stations. o Incremental stress-strain relation for steel layer element with anisotropic properties consistent with uniaial condition dσ = ( ) RD dε i i i i where R t T = i i t i and = the portion of the equivalent steel area contributed to the i th integration station. o The generalized stress-strain relation at station i: dn /2 ε0 = H RD i i RDh i i d /2 2 dh H dm RDh i i RDh i i dk For integration stations with no reinforcement contribution, the R i multiplier will be zero. Design of cylindrical concrete shells o ASCE method Solution is based on superposition. o Steps of the method: 1. Assume that the surface loads are transmitted to the supports by direct stress only. This is the membrane solution, equivalent to assuming the structures to be statically determinate. This assumption leads to displacements and reactions along the long edges which are inconsistent with the actual boundary condition. Surface loads The membrane analysis of a cylindrical shell subjected to surface loads involves only successive differentiations and interpolations of the radial and tangential 8 / 11

9 components of the surface load. This is always possible for continuous loads. For most conditions the surface loads on the shell are uniform. Representation of loads using Fourier series 2. Apply line loads along the long edges. The stresses from line loads are superimposed with those from membrane solution. Line loads along the longitudinal edges The effect of edge line loads on the shell o Definitions The primary system is obtained by reducing the general theory to the membrane theory which reduces to three equations with three unknowns, and hence to a statically determinate system. The errors correspond to the incompatible edge effects. The corrections correspond to unit edge effects derived from a bending theory. Compatibility is obtained by determining the size of the corrections required to remove the errors in the membrane theory. o Edge beams Vertical beams Usually employed for long shells, where the principal structural action is longitudinal bending. Horizontal beams Typically used with short shells, where the principal structural action is transverse arching. o Edge effects K > 0: The edge effects tend to damp rapidly and are usually confined to a narrow zone at the edge. Thus in these shells the membrane theory will often be valid throughout the entire shell ecept just at the boundaries. 9 / 11

10 K = 0 (either r or r is zero): The edge effects are damped out but tend to etend further into the shell than for shells of positive curvature. y K < 0: The damping is markedly less than for the others. The boundary effects tend to become significant over large portions of the shell. o Reinforcement patterns of a simply supported single shell I: Longitudinal reinforcement in the edge beam II: Transverse membrane and bending reinforcement III: Shear reinforcement IV: Negative moment bending reinforcement near the diaphragms To take up the tensile stress due to M N = N (mid-thickness) To accommodate diagonal Tensile stress associated with N = N at 45. N (mid-thickness) close to the edges. Design considerations o Analysis is based on homogeneous isotropic material assumption. Principal stresses are computed from the values for the in-plane stress resultants, and stress trajectories are drawn; reinforcement is placed to carry tensile stresses. 10 / 11

11 o Transverse reinforcement must be provided to resist bending moment M. Transverse shear Q and thrust N are usually small and do not influence design. o Other Design Issues Boundary conditions; edge beam compatibility and design Instability Buckling Minimum reinforcement requirements Design of containment structures (thick shell effects) 11 / 11

### Introduction to Plates

Chapter Introduction to Plates Plate is a flat surface having considerabl large dimensions as compared to its thickness. Common eamples of plates in civil engineering are. Slab in a building.. Base slab

### Name Class. Date Section. Test Form A Chapter 11. Chapter 11 Test Bank 155

Chapter Test Bank 55 Test Form A Chapter Name Class Date Section. Find a unit vector in the direction of v if v is the vector from P,, 3 to Q,, 0. (a) 3i 3j 3k (b) i j k 3 i 3 j 3 k 3 i 3 j 3 k. Calculate

### INTRODUCTION TO BEAMS

CHAPTER Structural Steel Design LRFD Method INTRODUCTION TO BEAMS Third Edition A. J. Clark School of Engineering Department of Civil and Environmental Engineering Part II Structural Steel Design and Analysis

### Structural Integrity Analysis

Structural Integrity Analysis 1. STRESS CONCENTRATION Igor Kokcharov 1.1 STRESSES AND CONCENTRATORS 1.1.1 Stress An applied external force F causes inner forces in the carrying structure. Inner forces

### Finite Element Formulation for Beams - Handout 2 -

Finite Element Formulation for Beams - Handout 2 - Dr Fehmi Cirak (fc286@) Completed Version Review of Euler-Bernoulli Beam Physical beam model midline Beam domain in three-dimensions Midline, also called

### 3 Concepts of Stress Analysis

3 Concepts of Stress Analysis 3.1 Introduction Here the concepts of stress analysis will be stated in a finite element context. That means that the primary unknown will be the (generalized) displacements.

### Course in. Nonlinear FEM

Course in Introduction Outline Lecture 1 Introduction Lecture 2 Geometric nonlinearity Lecture 3 Material nonlinearity Lecture 4 Material nonlinearity continued Lecture 5 Geometric nonlinearity revisited

### Practice Problems on Boundary Layers. Answer(s): D = 107 N D = 152 N. C. Wassgren, Purdue University Page 1 of 17 Last Updated: 2010 Nov 22

BL_01 A thin flat plate 55 by 110 cm is immersed in a 6 m/s stream of SAE 10 oil at 20 C. Compute the total skin friction drag if the stream is parallel to (a) the long side and (b) the short side. D =

### 8.2 Elastic Strain Energy

Section 8. 8. Elastic Strain Energy The strain energy stored in an elastic material upon deformation is calculated below for a number of different geometries and loading conditions. These expressions for

### Stress Strain Relationships

Stress Strain Relationships Tensile Testing One basic ingredient in the study of the mechanics of deformable bodies is the resistive properties of materials. These properties relate the stresses to the

### Determine whether the following lines intersect, are parallel, or skew. L 1 : x = 6t y = 1 + 9t z = 3t. x = 1 + 2s y = 4 3s z = s

Homework Solutions 5/20 10.5.17 Determine whether the following lines intersect, are parallel, or skew. L 1 : L 2 : x = 6t y = 1 + 9t z = 3t x = 1 + 2s y = 4 3s z = s A vector parallel to L 1 is 6, 9,

### COMPUTATIONAL ENGINEERING OF FINITE ELEMENT MODELLING FOR AUTOMOTIVE APPLICATION USING ABAQUS

International Journal of Advanced Research in Engineering and Technology (IJARET) Volume 7, Issue 2, March-April 2016, pp. 30 52, Article ID: IJARET_07_02_004 Available online at http://www.iaeme.com/ijaret/issues.asp?jtype=ijaret&vtype=7&itype=2

### EXPERIMENTAL AND NUMERICAL ANALYSIS OF THE COLLAR PRODUCTION ON THE PIERCED FLAT SHEET METAL USING LASER FORMING PROCESS

JOURNAL OF CURRENT RESEARCH IN SCIENCE (ISSN 2322-5009) CODEN (USA): JCRSDJ 2014, Vol. 2, No. 2, pp:277-284 Available at www.jcrs010.com ORIGINAL ARTICLE EXPERIMENTAL AND NUMERICAL ANALYSIS OF THE COLLAR

### Numerical Analysis of Independent Wire Strand Core (IWSC) Wire Rope

Numerical Analysis of Independent Wire Strand Core (IWSC) Wire Rope Rakesh Sidharthan 1 Gnanavel B K 2 Assistant professor Mechanical, Department Professor, Mechanical Department, Gojan engineering college,

### Plane Stress Transformations

6 Plane Stress Transformations ASEN 311 - Structures ASEN 311 Lecture 6 Slide 1 Plane Stress State ASEN 311 - Structures Recall that in a bod in plane stress, the general 3D stress state with 9 components

### Chapter 5 Bridge Deck Slabs. Bridge Engineering 1

Chapter 5 Bridge Deck Slabs Bridge Engineering 1 Basic types of bridge decks In-situ reinforced concrete deck- (most common type) Pre-cast concrete deck (minimize the use of local labor) Open steel grid

### IMPROVING THE STRUT AND TIE METHOD BY INCLUDING THE CONCRETE SOFTENING EFFECT

International Journal of Civil Engineering and Technology (IJCIET) Volume 7, Issue 2, March-April 2016, pp. 117 127, Article ID: IJCIET_07_02_009 Available online at http://www.iaeme.com/ijciet/issues.asp?jtype=ijciet&vtype=7&itype=2

### THEORETICAL MECHANICS

PROF. DR. ING. VASILE SZOLGA THEORETICAL MECHANICS LECTURE NOTES AND SAMPLE PROBLEMS PART ONE STATICS OF THE PARTICLE, OF THE RIGID BODY AND OF THE SYSTEMS OF BODIES KINEMATICS OF THE PARTICLE 2010 0 Contents

### Physics 235 Chapter 1. Chapter 1 Matrices, Vectors, and Vector Calculus

Chapter 1 Matrices, Vectors, and Vector Calculus In this chapter, we will focus on the mathematical tools required for the course. The main concepts that will be covered are: Coordinate transformations

### State of Stress at Point

State of Stress at Point Einstein Notation The basic idea of Einstein notation is that a covector and a vector can form a scalar: This is typically written as an explicit sum: According to this convention,

### DYNAMIC ANALYSIS OF THICK PLATES SUBJECTED TO EARTQUAKE

DYNAMIC ANALYSIS OF THICK PLATES SUBJECTED TO EARTQUAKE ÖZDEMİR Y. I, AYVAZ Y. Posta Adresi: Department of Civil Engineering, Karadeniz Technical University, 68 Trabzon, TURKEY E-posta: yaprakozdemir@hotmail.com

### METHODS FOR ACHIEVEMENT UNIFORM STRESSES DISTRIBUTION UNDER THE FOUNDATION

International Journal of Civil Engineering and Technology (IJCIET) Volume 7, Issue 2, March-April 2016, pp. 45-66, Article ID: IJCIET_07_02_004 Available online at http://www.iaeme.com/ijciet/issues.asp?jtype=ijciet&vtype=7&itype=2

### Design of Steel Structures Prof. S.R.Satish Kumar and Prof. A.R.Santha Kumar. Fig. 7.21 some of the trusses that are used in steel bridges

7.7 Truss bridges Fig. 7.21 some of the trusses that are used in steel bridges Truss Girders, lattice girders or open web girders are efficient and economical structural systems, since the members experience

NEESR SG: Behavior, Analysis and Design of Complex Wall Systems The laboratory testing presented here was conducted as part of a larger effort that employed laboratory testing and numerical simulation

### 4.3 Results... 27 4.3.1 Drained Conditions... 27 4.3.2 Undrained Conditions... 28 4.4 References... 30 4.5 Data Files... 30 5 Undrained Analysis of

Table of Contents 1 One Dimensional Compression of a Finite Layer... 3 1.1 Problem Description... 3 1.1.1 Uniform Mesh... 3 1.1.2 Graded Mesh... 5 1.2 Analytical Solution... 6 1.3 Results... 6 1.3.1 Uniform

### Bending, Forming and Flexing Printed Circuits

Bending, Forming and Flexing Printed Circuits John Coonrod Rogers Corporation Introduction: In the printed circuit board industry there are generally two main types of circuit boards; there are rigid printed

### Introduction to Mechanical Behavior of Biological Materials

Introduction to Mechanical Behavior of Biological Materials Ozkaya and Nordin Chapter 7, pages 127-151 Chapter 8, pages 173-194 Outline Modes of loading Internal forces and moments Stiffness of a structure

### SECTION 3 DESIGN OF POST TENSIONED COMPONENTS FOR FLEXURE

SECTION 3 DESIGN OF POST TENSIONED COMPONENTS FOR FLEXURE DEVELOPED BY THE PTI EDC-130 EDUCATION COMMITTEE LEAD AUTHOR: TREY HAMILTON, UNIVERSITY OF FLORIDA NOTE: MOMENT DIAGRAM CONVENTION In PT design,

### Dispersion diagrams of a water-loaded cylindrical shell obtained from the structural and acoustic responses of the sensor array along the shell

Dispersion diagrams of a water-loaded cylindrical shell obtained from the structural and acoustic responses of the sensor array along the shell B.K. Jung ; J. Ryue ; C.S. Hong 3 ; W.B. Jeong ; K.K. Shin

### EDEXCEL NATIONAL CERTIFICATE/DIPLOMA MECHANICAL PRINCIPLES AND APPLICATIONS NQF LEVEL 3 OUTCOME 1 - LOADING SYSTEMS

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA MECHANICAL PRINCIPLES AND APPLICATIONS NQF LEVEL 3 OUTCOME 1 - LOADING SYSTEMS TUTORIAL 1 NON-CONCURRENT COPLANAR FORCE SYSTEMS 1. Be able to determine the effects

### In-situ Load Testing to Evaluate New Repair Techniques

In-situ Load Testing to Evaluate New Repair Techniques W.J. Gold 1 and A. Nanni 2 1 Assistant Research Engineer, Univ. of Missouri Rolla, Dept. of Civil Engineering 2 V&M Jones Professor, Univ. of Missouri

### (Seattle is home of Boeing Jets)

Dr. Faeq M. Shaikh Seattle, Washington, USA (Seattle is home of Boeing Jets) 1 Pre Requisites for Today s Seminar Basic understanding of Finite Element Analysis Working Knowledge of Laminate Plate Theory

### Detailing of Reinforcment in Concrete Structures

Chapter 8 Detailing of Reinforcment in Concrete Structures 8.1 Scope Provisions of Sec. 8.1 and 8.2 of Chapter 8 shall apply for detailing of reinforcement in reinforced concrete members, in general. For

### Chapter Outline. Mechanical Properties of Metals How do metals respond to external loads?

Mechanical Properties of Metals How do metals respond to external loads? Stress and Strain Tension Compression Shear Torsion Elastic deformation Plastic Deformation Yield Strength Tensile Strength Ductility

### COMPLEX STRESS TUTORIAL 3 COMPLEX STRESS AND STRAIN

COMPLX STRSS TUTORIAL COMPLX STRSS AND STRAIN This tutorial is not part of the decel unit mechanical Principles but covers elements of the following sllabi. o Parts of the ngineering Council eam subject

### Settlement of Precast Culverts Under High Fills; The Influence of Construction Sequence and Structural Effects of Longitudinal Strains

Settlement of Precast Culverts Under High Fills; The Influence of Construction Sequence and Structural Effects of Longitudinal Strains Doug Jenkins 1, Chris Lawson 2 1 Interactive Design Services, 2 Reinforced

### We can display an object on a monitor screen in three different computer-model forms: Wireframe model Surface Model Solid model

CHAPTER 4 CURVES 4.1 Introduction In order to understand the significance of curves, we should look into the types of model representations that are used in geometric modeling. Curves play a very significant

### Torsion Tests. Subjects of interest

Chapter 10 Torsion Tests Subjects of interest Introduction/Objectives Mechanical properties in torsion Torsional stresses for large plastic strains Type of torsion failures Torsion test vs.tension test

### ES240 Solid Mechanics Fall 2007. Stress field and momentum balance. Imagine the three-dimensional body again. At time t, the material particle ( x, y,

S40 Solid Mechanics Fall 007 Stress field and momentum balance. Imagine the three-dimensional bod again. At time t, the material particle,, ) is under a state of stress ij,,, force per unit volume b b,,,.

### SMIP05 Seminar Proceedings VISUALIZATION OF NONLINEAR SEISMIC BEHAVIOR OF THE INTERSTATE 5/14 NORTH CONNECTOR BRIDGE. Robert K.

VISUALIZATION OF NONLINEAR SEISMIC BEHAVIOR OF THE INTERSTATE 5/14 NORTH CONNECTOR BRIDGE Robert K. Dowell Department of Civil and Environmental Engineering San Diego State University Abstract This paper

### SECTION 3 DESIGN OF POST- TENSIONED COMPONENTS FOR FLEXURE

SECTION 3 DESIGN OF POST- TENSIONED COMPONENTS FOR FLEXURE DEVELOPED BY THE PTI EDC-130 EDUCATION COMMITTEE LEAD AUTHOR: TREY HAMILTON, UNIVERSITY OF FLORIDA NOTE: MOMENT DIAGRAM CONVENTION In PT design,

### Solving Simultaneous Equations and Matrices

Solving Simultaneous Equations and Matrices The following represents a systematic investigation for the steps used to solve two simultaneous linear equations in two unknowns. The motivation for considering

Laterally Loaded Piles 1 Soil Response Modelled by p-y Curves In order to properly analyze a laterally loaded pile foundation in soil/rock, a nonlinear relationship needs to be applied that provides soil

### Chapter 7: Polarization

Chapter 7: Polarization Joaquín Bernal Méndez Group 4 1 Index Introduction Polarization Vector The Electric Displacement Vector Constitutive Laws: Linear Dielectrics Energy in Dielectric Systems Forces

### Plate waves in phononic crystals slabs

Acoustics 8 Paris Plate waves in phononic crystals slabs J.-J. Chen and B. Bonello CNRS and Paris VI University, INSP - 14 rue de Lourmel, 7515 Paris, France chen99nju@gmail.com 41 Acoustics 8 Paris We

### Technical Notes 3B - Brick Masonry Section Properties May 1993

Technical Notes 3B - Brick Masonry Section Properties May 1993 Abstract: This Technical Notes is a design aid for the Building Code Requirements for Masonry Structures (ACI 530/ASCE 5/TMS 402-92) and Specifications

### Design of reinforced concrete columns. Type of columns. Failure of reinforced concrete columns. Short column. Long column

Design of reinforced concrete columns Type of columns Failure of reinforced concrete columns Short column Column fails in concrete crushed and bursting. Outward pressure break horizontal ties and bend

### 4B-2. 2. The stiffness of the floor and roof diaphragms. 3. The relative flexural and shear stiffness of the shear walls and of connections.

Shear Walls Buildings that use shear walls as the lateral force-resisting system can be designed to provide a safe, serviceable, and economical solution for wind and earthquake resistance. Shear walls

### NOTCHES AND THEIR EFFECTS. Ali Fatemi - University of Toledo All Rights Reserved Chapter 7 Notches and Their Effects 1

NOTCHES AND THEIR EFFECTS Ali Fatemi - University of Toledo All Rights Reserved Chapter 7 Notches and Their Effects 1 CHAPTER OUTLINE Background Stress/Strain Concentrations S-N Approach for Notched Members

### EVALUATION OF SEISMIC RESPONSE - FACULTY OF LAND RECLAMATION AND ENVIRONMENTAL ENGINEERING -BUCHAREST

EVALUATION OF SEISMIC RESPONSE - FACULTY OF LAND RECLAMATION AND ENVIRONMENTAL ENGINEERING -BUCHAREST Abstract Camelia SLAVE University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59 Marasti

### Graduate Courses in Mechanical Engineering

Graduate Courses in Mechanical Engineering MEEG 501 ADVANCED MECHANICAL ENGINEERING ANALYSIS An advanced, unified approach to the solution of mechanical engineering problems, with emphasis on the formulation

### MECHANICS OF MATERIALS

T dition CHTR MCHNICS OF MTRIS Ferdinand. Beer. Russell Johnston, Jr. John T. DeWolf ecture Notes: J. Walt Oler Texas Tech University Stress and Strain xial oading - Contents Stress & Strain: xial oading

### Bridging Your Innovations to Realities

Graphic User Interface Graphic User Interface Modeling Features Bridge Applications Segmental Bridges Cable Bridges Analysis Features Result Evaluation Design Features 02 07 13 17 28 34 43 48 2 User Interface

### EFFECTS ON NUMBER OF CABLES FOR MODAL ANALYSIS OF CABLE-STAYED BRIDGES

EFFECTS ON NUMBER OF CABLES FOR MODAL ANALYSIS OF CABLE-STAYED BRIDGES Yang-Cheng Wang Associate Professor & Chairman Department of Civil Engineering Chinese Military Academy Feng-Shan 83000,Taiwan Republic

### A Case Study Comparing Two Approaches for Applying Area Loads: Tributary Area Loads vs Shell Pressure Loads

1 A Case Study Comparing Two Approaches for Applying Area Loads: Tributary Area Loads vs Shell Pressure Loads By Dr. Siriwut Sasibut (Application Engineer) S-FRAME Software Inc. #1158 13351 Commerce Parkway

### Nonlinear analysis and form-finding in GSA Training Course

Nonlinear analysis and form-finding in GSA Training Course Non-linear analysis and form-finding in GSA 1 of 47 Oasys Ltd Non-linear analysis and form-finding in GSA 2 of 47 Using the GSA GsRelax Solver

### 3D Stress Components. From equilibrium principles: τ xy = τ yx, τ xz = τ zx, τ zy = τ yz. Normal Stresses. Shear Stresses

3D Stress Components From equilibrium principles:, z z, z z The most general state of stress at a point ma be represented b 6 components Normal Stresses Shear Stresses Normal stress () : the subscript

### ESCUELA TÉCNICA SUPERIOR DE INGENIEROS INDUSTRIALES Y DE TELECOMUNICACIÓN

ESCUELA TÉCNICA SUPERIOR DE INGENIEROS INDUSTRIALES Y DE TELECOMUNICACIÓN Titulación: INGENIERO INDUSTRIAL Título del proyecto: MODELING CRACKS WITH ABAQUS Pablo Sanchis Gurpide Pamplona, 22 de Julio del

### Solid Mechanics. Stress. What you ll learn: Motivation

Solid Mechanics Stress What you ll learn: What is stress? Why stress is important? What are normal and shear stresses? What is strain? Hooke s law (relationship between stress and strain) Stress strain

### ETABS. Integrated Building Design Software. Concrete Shear Wall Design Manual. Computers and Structures, Inc. Berkeley, California, USA

ETABS Integrated Building Design Software Concrete Shear Wall Design Manual Computers and Structures, Inc. Berkeley, California, USA Version 8 January 2002 Copyright The computer program ETABS and all

### Statically determinate structures

Statically determinate structures A statically determinate structure is the one in which reactions and internal forces can be determined solely from free-body diagrams and equations of equilibrium. These

### Diameter. Swift Lift Round Recess Plug. Note: The diameter of the narrow recess plug is the same as the diameter of the round recess plug.

P-5 The P-5 is hot forged from carbon steel. The formed head provis spherical seating that the Lifting Eye engages, while a disc-shaped foot is embedd in the concrete. Due to its being a forged part, the

### HW6 Solutions Notice numbers may change randomly in your assignments and you may have to recalculate solutions for your specific case.

HW6 Solutions Notice numbers may change randomly in your assignments and you may have to recalculate solutions for your specific case. Tipler 22.P.053 The figure below shows a portion of an infinitely

### Behaviour of buildings due to tunnel induced subsidence

Behaviour of buildings due to tunnel induced subsidence A thesis submitted to the University of London for the degree of Doctor of Philosophy and for the Diploma of the Imperial College of Science, Technology

CosmosWorks Centrifugal Loads (Draft 4, May 28, 2006) Introduction This example will look at essentially planar objects subjected to centrifugal loads. That is, loads due to angular velocity and/or angular

### 11. Rotation Translational Motion: Rotational Motion:

11. Rotation Translational Motion: Motion of the center of mass of an object from one position to another. All the motion discussed so far belongs to this category, except uniform circular motion. Rotational

### MASTER DEGREE PROJECT

MASTER DEGREE PROJECT Finite Element Analysis of a Washing Machine Cylinder Thesis in Applied Mechanics one year Master Degree Program Performed : Spring term, 2010 Level Author Supervisor s Examiner :

### 42 CHAPTER 1. VECTORS AND THE GEOMETRY OF SPACE. Figure 1.18: Parabola y = 2x 2. 1.6.1 Brief review of Conic Sections

2 CHAPTER 1. VECTORS AND THE GEOMETRY OF SPACE Figure 1.18: Parabola y = 2 1.6 Quadric Surfaces 1.6.1 Brief review of Conic Sections You may need to review conic sections for this to make more sense. You

### Chapter 5: Distributed Forces; Centroids and Centers of Gravity

CE297-FA09-Ch5 Page 1 Wednesday, October 07, 2009 12:39 PM Chapter 5: Distributed Forces; Centroids and Centers of Gravity What are distributed forces? Forces that act on a body per unit length, area or

### ANALYSIS OF STRUCTURAL MEMBER SYSTEMS JEROME J. CONNOR NEW YORK : ':,:':,;:::::,,:

ANALYSIS OF JEROME J. CONNOR, Sc.D., Massachusetts Institute of Technology, is Professor of Civil Engineering at Massachusetts Institute of Technology. He has been active in STRUCTURAL MEMBER teaching

### ARCH 331 Structural Glossary S2014abn. Structural Glossary

Structural Glossary Allowable strength: Nominal strength divided by the safety factor. Allowable stress: Allowable strength divided by the appropriate section property, such as section modulus or cross

### CHAPTER 24 GAUSS S LAW

CHAPTER 4 GAUSS S LAW 4. The net charge shown in Fig. 4-40 is Q. Identify each of the charges A, B, C shown. A B C FIGURE 4-40 4. From the direction of the lines of force (away from positive and toward

### Essential Mathematics for Computer Graphics fast

John Vince Essential Mathematics for Computer Graphics fast Springer Contents 1. MATHEMATICS 1 Is mathematics difficult? 3 Who should read this book? 4 Aims and objectives of this book 4 Assumptions made

### Rear Impact Guard TEST METHOD 223. Standards and Regulations Division. Issued: December 2003

Transport Canada Safety and Security Road Safety Transports Canada Sécurité et sûreté Sécurité routière Standards and Regulations Division TEST METHOD 223 Rear Impact Guard Issued: December 2003 Standards

### A vector is a directed line segment used to represent a vector quantity.

Chapters and 6 Introduction to Vectors A vector quantity has direction and magnitude. There are many examples of vector quantities in the natural world, such as force, velocity, and acceleration. A vector

### SURFACE AREA AND VOLUME

SURFACE AREA AND VOLUME In this unit, we will learn to find the surface area and volume of the following threedimensional solids:. Prisms. Pyramids 3. Cylinders 4. Cones It is assumed that the reader has

### Use of Strain Gauge Rosette to Investigate Stress concentration in Isotropic and Orthotropic Plate with Circular Hole

Use of Strain Gauge Rosette to Investigate Stress concentration in Isotropic and Orthotropic Plate with Circular Hole Mr.V.G.Aradhye 1, Prof.S.S.Kulkarni 2 1 PG Scholar, Mechanical department, SKN Sinhgad

### 4.2 Free Body Diagrams

CE297-FA09-Ch4 Page 1 Friday, September 18, 2009 12:11 AM Chapter 4: Equilibrium of Rigid Bodies A (rigid) body is said to in equilibrium if the vector sum of ALL forces and all their moments taken about

### Chapter 2. Derivation of the Equations of Open Channel Flow. 2.1 General Considerations

Chapter 2. Derivation of the Equations of Open Channel Flow 2.1 General Considerations Of interest is water flowing in a channel with a free surface, which is usually referred to as open channel flow.

### NONLINEAR FINITE ELEMENT ANALYSIS FOR REINFORCED CONCRETE SLABS UNDER PUNCHING LOADS

International Journal of Civil Engineering and Technology (IJCIET) Volume 7, Issue 3, May June 2016, pp. 392 397, Article ID: IJCIET_07_03_040 Available online at http://www.iaeme.com/ijciet/issues.asp?jtype=ijciet&vtype=7&itype=3

### CHAPTER 29 VOLUMES AND SURFACE AREAS OF COMMON SOLIDS

CHAPTER 9 VOLUMES AND SURFACE AREAS OF COMMON EXERCISE 14 Page 9 SOLIDS 1. Change a volume of 1 00 000 cm to cubic metres. 1m = 10 cm or 1cm = 10 6m 6 Hence, 1 00 000 cm = 1 00 000 10 6m = 1. m. Change

### Finite Element Analysis of Elastic Settlement of Spreadfootings Founded in Soil

Finite Element Analysis of Elastic Settlement of Spreadfootings Founded in Soil Jae H. Chung, Ph.D. Bid Bridge Software Institute t University of Florida, Gainesville, FL, USA Content 1. Background 2.

### EUROPEAN ORGANISATION FOR TECHNICAL APPROVALS

E TA TECHNICAL REPORT Design of Bonded Anchors TR 29 Edition June 27 EUROPEAN ORGANISATION FOR TECHNICAL APPROVALS TABLE OF CONTENTS Design method for bonded anchors Introduction..4 1 Scope...2 1.1 Type

### Understanding Poles and Zeros

MASSACHUSETTS INSTITUTE OF TECHNOLOGY DEPARTMENT OF MECHANICAL ENGINEERING 2.14 Analysis and Design of Feedback Control Systems Understanding Poles and Zeros 1 System Poles and Zeros The transfer function

### WAVES AND FIELDS IN INHOMOGENEOUS MEDIA

WAVES AND FIELDS IN INHOMOGENEOUS MEDIA WENG CHO CHEW UNIVERSITY OF ILLINOIS URBANA-CHAMPAIGN IEEE PRESS Series on Electromagnetic Waves Donald G. Dudley, Series Editor IEEE Antennas and Propagation Society,

### Structural Analysis - II Prof. P. Banerjee Department of Civil Engineering Indian Institute of Technology, Bombay. Lecture - 02

Structural Analysis - II Prof. P. Banerjee Department of Civil Engineering Indian Institute of Technology, Bombay Lecture - 02 Good morning. Today is the second lecture in the series of lectures on structural

### Drawing an Approximate Representation of an Involute Spur Gear Tooth Project Description

Drawing an Approximate Representation of an Involute Spur Gear Tooth Project Description Create a solid model and a working drawing of the 24 pitch gears specified below. It is only necessary to create

### Chapter 4. Electrostatic Fields in Matter

Chapter 4. Electrostatic Fields in Matter 4.1. Polarization A neutral atom, placed in an external electric field, will experience no net force. However, even though the atom as a whole is neutral, the

### Pancake-type collapse energy absorption mechanisms and their influence on the final outcome (complete version)

Report, Structural Analysis and Steel Structures Institute, Hamburg University of Technology, Hamburg, June, 2013 Pancake-type collapse energy absorption mechanisms and their influence on the final outcome

### Introductory Examples. InfoCAD Program System

Introductory Examples InfoCAD Program System The description of program functions within this documentation should not be considered a warranty of product features. All warranty and liability claims arising

### EFFECT OF POSITIONING OF RC SHEAR WALLS OF DIFFERENT SHAPES ON SEISMIC PERFORMANCE OF BUILDING RESTING ON SLOPING GROUND

International Journal of Civil Engineering and Technology (IJCIET) Volume 7, Issue 3, May June 2016, pp. 373 384, Article ID: IJCIET_07_03_038 Available online at http://www.iaeme.com/ijciet/issues.asp?jtype=ijciet&vtype=7&itype=3

### Report on. Wind Resistance of Signs supported by. Glass Fiber Reinforced Concrete (GFRC) Pillars

Report on Wind Resistance of Signs supported by Glass Fiber Reinforced Concrete (GFRC) Pillars Prepared for US Sign and Fabrication Corporation January, 2006 SUMMARY This study found the attachment of

### Physics 210 Q1 2012 ( PHYSICS210BRIDGE ) My Courses Course Settings

1 of 11 9/7/2012 1:06 PM Logged in as Julie Alexander, Instructor Help Log Out Physics 210 Q1 2012 ( PHYSICS210BRIDGE ) My Courses Course Settings Course Home Assignments Roster Gradebook Item Library

### 1.054/1.541 Mechanics and Design of Concrete Structures (3-0-9) Outline 1 Introduction / Design Criteria for Reinforced Concrete Structures

Prof. Oral Buyukozturk Massachusetts Institute of Technology Outline 1 1.054/1.541 Mechanics and Design of Concrete Structures (3-0-9) Outline 1 Introduction / Design Criteria for Reinforced Concrete Structures

### Mesh Moving Techniques for Fluid-Structure Interactions With Large Displacements

K. Stein Department of Physics, Bethel College, St. Paul, MN 55112 T. Tezduyar Mechanical Engineering, Rice University, MS 321, Houston, TX 77005 R. Benney Natick Soldier Center, Natick, MA 01760 Mesh

### 1.3. DOT PRODUCT 19. 6. If θ is the angle (between 0 and π) between two non-zero vectors u and v,

1.3. DOT PRODUCT 19 1.3 Dot Product 1.3.1 Definitions and Properties The dot product is the first way to multiply two vectors. The definition we will give below may appear arbitrary. But it is not. It

### Introduction to COMSOL. The Navier-Stokes Equations

Flow Between Parallel Plates Modified from the COMSOL ChE Library module rev 10/13/08 Modified by Robert P. Hesketh, Chemical Engineering, Rowan University Fall 2008 Introduction to COMSOL The following