13.6. Integration of Trigonometric Functions. Introduction. Prerequisites. Learning Outcomes

Size: px
Start display at page:

Download "13.6. Integration of Trigonometric Functions. Introduction. Prerequisites. Learning Outcomes"

Transcription

1 Itegratio of Trigoometric Fuctios 13.6 Itroductio Itegrals ivolvig trigoometric fuctios are commoplace i egieerig mathematics. This is especially true whe modellig waves ad alteratig curret circuits. Whe the root-mea-square (rms) value of a waveform, or sigal is to be calculated, you will ofte fid this results i a itegral of the form si t dt I this Sectio you will lear how such itegrals ca be evaluated. Prerequisites Before startig this Sectio you should... Learig Outcomes O completio you should be able to... be able to fid a umber of simple defiite ad idefiite itegrals be able to use a table of itegrals be familiar with stadard trigoometric idetities use trigoometric idetities to write itegrads i alterative forms to eable them to be itegrated 48 HELM (8):

2 1. Itegratio of trigoometric fuctios Simple itegrals ivolvig trigoometric fuctios have already bee dealt with i Sectio See what you ca remember: Write dow the followig itegrals: (a) si x dx, (b) cos x dx, (c) si x dx, (d) cos x dx (a) (b) (c) (d) (a) cos x + c, (b) si x + c, (c) 1 cos x + c, (d) 1 si x + c. The basic rules from which these results ca be derived are summarised here: cos kx si kx dx = + c k Key Poit 8 cos kx dx = si kx k + c I egieerig applicatios it is ofte ecessary to itegrate fuctios ivolvig powers of the trigoometric fuctios such as si x dx or cos ωt dt Note that these itegrals caot be obtaied directly from the formulas i Key Poit 8 above. However, by makig use of trigoometric idetities, the itegrads ca be re-writte i a alterative form. It is ofte ot clear which idetities are useful ad each case eeds to be cosidered idividually. Experiece ad practice are essetial. Work through the followig. HELM (8): Sectio 13.6: Itegratio of Trigoometric Fuctios 49

3 Use the trigoometric idetity si θ 1 (1 cos θ) to express the itegral si x dx i a alterative form ad hece evaluate it. (a) First use the idetity: Your solutio si x dx = The itegral ca be writte 1 (1 cos x)dx. Note that the trigoometric idetity is used to covert a power of si x ito a fuctio ivolvig cos x which ca be itegrated directly usig Key Poit 8. (b) Now evaluate the itegral: 1 ( x 1 si x + c) = 1x 1 si x + K where K = c/. 4 Use the trigoometric idetity si x si x cos x to fid si x cos x dx (a) First use the idetity: Your solutio si x cos x dx = The itegrad ca be writte as 1 si x (b) Now evaluate the itegral: π si x cos x dx = π 1 si x dx = [ 14 ] π cos x + c = 1 4 cos 4π cos = = This result is oe example of what are called orthogoality relatios. 5 HELM (8):

4 Egieerig Example 3 Magetic flux Itroductio The magitude of the magetic flux desity o the axis of a soleoid, as i Figure 13, ca be foud by the itegral: B = β β 1 µ I si β dβ where µ is the permeability of free space ( 4π 1 7 H m 1 ), is the umber of turs ad I is the curret. β β 1 Problem i words Figure 13: A soleoid ad agles defiig its extet Predict the magetic flux i the middle of a log soleoid. Mathematical statemet of the problem We assume that the soleoid is so log that β 1 ad β π so that B = β β 1 µ I Mathematical aalysis si β dβ π µ I si β dβ The factor µ I ca be take outside the itegral i.e. B = µ π I si β dβ = µ [ ] π I cos β = µ I ( cos π + cos ) = µ I ( ( 1) + 1) = µ I Iterpretatio The magitude of the magetic flux desity at the midpoit of the axis of a log soleoid is predicted to be approximately µ I i.e. proportioal to the umber of turs ad proportioal to the curret flowig i the soleoid. HELM (8): Sectio 13.6: Itegratio of Trigoometric Fuctios 51

5 . Orthogoality relatios I geeral two fuctios f(x), g(x) are said to be orthogoal to each other over a iterval a x b if b a f(x)g(x) dx = It follows from the previous that si x ad cos x are orthogoal to each other over the iterval x π. This is also true over ay iterval α x α + π (e.g. π/ x 5π, or π x π). More geerally there is a whole set of orthogoality relatios ivolvig these trigoometric fuctios o itervals of legth π (i.e. over oe period of both si x ad cos x). These relatios are useful i coectio with a widely used techique i egieerig, kow as Fourier aalysis where we represet periodic fuctios i terms of a ifiite series of sies ad cosies called a Fourier series. (This subject is covered i 3.) We shall demostrate the orthogoality property I m = π si mx si x dx = where m ad are itegers such that m. The secret is to use a trigoometric idetity to covert the itegrad ito a form that ca be readily itegrated. You may recall the idetity si A si B 1 (cos(a B) cos(a + B)) It follows, puttig A = mx ad B = x that provided m π I m = 1 [cos(m )x cos(m + )x] dx = 1 [ ] π si(m )x si(m + )x (m ) (m + ) = because (m ) ad (m + ) will be itegers ad si(iteger π) =. Of course si =. Why does the case m = have to be excluded from the aalysis? (left to the reader to figure out!) The correspodig orthogoality relatio for cosies J m = π cos mx cos x dx = follows by use of a similar idetity to that just used. Here agai m ad are itegers such that m. 5 HELM (8):

6 Example 3 Use the idetity si A cos B 1 (si(a + B) + si(a B)) to show that K m = π si mx cos x dx = m ad itegers, m. Solutio π K m = 1 [si(m + )x + si(m )x] dx = 1 [ ] π cos(m + )x cos(m )x (m + ) (m ) = 1 [ ] cos(m + )π 1 cos(m )π 1 + = (m + ) (m ) (recallig that cos(iteger π) = 1) Derive the orthogoality relatio K m = π si mx cos x dx = m ad itegers, m = Hit: You will eed to use a differet trigoometric idetity to that used i Example 3. HELM (8): Sectio 13.6: Itegratio of Trigoometric Fuctios 53

7 K m = π si mx cos mx dx Puttig m =, ad the usig the idetity si A si A cos A we get K mm = = 1 = 1 π π Puttig m = = gives K = 1 si mx cos mx dx si mx dx [ ] π cos mx = 1 1 (cos 4mπ cos ) = (1 1) = m 4m 4m π si cos dx =. Note that the particular case m = = 1 was cosidered earlier i this Sectio. 3. Reductio formulae You have see earlier i this Workbook how to itegrate si x ad si x (which is (si x) ). Applicatios sometimes arise which ivolve itegratig higher powers of si x or cos x. It is possible, as we ow show, to obtai a reductio formula to aid i this. Give I = si (x) dx write dow the itegrals represeted by I, I 3, I 1 I = I 3 = I 1 = I = si x dx I 3 = si 3 x dx I 1 = si 1 x dx To obtai a reductio formula for I we write si x = si 1 (x) si x ad use itegratio by parts. 54 HELM (8):

8 I the otatio used earlier i this Workbook for itegratio by parts (Key Poit 5, page 31) put f = si 1 x ad g = si x ad evaluate df dx ad g dx. df dx = ( 1) si x cos x (usig the chai rule of differetiatio), g dx = si x dx = cos x Now use the itegratio by parts formula o secod itegral that you obtai.] si 1 x si x dx. [Do ot attempt to evaluate the df si 1 x si x dx = si 1 (x) g dx g dx dx = si 1 (x)( cos x) + ( 1) si x cos x dx We ow eed to evaluate si x cos xdx. Puttig cos x = 1 si x this itegral becomes: si (x) dx si (x) dx But this is expressible as I I so fially, usig this ad the result from the last we have I = si 1 (x) si x dx = si 1 (x)( cos x) + ( 1)(I I ) from which we get Key Poit 9: HELM (8): Sectio 13.6: Itegratio of Trigoometric Fuctios 55

9 Give I = si xdx Key Poit 9 Reductio Formula I = 1 si 1 (x) cos x + 1 I This is our reductio formula for I. It eables us, for example, to evaluate I 6 i terms of I 4, the I 4 i terms of I ad I i terms of I where I = si x dx = 1 dx = x. Use the reductio formula i Key Poit 9 with = to fid I. i.e. I = 1 [si x cos x] + 1 I = 1 [1 si x] + x + c si x dx = 1 4 si x + x + c as obtaied earlier by a differet techique. 56 HELM (8):

10 Use the reductio formula i Key Poit 9 to obtai I 6 = si 6 x dx. Firstly obtai I 6 i terms of I 4, the I 4 i terms of I : Usig Key Poit 9 with = 6 gives I 6 = 1 6 si5 x cos x I 4. The, usig Key Poit 9 agai with = 4, gives I 4 = 1 4 si3 x cos x I Now substitute for I from the previous to obtai I 4 ad hece I 6. I 4 = 1 4 si3 x cos x 3 16 si x + 3 x+ costat 8 I 6 = 1 6 si5 x cos x 5 4 si3 x cos x 5 3 si x x + costat Defiite itegrals ca also be readily evaluated usig the reductio formula i Key Poit 9. example, I = π/ si x dx so I = We obtai, immediately I = 1 [ si 1 (x) cos x ] π/ π/ + 1 I si x dx or, sice cos π = si =, I ( 1) = I This simple easy-to-use formula is well kow ad is called Wallis formula. For HELM (8): Sectio 13.6: Itegratio of Trigoometric Fuctios 57

11 Give I = π/ si x dx or I = Key Poit 1 Reductio Formula - Wallis Formula π/ cos x dx I = ( 1) I If I = π/ si x dx calculate I 1 ad the use Wallis formula, without further itegratio, to obtai I 3 ad I 5. I 1 = π/ [ si x dx = ] π/ cos x = 1 The usig Wallis formula with = 3 ad = 5 respectively I 3 = I 5 = π/ π/ si 3 x dx = 3 I 1 = 3 1 = 3 si 5 x dx = 4 5 I 3 = = HELM (8):

12 The total power P of a atea is give by P = π ηl I π 4λ si 3 θ dθ where η, λ, I are costats as is the legth L of atea. Usig the reductio formula for si x dx i Key Poit 9, obtai P. Igorig the costats for the momet, cosider I 3 = I 1 = π π si 3 θ dθ which we will reduce to I 1 ad evaluate. [ si θ dθ = ] π cos θ = so by the reductio formula with = 3 I 3 = 1 [ ] π si x cos x I 1 = + 3 = 4 3 We ow cosider the actual itegral with all the costats. Hece P = ηl I π 4λ π si 3 θ dθ = ηl I π 4λ 4 3, so P = η L I π 3λ. A similar reductio formula to that i Key Poit 9 ca be obtaied for at the ed of this Workbook). I particular if J = π/ cos x dx the J = ( 1) J i.e. Wallis formula is the same for cos x as for si x. cos x dx (see Exercise 5 HELM (8): Sectio 13.6: Itegratio of Trigoometric Fuctios 59

13 4. Harder trigoometric itegrals The followig seemigly iocet itegrals are examples, importat i egieerig, of trigoometric itegrals that caot be evaluated as idefiite itegrals: (a) si(x ) dx ad cos(x ) dx These are called Fresel itegrals. (b) si x x dx This is called the Sie itegral. Defiite itegrals of this type, which are what ormally arise i applicatios, have to be evaluated by approximate umerical methods. Fresel itegrals with limits arise i wave ad atea theory ad the Sie itegral with limits i filter theory. It is useful sometimes to be able to visualize the defiite itegral. For example cosider F (t) = t Clearly, F () = si x x dx t > si x x si x dx =. Recall the graph of x si x x agaist x, x > : t π π x Figure 14 For ay positive value of t, F (t) is the shaded area show (the area iterpretatio of a defiite itegral was covered earlier i this Workbook). As t icreases from to π, it follows that F (t) icreases from to a maximum value F (π) = π si x x dx whose value could be determied umerically (it is actually about 1.85). As t further icreases from π to π the value of F (t) will decrease to a local miimum at π because the si x curve is below x the x-axis betwee π ad π. Note that the area below the curve is cosidered to be egative i this applicatio. Cotiuig to argue i this way we ca obtai the shape of the F (t) graph i Figure 15: (ca you 6 HELM (8):

14 see why the oscillatios decrease i amplitude?) 1.85 F (t) π π π t Figure 15 si x The result dx = π is clearly illustrated i the graph (you are ot expected to kow x how this result is obtaied). Methods for solvig such problems are dealt with i 31. HELM (8): Sectio 13.6: Itegratio of Trigoometric Fuctios 61

15 Exercises You will eed to refer to a Table of Trigoometric Idetities to aswer these questios. π/ 1. Fid (a) cos xdx (b) cos tdt (c) (cos θ + si θ)dθ. Use the idetity si(a + B) + si(a B) si A cos B to fid 3. Fid (1 + ta x)dx. si 3x cos xdx 4. The mea square value of a fuctio f(t) over the iterval t = a to t = b is defied to be 1 b a b a (f(t)) dt Fid the mea square value of f(t) = si t over the iterval t = to t = π. 5. (a) Show that the reductio formula for J = cos x dx is (b) J = 1 cos 1 (x) si x + ( 1) J Usig the reductio formula i (a) show that cos 5 x dx = 1 5 cos4 x si x cos x si x si x (c) Show that if J = π/ ( ) 1 cos x dx, the J = J (Wallis formula). (d) s Usig Wallis formula show that π/ cos 6 x dx = 5 3 π. 1. (a) 1x + 1 si x + c (b) π/4 (c) θ + c cos 5x 1 cos x + c ta x + c HELM (8):

Section 11.3: The Integral Test

Section 11.3: The Integral Test Sectio.3: The Itegral Test Most of the series we have looked at have either diverged or have coverged ad we have bee able to fid what they coverge to. I geeral however, the problem is much more difficult

More information

Sequences and Series

Sequences and Series CHAPTER 9 Sequeces ad Series 9.. Covergece: Defiitio ad Examples Sequeces The purpose of this chapter is to itroduce a particular way of geeratig algorithms for fidig the values of fuctios defied by their

More information

Trigonometric Form of a Complex Number. The Complex Plane. axis. ( 2, 1) or 2 i FIGURE 6.44. The absolute value of the complex number z a bi is

Trigonometric Form of a Complex Number. The Complex Plane. axis. ( 2, 1) or 2 i FIGURE 6.44. The absolute value of the complex number z a bi is 0_0605.qxd /5/05 0:45 AM Page 470 470 Chapter 6 Additioal Topics i Trigoometry 6.5 Trigoometric Form of a Complex Number What you should lear Plot complex umbers i the complex plae ad fid absolute values

More information

Soving Recurrence Relations

Soving Recurrence Relations Sovig Recurrece Relatios Part 1. Homogeeous liear 2d degree relatios with costat coefficiets. Cosider the recurrece relatio ( ) T () + at ( 1) + bt ( 2) = 0 This is called a homogeeous liear 2d degree

More information

In nite Sequences. Dr. Philippe B. Laval Kennesaw State University. October 9, 2008

In nite Sequences. Dr. Philippe B. Laval Kennesaw State University. October 9, 2008 I ite Sequeces Dr. Philippe B. Laval Keesaw State Uiversity October 9, 2008 Abstract This had out is a itroductio to i ite sequeces. mai de itios ad presets some elemetary results. It gives the I ite Sequeces

More information

Math 113 HW #11 Solutions

Math 113 HW #11 Solutions Math 3 HW # Solutios 5. 4. (a) Estimate the area uder the graph of f(x) = x from x = to x = 4 usig four approximatig rectagles ad right edpoits. Sketch the graph ad the rectagles. Is your estimate a uderestimate

More information

Our aim is to show that under reasonable assumptions a given 2π-periodic function f can be represented as convergent series

Our aim is to show that under reasonable assumptions a given 2π-periodic function f can be represented as convergent series 8 Fourier Series Our aim is to show that uder reasoable assumptios a give -periodic fuctio f ca be represeted as coverget series f(x) = a + (a cos x + b si x). (8.) By defiitio, the covergece of the series

More information

Infinite Sequences and Series

Infinite Sequences and Series CHAPTER 4 Ifiite Sequeces ad Series 4.1. Sequeces A sequece is a ifiite ordered list of umbers, for example the sequece of odd positive itegers: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29...

More information

I. Chi-squared Distributions

I. Chi-squared Distributions 1 M 358K Supplemet to Chapter 23: CHI-SQUARED DISTRIBUTIONS, T-DISTRIBUTIONS, AND DEGREES OF FREEDOM To uderstad t-distributios, we first eed to look at aother family of distributios, the chi-squared distributios.

More information

SECTION 1.5 : SUMMATION NOTATION + WORK WITH SEQUENCES

SECTION 1.5 : SUMMATION NOTATION + WORK WITH SEQUENCES SECTION 1.5 : SUMMATION NOTATION + WORK WITH SEQUENCES Read Sectio 1.5 (pages 5 9) Overview I Sectio 1.5 we lear to work with summatio otatio ad formulas. We will also itroduce a brief overview of sequeces,

More information

Example 2 Find the square root of 0. The only square root of 0 is 0 (since 0 is not positive or negative, so those choices don t exist here).

Example 2 Find the square root of 0. The only square root of 0 is 0 (since 0 is not positive or negative, so those choices don t exist here). BEGINNING ALGEBRA Roots ad Radicals (revised summer, 00 Olso) Packet to Supplemet the Curret Textbook - Part Review of Square Roots & Irratioals (This portio ca be ay time before Part ad should mostly

More information

Determining the sample size

Determining the sample size Determiig the sample size Oe of the most commo questios ay statisticia gets asked is How large a sample size do I eed? Researchers are ofte surprised to fid out that the aswer depeds o a umber of factors

More information

Chapter 5: Inner Product Spaces

Chapter 5: Inner Product Spaces Chapter 5: Ier Product Spaces Chapter 5: Ier Product Spaces SECION A Itroductio to Ier Product Spaces By the ed of this sectio you will be able to uderstad what is meat by a ier product space give examples

More information

Chapter 7 Methods of Finding Estimators

Chapter 7 Methods of Finding Estimators Chapter 7 for BST 695: Special Topics i Statistical Theory. Kui Zhag, 011 Chapter 7 Methods of Fidig Estimators Sectio 7.1 Itroductio Defiitio 7.1.1 A poit estimator is ay fuctio W( X) W( X1, X,, X ) of

More information

http://www.webassign.net/v4cgijeff.downs@wnc/control.pl

http://www.webassign.net/v4cgijeff.downs@wnc/control.pl Assigmet Previewer http://www.webassig.et/vcgijeff.dows@wc/cotrol.pl of // : PM Practice Eam () Questio Descriptio Eam over chapter.. Questio DetailsLarCalc... [] Fid the geeral solutio of the differetial

More information

GCE Further Mathematics (6360) Further Pure Unit 2 (MFP2) Textbook. Version: 1.4

GCE Further Mathematics (6360) Further Pure Unit 2 (MFP2) Textbook. Version: 1.4 GCE Further Mathematics (660) Further Pure Uit (MFP) Tetbook Versio: 4 MFP Tetbook A-level Further Mathematics 660 Further Pure : Cotets Chapter : Comple umbers 4 Itroductio 5 The geeral comple umber 5

More information

Partial Di erential Equations

Partial Di erential Equations Partial Di eretial Equatios Partial Di eretial Equatios Much of moder sciece, egieerig, ad mathematics is based o the study of partial di eretial equatios, where a partial di eretial equatio is a equatio

More information

Your organization has a Class B IP address of 166.144.0.0 Before you implement subnetting, the Network ID and Host ID are divided as follows:

Your organization has a Class B IP address of 166.144.0.0 Before you implement subnetting, the Network ID and Host ID are divided as follows: Subettig Subettig is used to subdivide a sigle class of etwork i to multiple smaller etworks. Example: Your orgaizatio has a Class B IP address of 166.144.0.0 Before you implemet subettig, the Network

More information

University of California, Los Angeles Department of Statistics. Distributions related to the normal distribution

University of California, Los Angeles Department of Statistics. Distributions related to the normal distribution Uiversity of Califoria, Los Ageles Departmet of Statistics Statistics 100B Istructor: Nicolas Christou Three importat distributios: Distributios related to the ormal distributio Chi-square (χ ) distributio.

More information

SAMPLE QUESTIONS FOR FINAL EXAM. (1) (2) (3) (4) Find the following using the definition of the Riemann integral: (2x + 1)dx

SAMPLE QUESTIONS FOR FINAL EXAM. (1) (2) (3) (4) Find the following using the definition of the Riemann integral: (2x + 1)dx SAMPLE QUESTIONS FOR FINAL EXAM REAL ANALYSIS I FALL 006 3 4 Fid the followig usig the defiitio of the Riema itegral: a 0 x + dx 3 Cosider the partitio P x 0 3, x 3 +, x 3 +,......, x 3 3 + 3 of the iterval

More information

Properties of MLE: consistency, asymptotic normality. Fisher information.

Properties of MLE: consistency, asymptotic normality. Fisher information. Lecture 3 Properties of MLE: cosistecy, asymptotic ormality. Fisher iformatio. I this sectio we will try to uderstad why MLEs are good. Let us recall two facts from probability that we be used ofte throughout

More information

5: Introduction to Estimation

5: Introduction to Estimation 5: Itroductio to Estimatio Cotets Acroyms ad symbols... 1 Statistical iferece... Estimatig µ with cofidece... 3 Samplig distributio of the mea... 3 Cofidece Iterval for μ whe σ is kow before had... 4 Sample

More information

CHAPTER 7: Central Limit Theorem: CLT for Averages (Means)

CHAPTER 7: Central Limit Theorem: CLT for Averages (Means) CHAPTER 7: Cetral Limit Theorem: CLT for Averages (Meas) X = the umber obtaied whe rollig oe six sided die oce. If we roll a six sided die oce, the mea of the probability distributio is X P(X = x) Simulatio:

More information

Section 8.3 : De Moivre s Theorem and Applications

Section 8.3 : De Moivre s Theorem and Applications The Sectio 8 : De Moivre s Theorem ad Applicatios Let z 1 ad z be complex umbers, where z 1 = r 1, z = r, arg(z 1 ) = θ 1, arg(z ) = θ z 1 = r 1 (cos θ 1 + i si θ 1 ) z = r (cos θ + i si θ ) ad z 1 z =

More information

Here are a couple of warnings to my students who may be here to get a copy of what happened on a day that you missed.

Here are a couple of warnings to my students who may be here to get a copy of what happened on a day that you missed. This documet was writte ad copyrighted by Paul Dawkis. Use of this documet ad its olie versio is govered by the Terms ad Coditios of Use located at http://tutorial.math.lamar.edu/terms.asp. The olie versio

More information

Approximating Area under a curve with rectangles. To find the area under a curve we approximate the area using rectangles and then use limits to find

Approximating Area under a curve with rectangles. To find the area under a curve we approximate the area using rectangles and then use limits to find 1.8 Approximatig Area uder a curve with rectagles 1.6 To fid the area uder a curve we approximate the area usig rectagles ad the use limits to fid 1.4 the area. Example 1 Suppose we wat to estimate 1.

More information

Case Study. Normal and t Distributions. Density Plot. Normal Distributions

Case Study. Normal and t Distributions. Density Plot. Normal Distributions Case Study Normal ad t Distributios Bret Halo ad Bret Larget Departmet of Statistics Uiversity of Wiscosi Madiso October 11 13, 2011 Case Study Body temperature varies withi idividuals over time (it ca

More information

4.3. The Integral and Comparison Tests

4.3. The Integral and Comparison Tests 4.3. THE INTEGRAL AND COMPARISON TESTS 9 4.3. The Itegral ad Compariso Tests 4.3.. The Itegral Test. Suppose f is a cotiuous, positive, decreasig fuctio o [, ), ad let a = f(). The the covergece or divergece

More information

Theorems About Power Series

Theorems About Power Series Physics 6A Witer 20 Theorems About Power Series Cosider a power series, f(x) = a x, () where the a are real coefficiets ad x is a real variable. There exists a real o-egative umber R, called the radius

More information

1 Computing the Standard Deviation of Sample Means

1 Computing the Standard Deviation of Sample Means Computig the Stadard Deviatio of Sample Meas Quality cotrol charts are based o sample meas ot o idividual values withi a sample. A sample is a group of items, which are cosidered all together for our aalysis.

More information

AP Calculus BC 2003 Scoring Guidelines Form B

AP Calculus BC 2003 Scoring Guidelines Form B AP Calculus BC Scorig Guidelies Form B The materials icluded i these files are iteded for use by AP teachers for course ad exam preparatio; permissio for ay other use must be sought from the Advaced Placemet

More information

CHAPTER 3 DIGITAL CODING OF SIGNALS

CHAPTER 3 DIGITAL CODING OF SIGNALS CHAPTER 3 DIGITAL CODING OF SIGNALS Computers are ofte used to automate the recordig of measuremets. The trasducers ad sigal coditioig circuits produce a voltage sigal that is proportioal to a quatity

More information

Chapter 7 - Sampling Distributions. 1 Introduction. What is statistics? It consist of three major areas:

Chapter 7 - Sampling Distributions. 1 Introduction. What is statistics? It consist of three major areas: Chapter 7 - Samplig Distributios 1 Itroductio What is statistics? It cosist of three major areas: Data Collectio: samplig plas ad experimetal desigs Descriptive Statistics: umerical ad graphical summaries

More information

S. Tanny MAT 344 Spring 1999. be the minimum number of moves required.

S. Tanny MAT 344 Spring 1999. be the minimum number of moves required. S. Tay MAT 344 Sprig 999 Recurrece Relatios Tower of Haoi Let T be the miimum umber of moves required. T 0 = 0, T = 7 Iitial Coditios * T = T + $ T is a sequece (f. o itegers). Solve for T? * is a recurrece,

More information

CHAPTER 3 THE TIME VALUE OF MONEY

CHAPTER 3 THE TIME VALUE OF MONEY CHAPTER 3 THE TIME VALUE OF MONEY OVERVIEW A dollar i the had today is worth more tha a dollar to be received i the future because, if you had it ow, you could ivest that dollar ad ear iterest. Of all

More information

Chapter 6: Variance, the law of large numbers and the Monte-Carlo method

Chapter 6: Variance, the law of large numbers and the Monte-Carlo method Chapter 6: Variace, the law of large umbers ad the Mote-Carlo method Expected value, variace, ad Chebyshev iequality. If X is a radom variable recall that the expected value of X, E[X] is the average value

More information

SEQUENCES AND SERIES

SEQUENCES AND SERIES Chapter 9 SEQUENCES AND SERIES Natural umbers are the product of huma spirit. DEDEKIND 9.1 Itroductio I mathematics, the word, sequece is used i much the same way as it is i ordiary Eglish. Whe we say

More information

INFINITE SERIES KEITH CONRAD

INFINITE SERIES KEITH CONRAD INFINITE SERIES KEITH CONRAD. Itroductio The two basic cocepts of calculus, differetiatio ad itegratio, are defied i terms of limits (Newto quotiets ad Riema sums). I additio to these is a third fudametal

More information

CS103A Handout 23 Winter 2002 February 22, 2002 Solving Recurrence Relations

CS103A Handout 23 Winter 2002 February 22, 2002 Solving Recurrence Relations CS3A Hadout 3 Witer 00 February, 00 Solvig Recurrece Relatios Itroductio A wide variety of recurrece problems occur i models. Some of these recurrece relatios ca be solved usig iteratio or some other ad

More information

Incremental calculation of weighted mean and variance

Incremental calculation of weighted mean and variance Icremetal calculatio of weighted mea ad variace Toy Fich faf@cam.ac.uk dot@dotat.at Uiversity of Cambridge Computig Service February 009 Abstract I these otes I eplai how to derive formulae for umerically

More information

Lecture 3. denote the orthogonal complement of S k. Then. 1 x S k. n. 2 x T Ax = ( ) λ x. with x = 1, we have. i = λ k x 2 = λ k.

Lecture 3. denote the orthogonal complement of S k. Then. 1 x S k. n. 2 x T Ax = ( ) λ x. with x = 1, we have. i = λ k x 2 = λ k. 18.409 A Algorithmist s Toolkit September 17, 009 Lecture 3 Lecturer: Joatha Keler Scribe: Adre Wibisoo 1 Outlie Today s lecture covers three mai parts: Courat-Fischer formula ad Rayleigh quotiets The

More information

How To Solve The Homewor Problem Beautifully

How To Solve The Homewor Problem Beautifully Egieerig 33 eautiful Homewor et 3 of 7 Kuszmar roblem.5.5 large departmet store sells sport shirts i three sizes small, medium, ad large, three patters plaid, prit, ad stripe, ad two sleeve legths log

More information

Repeating Decimals are decimal numbers that have number(s) after the decimal point that repeat in a pattern.

Repeating Decimals are decimal numbers that have number(s) after the decimal point that repeat in a pattern. 5.5 Fractios ad Decimals Steps for Chagig a Fractio to a Decimal. Simplify the fractio, if possible. 2. Divide the umerator by the deomiator. d d Repeatig Decimals Repeatig Decimals are decimal umbers

More information

UC Berkeley Department of Electrical Engineering and Computer Science. EE 126: Probablity and Random Processes. Solutions 9 Spring 2006

UC Berkeley Department of Electrical Engineering and Computer Science. EE 126: Probablity and Random Processes. Solutions 9 Spring 2006 Exam format UC Bereley Departmet of Electrical Egieerig ad Computer Sciece EE 6: Probablity ad Radom Processes Solutios 9 Sprig 006 The secod midterm will be held o Wedesday May 7; CHECK the fial exam

More information

CS103X: Discrete Structures Homework 4 Solutions

CS103X: Discrete Structures Homework 4 Solutions CS103X: Discrete Structures Homewor 4 Solutios Due February 22, 2008 Exercise 1 10 poits. Silico Valley questios: a How may possible six-figure salaries i whole dollar amouts are there that cotai at least

More information

Confidence Intervals. CI for a population mean (σ is known and n > 30 or the variable is normally distributed in the.

Confidence Intervals. CI for a population mean (σ is known and n > 30 or the variable is normally distributed in the. Cofidece Itervals A cofidece iterval is a iterval whose purpose is to estimate a parameter (a umber that could, i theory, be calculated from the populatio, if measuremets were available for the whole populatio).

More information

Asymptotic Growth of Functions

Asymptotic Growth of Functions CMPS Itroductio to Aalysis of Algorithms Fall 3 Asymptotic Growth of Fuctios We itroduce several types of asymptotic otatio which are used to compare the performace ad efficiecy of algorithms As we ll

More information

Overview. Learning Objectives. Point Estimate. Estimation. Estimating the Value of a Parameter Using Confidence Intervals

Overview. Learning Objectives. Point Estimate. Estimation. Estimating the Value of a Parameter Using Confidence Intervals Overview Estimatig the Value of a Parameter Usig Cofidece Itervals We apply the results about the sample mea the problem of estimatio Estimatio is the process of usig sample data estimate the value of

More information

Lesson 17 Pearson s Correlation Coefficient

Lesson 17 Pearson s Correlation Coefficient Outlie Measures of Relatioships Pearso s Correlatio Coefficiet (r) -types of data -scatter plots -measure of directio -measure of stregth Computatio -covariatio of X ad Y -uique variatio i X ad Y -measurig

More information

Listing terms of a finite sequence List all of the terms of each finite sequence. a) a n n 2 for 1 n 5 1 b) a n for 1 n 4 n 2

Listing terms of a finite sequence List all of the terms of each finite sequence. a) a n n 2 for 1 n 5 1 b) a n for 1 n 4 n 2 74 (4 ) Chapter 4 Sequeces ad Series 4. SEQUENCES I this sectio Defiitio Fidig a Formula for the th Term The word sequece is a familiar word. We may speak of a sequece of evets or say that somethig is

More information

Definition. A variable X that takes on values X 1, X 2, X 3,...X k with respective frequencies f 1, f 2, f 3,...f k has mean

Definition. A variable X that takes on values X 1, X 2, X 3,...X k with respective frequencies f 1, f 2, f 3,...f k has mean 1 Social Studies 201 October 13, 2004 Note: The examples i these otes may be differet tha used i class. However, the examples are similar ad the methods used are idetical to what was preseted i class.

More information

Department of Computer Science, University of Otago

Department of Computer Science, University of Otago Departmet of Computer Sciece, Uiversity of Otago Techical Report OUCS-2006-09 Permutatios Cotaiig May Patters Authors: M.H. Albert Departmet of Computer Sciece, Uiversity of Otago Micah Colema, Rya Fly

More information

Normal Distribution.

Normal Distribution. Normal Distributio www.icrf.l Normal distributio I probability theory, the ormal or Gaussia distributio, is a cotiuous probability distributio that is ofte used as a first approimatio to describe realvalued

More information

WHEN IS THE (CO)SINE OF A RATIONAL ANGLE EQUAL TO A RATIONAL NUMBER?

WHEN IS THE (CO)SINE OF A RATIONAL ANGLE EQUAL TO A RATIONAL NUMBER? WHEN IS THE (CO)SINE OF A RATIONAL ANGLE EQUAL TO A RATIONAL NUMBER? JÖRG JAHNEL 1. My Motivatio Some Sort of a Itroductio Last term I tought Topological Groups at the Göttige Georg August Uiversity. This

More information

where: T = number of years of cash flow in investment's life n = the year in which the cash flow X n i = IRR = the internal rate of return

where: T = number of years of cash flow in investment's life n = the year in which the cash flow X n i = IRR = the internal rate of return EVALUATING ALTERNATIVE CAPITAL INVESTMENT PROGRAMS By Ke D. Duft, Extesio Ecoomist I the March 98 issue of this publicatio we reviewed the procedure by which a capital ivestmet project was assessed. The

More information

THE REGRESSION MODEL IN MATRIX FORM. For simple linear regression, meaning one predictor, the model is. for i = 1, 2, 3,, n

THE REGRESSION MODEL IN MATRIX FORM. For simple linear regression, meaning one predictor, the model is. for i = 1, 2, 3,, n We will cosider the liear regressio model i matrix form. For simple liear regressio, meaig oe predictor, the model is i = + x i + ε i for i =,,,, This model icludes the assumptio that the ε i s are a sample

More information

FOUNDATIONS OF MATHEMATICS AND PRE-CALCULUS GRADE 10

FOUNDATIONS OF MATHEMATICS AND PRE-CALCULUS GRADE 10 FOUNDATIONS OF MATHEMATICS AND PRE-CALCULUS GRADE 10 [C] Commuicatio Measuremet A1. Solve problems that ivolve liear measuremet, usig: SI ad imperial uits of measure estimatio strategies measuremet strategies.

More information

Basic Elements of Arithmetic Sequences and Series

Basic Elements of Arithmetic Sequences and Series MA40S PRE-CALCULUS UNIT G GEOMETRIC SEQUENCES CLASS NOTES (COMPLETED NO NEED TO COPY NOTES FROM OVERHEAD) Basic Elemets of Arithmetic Sequeces ad Series Objective: To establish basic elemets of arithmetic

More information

NATIONAL SENIOR CERTIFICATE GRADE 12

NATIONAL SENIOR CERTIFICATE GRADE 12 NATIONAL SENIOR CERTIFICATE GRADE MATHEMATICS P EXEMPLAR 04 MARKS: 50 TIME: 3 hours This questio paper cosists of 8 pages ad iformatio sheet. Please tur over Mathematics/P DBE/04 NSC Grade Eemplar INSTRUCTIONS

More information

AP Calculus AB 2006 Scoring Guidelines Form B

AP Calculus AB 2006 Scoring Guidelines Form B AP Calculus AB 6 Scorig Guidelies Form B The College Board: Coectig Studets to College Success The College Board is a ot-for-profit membership associatio whose missio is to coect studets to college success

More information

7.1 Finding Rational Solutions of Polynomial Equations

7.1 Finding Rational Solutions of Polynomial Equations 4 Locker LESSON 7. Fidig Ratioal Solutios of Polyomial Equatios Name Class Date 7. Fidig Ratioal Solutios of Polyomial Equatios Essetial Questio: How do you fid the ratioal roots of a polyomial equatio?

More information

Lecture 4: Cheeger s Inequality

Lecture 4: Cheeger s Inequality Spectral Graph Theory ad Applicatios WS 0/0 Lecture 4: Cheeger s Iequality Lecturer: Thomas Sauerwald & He Su Statemet of Cheeger s Iequality I this lecture we assume for simplicity that G is a d-regular

More information

1. C. The formula for the confidence interval for a population mean is: x t, which was

1. C. The formula for the confidence interval for a population mean is: x t, which was s 1. C. The formula for the cofidece iterval for a populatio mea is: x t, which was based o the sample Mea. So, x is guarateed to be i the iterval you form.. D. Use the rule : p-value

More information

Building Blocks Problem Related to Harmonic Series

Building Blocks Problem Related to Harmonic Series TMME, vol3, o, p.76 Buildig Blocks Problem Related to Harmoic Series Yutaka Nishiyama Osaka Uiversity of Ecoomics, Japa Abstract: I this discussio I give a eplaatio of the divergece ad covergece of ifiite

More information

Mathematical goals. Starting points. Materials required. Time needed

Mathematical goals. Starting points. Materials required. Time needed Level A1 of challege: C A1 Mathematical goals Startig poits Materials required Time eeded Iterpretig algebraic expressios To help learers to: traslate betwee words, symbols, tables, ad area represetatios

More information

Escola Federal de Engenharia de Itajubá

Escola Federal de Engenharia de Itajubá Escola Federal de Egeharia de Itajubá Departameto de Egeharia Mecâica Pós-Graduação em Egeharia Mecâica MPF04 ANÁLISE DE SINAIS E AQUISÇÃO DE DADOS SINAIS E SISTEMAS Trabalho 02 (MATLAB) Prof. Dr. José

More information

Measures of Spread and Boxplots Discrete Math, Section 9.4

Measures of Spread and Boxplots Discrete Math, Section 9.4 Measures of Spread ad Boxplots Discrete Math, Sectio 9.4 We start with a example: Example 1: Comparig Mea ad Media Compute the mea ad media of each data set: S 1 = {4, 6, 8, 10, 1, 14, 16} S = {4, 7, 9,

More information

Hypothesis testing. Null and alternative hypotheses

Hypothesis testing. Null and alternative hypotheses Hypothesis testig Aother importat use of samplig distributios is to test hypotheses about populatio parameters, e.g. mea, proportio, regressio coefficiets, etc. For example, it is possible to stipulate

More information

Ekkehart Schlicht: Economic Surplus and Derived Demand

Ekkehart Schlicht: Economic Surplus and Derived Demand Ekkehart Schlicht: Ecoomic Surplus ad Derived Demad Muich Discussio Paper No. 2006-17 Departmet of Ecoomics Uiversity of Muich Volkswirtschaftliche Fakultät Ludwig-Maximilias-Uiversität Müche Olie at http://epub.ub.ui-mueche.de/940/

More information

Chapter 5 Unit 1. IET 350 Engineering Economics. Learning Objectives Chapter 5. Learning Objectives Unit 1. Annual Amount and Gradient Functions

Chapter 5 Unit 1. IET 350 Engineering Economics. Learning Objectives Chapter 5. Learning Objectives Unit 1. Annual Amount and Gradient Functions Chapter 5 Uit Aual Amout ad Gradiet Fuctios IET 350 Egieerig Ecoomics Learig Objectives Chapter 5 Upo completio of this chapter you should uderstad: Calculatig future values from aual amouts. Calculatig

More information

Confidence Intervals for One Mean

Confidence Intervals for One Mean Chapter 420 Cofidece Itervals for Oe Mea Itroductio This routie calculates the sample size ecessary to achieve a specified distace from the mea to the cofidece limit(s) at a stated cofidece level for a

More information

REVIEW OF INTEGRATION

REVIEW OF INTEGRATION REVIEW OF INTEGRATION Trig Fuctios ad Itegratio by Parts Oeriew I this ote we will reiew how to ealuate the sorts of itegrals we ecouter i ealuatig Fourier series. These will iclude itegratio of trig fuctios

More information

.04. This means $1000 is multiplied by 1.02 five times, once for each of the remaining sixmonth

.04. This means $1000 is multiplied by 1.02 five times, once for each of the remaining sixmonth Questio 1: What is a ordiary auity? Let s look at a ordiary auity that is certai ad simple. By this, we mea a auity over a fixed term whose paymet period matches the iterest coversio period. Additioally,

More information

CME 302: NUMERICAL LINEAR ALGEBRA FALL 2005/06 LECTURE 8

CME 302: NUMERICAL LINEAR ALGEBRA FALL 2005/06 LECTURE 8 CME 30: NUMERICAL LINEAR ALGEBRA FALL 005/06 LECTURE 8 GENE H GOLUB 1 Positive Defiite Matrices A matrix A is positive defiite if x Ax > 0 for all ozero x A positive defiite matrix has real ad positive

More information

hp calculators HP 12C Statistics - average and standard deviation Average and standard deviation concepts HP12C average and standard deviation

hp calculators HP 12C Statistics - average and standard deviation Average and standard deviation concepts HP12C average and standard deviation HP 1C Statistics - average ad stadard deviatio Average ad stadard deviatio cocepts HP1C average ad stadard deviatio Practice calculatig averages ad stadard deviatios with oe or two variables HP 1C Statistics

More information

Math C067 Sampling Distributions

Math C067 Sampling Distributions Math C067 Samplig Distributios Sample Mea ad Sample Proportio Richard Beigel Some time betwee April 16, 2007 ad April 16, 2007 Examples of Samplig A pollster may try to estimate the proportio of voters

More information

CHAPTER 11 Financial mathematics

CHAPTER 11 Financial mathematics CHAPTER 11 Fiacial mathematics I this chapter you will: Calculate iterest usig the simple iterest formula ( ) Use the simple iterest formula to calculate the pricipal (P) Use the simple iterest formula

More information

Cooley-Tukey. Tukey FFT Algorithms. FFT Algorithms. Cooley

Cooley-Tukey. Tukey FFT Algorithms. FFT Algorithms. Cooley Cooley Cooley-Tuey Tuey FFT Algorithms FFT Algorithms Cosider a legth- sequece x[ with a -poit DFT X[ where Represet the idices ad as +, +, Cooley Cooley-Tuey Tuey FFT Algorithms FFT Algorithms Usig these

More information

5 Boolean Decision Trees (February 11)

5 Boolean Decision Trees (February 11) 5 Boolea Decisio Trees (February 11) 5.1 Graph Coectivity Suppose we are give a udirected graph G, represeted as a boolea adjacecy matrix = (a ij ), where a ij = 1 if ad oly if vertices i ad j are coected

More information

Overview of some probability distributions.

Overview of some probability distributions. Lecture Overview of some probability distributios. I this lecture we will review several commo distributios that will be used ofte throughtout the class. Each distributio is usually described by its probability

More information

Maximum Likelihood Estimators.

Maximum Likelihood Estimators. Lecture 2 Maximum Likelihood Estimators. Matlab example. As a motivatio, let us look at oe Matlab example. Let us geerate a radom sample of size 00 from beta distributio Beta(5, 2). We will lear the defiitio

More information

Annuities Under Random Rates of Interest II By Abraham Zaks. Technion I.I.T. Haifa ISRAEL and Haifa University Haifa ISRAEL.

Annuities Under Random Rates of Interest II By Abraham Zaks. Technion I.I.T. Haifa ISRAEL and Haifa University Haifa ISRAEL. Auities Uder Radom Rates of Iterest II By Abraham Zas Techio I.I.T. Haifa ISRAEL ad Haifa Uiversity Haifa ISRAEL Departmet of Mathematics, Techio - Israel Istitute of Techology, 3000, Haifa, Israel I memory

More information

Modified Line Search Method for Global Optimization

Modified Line Search Method for Global Optimization Modified Lie Search Method for Global Optimizatio Cria Grosa ad Ajith Abraham Ceter of Excellece for Quatifiable Quality of Service Norwegia Uiversity of Sciece ad Techology Trodheim, Norway {cria, ajith}@q2s.tu.o

More information

Chapter 7: Confidence Interval and Sample Size

Chapter 7: Confidence Interval and Sample Size Chapter 7: Cofidece Iterval ad Sample Size Learig Objectives Upo successful completio of Chapter 7, you will be able to: Fid the cofidece iterval for the mea, proportio, ad variace. Determie the miimum

More information

Hypergeometric Distributions

Hypergeometric Distributions 7.4 Hypergeometric Distributios Whe choosig the startig lie-up for a game, a coach obviously has to choose a differet player for each positio. Similarly, whe a uio elects delegates for a covetio or you

More information

Convexity, Inequalities, and Norms

Convexity, Inequalities, and Norms Covexity, Iequalities, ad Norms Covex Fuctios You are probably familiar with the otio of cocavity of fuctios. Give a twicedifferetiable fuctio ϕ: R R, We say that ϕ is covex (or cocave up) if ϕ (x) 0 for

More information

0.7 0.6 0.2 0 0 96 96.5 97 97.5 98 98.5 99 99.5 100 100.5 96.5 97 97.5 98 98.5 99 99.5 100 100.5

0.7 0.6 0.2 0 0 96 96.5 97 97.5 98 98.5 99 99.5 100 100.5 96.5 97 97.5 98 98.5 99 99.5 100 100.5 Sectio 13 Kolmogorov-Smirov test. Suppose that we have a i.i.d. sample X 1,..., X with some ukow distributio P ad we would like to test the hypothesis that P is equal to a particular distributio P 0, i.e.

More information

5.4 Amortization. Question 1: How do you find the present value of an annuity? Question 2: How is a loan amortized?

5.4 Amortization. Question 1: How do you find the present value of an annuity? Question 2: How is a loan amortized? 5.4 Amortizatio Questio 1: How do you fid the preset value of a auity? Questio 2: How is a loa amortized? Questio 3: How do you make a amortizatio table? Oe of the most commo fiacial istrumets a perso

More information

The following example will help us understand The Sampling Distribution of the Mean. C1 C2 C3 C4 C5 50 miles 84 miles 38 miles 120 miles 48 miles

The following example will help us understand The Sampling Distribution of the Mean. C1 C2 C3 C4 C5 50 miles 84 miles 38 miles 120 miles 48 miles The followig eample will help us uderstad The Samplig Distributio of the Mea Review: The populatio is the etire collectio of all idividuals or objects of iterest The sample is the portio of the populatio

More information

Lesson 15 ANOVA (analysis of variance)

Lesson 15 ANOVA (analysis of variance) Outlie Variability -betwee group variability -withi group variability -total variability -F-ratio Computatio -sums of squares (betwee/withi/total -degrees of freedom (betwee/withi/total -mea square (betwee/withi

More information

Solving Logarithms and Exponential Equations

Solving Logarithms and Exponential Equations Solvig Logarithms ad Epoetial Equatios Logarithmic Equatios There are two major ideas required whe solvig Logarithmic Equatios. The first is the Defiitio of a Logarithm. You may recall from a earlier topic:

More information

Basic Measurement Issues. Sampling Theory and Analog-to-Digital Conversion

Basic Measurement Issues. Sampling Theory and Analog-to-Digital Conversion Theory ad Aalog-to-Digital Coversio Itroductio/Defiitios Aalog-to-digital coversio Rate Frequecy Aalysis Basic Measuremet Issues Reliability the extet to which a measuremet procedure yields the same results

More information

Complex Numbers. where x represents a root of Equation 1. Note that the ± sign tells us that quadratic equations will have

Complex Numbers. where x represents a root of Equation 1. Note that the ± sign tells us that quadratic equations will have Comple Numbers I spite of Calvi s discomfiture, imagiar umbers (a subset of the set of comple umbers) eist ad are ivaluable i mathematics, egieerig, ad sciece. I fact, i certai fields, such as electrical

More information

MATH 083 Final Exam Review

MATH 083 Final Exam Review MATH 08 Fial Eam Review Completig the problems i this review will greatly prepare you for the fial eam Calculator use is ot required, but you are permitted to use a calculator durig the fial eam period

More information

Class Meeting # 16: The Fourier Transform on R n

Class Meeting # 16: The Fourier Transform on R n MATH 18.152 COUSE NOTES - CLASS MEETING # 16 18.152 Itroductio to PDEs, Fall 2011 Professor: Jared Speck Class Meetig # 16: The Fourier Trasform o 1. Itroductio to the Fourier Trasform Earlier i the course,

More information

Lecture 4: Cauchy sequences, Bolzano-Weierstrass, and the Squeeze theorem

Lecture 4: Cauchy sequences, Bolzano-Weierstrass, and the Squeeze theorem Lecture 4: Cauchy sequeces, Bolzao-Weierstrass, ad the Squeeze theorem The purpose of this lecture is more modest tha the previous oes. It is to state certai coditios uder which we are guarateed that limits

More information

Output Analysis (2, Chapters 10 &11 Law)

Output Analysis (2, Chapters 10 &11 Law) B. Maddah ENMG 6 Simulatio 05/0/07 Output Aalysis (, Chapters 10 &11 Law) Comparig alterative system cofiguratio Sice the output of a simulatio is radom, the comparig differet systems via simulatio should

More information

1 Correlation and Regression Analysis

1 Correlation and Regression Analysis 1 Correlatio ad Regressio Aalysis I this sectio we will be ivestigatig the relatioship betwee two cotiuous variable, such as height ad weight, the cocetratio of a ijected drug ad heart rate, or the cosumptio

More information

Z-TEST / Z-STATISTIC: used to test hypotheses about. µ when the population standard deviation is unknown

Z-TEST / Z-STATISTIC: used to test hypotheses about. µ when the population standard deviation is unknown Z-TEST / Z-STATISTIC: used to test hypotheses about µ whe the populatio stadard deviatio is kow ad populatio distributio is ormal or sample size is large T-TEST / T-STATISTIC: used to test hypotheses about

More information