Uniform Circular Motion. Banked and Unbanked Curves Circular Orbits Nonuniform Circular Motion Tangential and Angular Acceleration Artificial Gravity

Size: px
Start display at page:

Download "Uniform Circular Motion. Banked and Unbanked Curves Circular Orbits Nonuniform Circular Motion Tangential and Angular Acceleration Artificial Gravity"

Transcription

1 Chapte 5: Cicula Motion Unifom Cicula Motion Radial Acceleation Banked and Unbanked Cues Cicula Obits Nonunifom Cicula Motion Tangential and Angula Acceleation Atificial Gaity 1

2 Unifom Cicula Motion y θ f Δθ θ i x θ is the angula position. Angula displacement: Δθ θ f θ i Note: angles measued CW ae negatie and angles measued CCW ae positie. θ is measued in adians. π adians eolution

3 The aeage and instantaneous angula elocities ae: ω a Δθ Δθ and ω lim Δt Δt 0 Δt ω is measued in ads/sec. 3

4 y θ f aclength s Δθ Δθ θ i x Δθ s Δθ is a atio of two lengths; it is a dimensionless atio! 4

5 y θ f An object moes along a cicula path of adius ; what is its aeage speed? Δθ θ i x total distance Δ θ Δ θ a total time Δt Δt ω a Also, ω (instantaneous alues). 5

6 The time it takes to go one time aound a closed path is called the peiod (T). total distance total time a π T Compaing to ω: π ω πf T f is called the fequency, the numbe of eolutions (o cycles) pe second. 6

7 Centipetal Acceleation Conside an object moing in a cicula path of adius at constant speed. y Hee, Δ 0. The diection of is changing. x If Δ 0, then a 0. The net foce cannot be zeo. 7

8 Conclusion: to moe in a cicula path, an object must hae a nonzeo net foce acting on it. It is still tue that ΣF ma, but what acceleation do we use? 8

9 The elocity of a paticle is tangent to its path. Fo an object moing in unifom cicula motion, the acceleation is adially inwad. 9

10 The magnitude of the centipedal (o adial) acceleation is: a ω ω 10

11 Unifom Cicula Motion Slide 6-13

12 Examples The disk in a had die in a desktop compute otates at 700 pm. The disk has a diamete of 5.1 in (13 cm.) What is the angula speed of the disk? The had die disk in the peious example otates at 700 pm. The disk has a diamete of 5.1 in (13 cm.) What is the speed of a point 6.0 cm fom the cente axle? What is the acceleation of this point on the disk? Slide 6-14

13 Quiz 1. Fo unifom cicula motion, the acceleation A. is paallel to the elocity. B. is diected towad the cente of the cicle. C. is lage fo a lage obit at the same speed. D. is always due to gaity. E. is always negatie. Slide 6-

14 Answe 1. Fo unifom cicula motion, the acceleation B. is diected towad the cente of the cicle. Slide 6-3

15 Undestanding When a ball on the end of a sting is swung in a etical cicle: We know that the ball is acceleating because A. the speed is changing. B. the diection is changing. C. the speed and the diection ae changing. Slide 6-9

16 Answe When a ball on the end of a sting is swung in a etical cicle: We know that the ball is acceleating because B. the diection is changing. Slide 6-10

17 Undestanding When a ball on the end of a sting is swung in a etical cicle: What is the diection of the acceleation of the ball? A. Tangent to the cicle, in the diection of the ball s motion B. Towad the cente of the cicle Slide 6-11

18 Answe When a ball on the end of a sting is swung in a etical cicle: What is the diection of the acceleation of the ball? B. Towad the cente of the cicle Slide 6-1

19 Cicula Motion Dynamics When the ball eaches the beak in the cicle, which path will it follow? Slide 6-19

20 Answe When the ball eaches the beak in the cicle, which path will it follow? Slide 6-0

21 Foces in Cicula Motion ω a ωω { m F { net ma, towad cente of cicle} Slide 6-1

22 Example A leel cue on a county oad has a adius of 150 m. What is the maximum speed at which this cue can be safely negotiated on a ainy day when the coefficient of fiction between the ties on a ca and the oad is 0.40? Slide 6-4

23 Diing oe a Rise A ca of mass 1500 kg goes oe a hill at a speed of 0 m/s. The shape of the hill is appoximately cicula, with a adius of 60 m, as in the figue at ight. When the ca is at the highest point of the hill, a. What is the foce of gaity on the ca? b. What is the nomal foce of the oad on the ca at this point? Slide 6-6

24 Example: The oto is an amusement pak ide whee people stand against the inside id of a cylinde. Once the cylinde is spinning fast enough, the floo dops out. (a) What foce keeps the people fom falling out the bottom of the cylinde? y Daw an FBD fo a peson with thei back to the wall: x N f s w It is the foce of static fiction. 4

25 Example continued: (b) If μ s 0.40 and the cylinde has.5 m, what is the minimum angula speed of the cylinde so that the people don t fall out? Apply Newton s nd Law: ( 1) Fx N ma ( ) F f w 0 y s mω Fom (): f s w Fom (1) μ N s μ ( m ) s ω mg ω g μ s 9.8 m/s m ( )( ) 3.13 ad/s 5

26 Example (text poblem 5.79): A coin is placed on a ecod that is otating at pm. If μ s , how fafomthe fom cente of the ecod can the coin be placed without haing it slip off? Daw an FBD fo the coin: y N x f s Apply Newton s nd Law: () 1 Fx fs ma ( ) F N w 0 F y mω w 6

27 Example continued: () Fom 1 f s : f s mω ( mg ) m ω μ N μ s s Fom () μs g Soling fo : What is ω? ω ω e π ad 1min 33.3 min 1e 60 sec 3.5 ad/s μ g ω ( )( m/s ) 0.08 m s ( 3.50 ad/s) 7

28 Unbanked and Banked Cues Example (text poblem 5.0): A highway cue has a adius of 85 m. At what angle should the oad be banked so that a ca taeling at 6.8 m/s has no tendency to skid sideways on the oad? (Hint: No tendency to skid means the fictional foce is zeo.) θ Take the ca s motion to be into the page. 8

29 Example continued: y FBD fo the ca: θ N x w Apply Newton s Second Law: ( 1 ) F N sin x ( ) F N cosθ w 0 y θ ma m 9

30 Example continued: Rewite (1) and (): ( 1) N sinθ m ( ) N cosθθ mg Diide (1) by (): ( 6.8 m/s) ( 9.8 m/s )( 85 m) tanθ g θ

31 The Foce of Gaity Slide 6-31

32 Cicula Obits Conside an object of mass m in a cicula obit about the Eath. Eath The only foce on the satellite is the foce of gaity: F F g GmsM e msa m s Sole fo the speed of the satellite: Gm M s e GM e m s 3

33 Example: How high aboe the suface of the Eath does a satellite need to be so that it has an obit peiod of 4 hous? Fom peious slide: GM e Also need, π T Combine these expessions and sole fo : GM e T 4π 1 3 ( 11 )( Nm /kg kg) ( s) 4π m 1 3 Re + h h Re 35,000 km 33

34 GM e T 4π 1 3 is Keple s Thid Law. It can be genealized to: GM T 4π 1 3 Whee M is the mass of the cental body. Fo example, it would be M sun if speaking of the planets in the sola system. 34

35 Example: What is the minimum speed fo the ca so that it maintains i contact t with the loop when it is in the pictued position? FBD fo the ca at the top of the loop: y Apply Newton s nd Law: N w x F y N w N + w ma m m 35

36 Example continued: The appaent weight at the top of loop is: N N + w m m g N 0 when N m g 0 g This is the minimum speed needed to make it aound the loop. 36

37 Example continued: Conside the ca at the bottom of the loop; how does the appaent weight compae to the tue weight? FBD fo the ca at the bottom of the loop: y N x w Apply Newton s nd Law: F y N w ma N w m N m + g c m Hee, N > mg 37

38 Nonunifom Cicula Motion Hee, the speed is not constant. a a a t Thee is now an acceleation tangent to the path of the paticle. The net acceleation of the body is a t a a + a 38

39 a t a a t changes the magnitude of. a a changes the diection of. Can wite: F F t ma ma t 39

40 Atificial Gaity A lage otating cylinde in deep space (g 0). 40

41 FBD fo peson at the bottom position FBD fo peson at the top position N y y x x Apply Newton s nd Law to each: Fy N ma mω Fy N ma mω N 41

42 Example (text poblem 5.56): A space station is shaped like a ing and otates t to simulate gaity. If the adius of the space station is 10m, at what fequency must it otate so that it simulates Eath s gaity? Using the esult fom the peious slide: ω F y N m N ma mg m mω g 0.8 ad/sec The fequency is f (ω/π) Hz (o.7 pm). 4

43 Tangential and Angula Acceleation The aeage and instantaneous angula acceleation ae: α a Δω Δω and α lim Δ t Δ t 0 Δt α is measued in ads/sec. 43

44 Recalling that the tangential elocity is t ω means the tangential acceleation is Δt Δω α t Δt Δt α 44

45 The kinematic equations: Linea Angula t a Δ α ω ω Δ t t a t x x Δ Δ + Δ θ α ω θ θ Δ Δ + Δ t t x a Δ + 0 θ α ω ω Δ + 0 With α ω a t t and 45

46 Example (text poblem 5.66): A high speed dental dill is otating ti at ads/sec. d/ Though hhow many degees does the dill otate in 1.00 sec? Gien: ω ads/sec; Δt 1 sec; α 0 Want Δθ. 1 θ θ0 + ω0δt + αδt θ θ + ω t Δθ ω 0 0Δ ( ads/sec)( 1.0 sec) 0Δt ads degees 46

FXA 2008. Candidates should be able to : Describe how a mass creates a gravitational field in the space around it.

FXA 2008. Candidates should be able to : Describe how a mass creates a gravitational field in the space around it. Candidates should be able to : Descibe how a mass ceates a gavitational field in the space aound it. Define gavitational field stength as foce pe unit mass. Define and use the peiod of an object descibing

More information

Magnetic Field and Magnetic Forces. Young and Freedman Chapter 27

Magnetic Field and Magnetic Forces. Young and Freedman Chapter 27 Magnetic Field and Magnetic Foces Young and Feedman Chapte 27 Intoduction Reiew - electic fields 1) A chage (o collection of chages) poduces an electic field in the space aound it. 2) The electic field

More information

Determining solar characteristics using planetary data

Determining solar characteristics using planetary data Detemining sola chaacteistics using planetay data Intoduction The Sun is a G type main sequence sta at the cente of the Sola System aound which the planets, including ou Eath, obit. In this inestigation

More information

Exam 3: Equation Summary

Exam 3: Equation Summary MASSACHUSETTS INSTITUTE OF TECHNOLOGY Depatment of Physics Physics 8.1 TEAL Fall Tem 4 Momentum: p = mv, F t = p, Fext ave t= t f t= Exam 3: Equation Summay total = Impulse: I F( t ) = p Toque: τ = S S,P

More information

7 Circular Motion. 7-1 Centripetal Acceleration and Force. Period, Frequency, and Speed. Vocabulary

7 Circular Motion. 7-1 Centripetal Acceleration and Force. Period, Frequency, and Speed. Vocabulary 7 Cicula Motion 7-1 Centipetal Acceleation and Foce Peiod, Fequency, and Speed Vocabulay Vocabulay Peiod: he time it takes fo one full otation o evolution of an object. Fequency: he numbe of otations o

More information

Experiment 6: Centripetal Force

Experiment 6: Centripetal Force Name Section Date Intoduction Expeiment 6: Centipetal oce This expeiment is concened with the foce necessay to keep an object moving in a constant cicula path. Accoding to Newton s fist law of motion thee

More information

12. Rolling, Torque, and Angular Momentum

12. Rolling, Torque, and Angular Momentum 12. olling, Toque, and Angula Momentum 1 olling Motion: A motion that is a combination of otational and tanslational motion, e.g. a wheel olling down the oad. Will only conside olling with out slipping.

More information

2 r2 θ = r2 t. (3.59) The equal area law is the statement that the term in parentheses,

2 r2 θ = r2 t. (3.59) The equal area law is the statement that the term in parentheses, 3.4. KEPLER S LAWS 145 3.4 Keple s laws You ae familia with the idea that one can solve some mechanics poblems using only consevation of enegy and (linea) momentum. Thus, some of what we see as objects

More information

Gravitation. AP Physics C

Gravitation. AP Physics C Gavitation AP Physics C Newton s Law of Gavitation What causes YOU to be pulled down? THE EARTH.o moe specifically the EARTH S MASS. Anything that has MASS has a gavitational pull towads it. F α Mm g What

More information

AP Physics Electromagnetic Wrap Up

AP Physics Electromagnetic Wrap Up AP Physics Electomagnetic Wap Up Hee ae the gloious equations fo this wondeful section. F qsin This is the equation fo the magnetic foce acting on a moing chaged paticle in a magnetic field. The angle

More information

10. Collisions. Before During After

10. Collisions. Before During After 10. Collisions Use conseation of momentum and enegy and the cente of mass to undestand collisions between two objects. Duing a collision, two o moe objects exet a foce on one anothe fo a shot time: -F(t)

More information

Worked Examples. v max =?

Worked Examples. v max =? Exaple iction + Unifo Cicula Motion Cicula Hill A ca i diing oe a ei-cicula hill of adiu. What i the fatet the ca can die oe the top of the hill without it tie lifting off of the gound? ax? (1) Copehend

More information

Uniform Rectilinear Motion

Uniform Rectilinear Motion Engineeing Mechanics : Dynamics Unifom Rectilinea Motion Fo paticle in unifom ectilinea motion, the acceleation is zeo and the elocity is constant. d d t constant t t 11-1 Engineeing Mechanics : Dynamics

More information

Chapter 22. Outside a uniformly charged sphere, the field looks like that of a point charge at the center of the sphere.

Chapter 22. Outside a uniformly charged sphere, the field looks like that of a point charge at the center of the sphere. Chapte.3 What is the magnitude of a point chage whose electic field 5 cm away has the magnitude of.n/c. E E 5.56 1 11 C.5 An atom of plutonium-39 has a nuclea adius of 6.64 fm and atomic numbe Z94. Assuming

More information

PY1052 Problem Set 8 Autumn 2004 Solutions

PY1052 Problem Set 8 Autumn 2004 Solutions PY052 Poblem Set 8 Autumn 2004 Solutions H h () A solid ball stats fom est at the uppe end of the tack shown and olls without slipping until it olls off the ight-hand end. If H 6.0 m and h 2.0 m, what

More information

PHYSICS 111 HOMEWORK SOLUTION #13. May 1, 2013

PHYSICS 111 HOMEWORK SOLUTION #13. May 1, 2013 PHYSICS 111 HOMEWORK SOLUTION #13 May 1, 2013 0.1 In intoductoy physics laboatoies, a typical Cavendish balance fo measuing the gavitational constant G uses lead sphees with masses of 2.10 kg and 21.0

More information

Phys 2101 Gabriela González. cos. sin. sin

Phys 2101 Gabriela González. cos. sin. sin 1 Phys 101 Gabiela González a m t t ma ma m m T α φ ω φ sin cos α τ α φ τ sin m m α τ I We know all of that aleady!! 3 The figue shows the massive shield doo at a neuton test facility at Lawence Livemoe

More information

(a) The centripetal acceleration of a point on the equator of the Earth is given by v2. The velocity of the earth can be found by taking the ratio of

(a) The centripetal acceleration of a point on the equator of the Earth is given by v2. The velocity of the earth can be found by taking the ratio of Homewok VI Ch. 7 - Poblems 15, 19, 22, 25, 35, 43, 51. Poblem 15 (a) The centipetal acceleation of a point on the equato of the Eath is given by v2. The velocity of the eath can be found by taking the

More information

Introduction to Fluid Mechanics

Introduction to Fluid Mechanics Chapte 1 1 1.6. Solved Examples Example 1.1 Dimensions and Units A body weighs 1 Ibf when exposed to a standad eath gavity g = 3.174 ft/s. (a) What is its mass in kg? (b) What will the weight of this body

More information

Gravitation and Kepler s Laws Newton s Law of Universal Gravitation in vectorial. Gm 1 m 2. r 2

Gravitation and Kepler s Laws Newton s Law of Universal Gravitation in vectorial. Gm 1 m 2. r 2 F Gm Gavitation and Keple s Laws Newton s Law of Univesal Gavitation in vectoial fom: F 12 21 Gm 1 m 2 12 2 ˆ 12 whee the hat (ˆ) denotes a unit vecto as usual. Gavity obeys the supeposition pinciple,

More information

Physics 235 Chapter 5. Chapter 5 Gravitation

Physics 235 Chapter 5. Chapter 5 Gravitation Chapte 5 Gavitation In this Chapte we will eview the popeties of the gavitational foce. The gavitational foce has been discussed in geat detail in you intoductoy physics couses, and we will pimaily focus

More information

Episode 401: Newton s law of universal gravitation

Episode 401: Newton s law of universal gravitation Episode 401: Newton s law of univesal gavitation This episode intoduces Newton s law of univesal gavitation fo point masses, and fo spheical masses, and gets students pactising calculations of the foce

More information

Voltage ( = Electric Potential )

Voltage ( = Electric Potential ) V-1 Voltage ( = Electic Potential ) An electic chage altes the space aound it. Thoughout the space aound evey chage is a vecto thing called the electic field. Also filling the space aound evey chage is

More information

Voltage ( = Electric Potential )

Voltage ( = Electric Potential ) V-1 of 9 Voltage ( = lectic Potential ) An electic chage altes the space aound it. Thoughout the space aound evey chage is a vecto thing called the electic field. Also filling the space aound evey chage

More information

The force between electric charges. Comparing gravity and the interaction between charges. Coulomb s Law. Forces between two charges

The force between electric charges. Comparing gravity and the interaction between charges. Coulomb s Law. Forces between two charges The foce between electic chages Coulomb s Law Two chaged objects, of chage q and Q, sepaated by a distance, exet a foce on one anothe. The magnitude of this foce is given by: kqq Coulomb s Law: F whee

More information

2. Orbital dynamics and tides

2. Orbital dynamics and tides 2. Obital dynamics and tides 2.1 The two-body poblem This efes to the mutual gavitational inteaction of two bodies. An exact mathematical solution is possible and staightfowad. In the case that one body

More information

1240 ev nm 2.5 ev. (4) r 2 or mv 2 = ke2

1240 ev nm 2.5 ev. (4) r 2 or mv 2 = ke2 Chapte 5 Example The helium atom has 2 electonic enegy levels: E 3p = 23.1 ev and E 2s = 20.6 ev whee the gound state is E = 0. If an electon makes a tansition fom 3p to 2s, what is the wavelength of the

More information

4a 4ab b 4 2 4 2 5 5 16 40 25. 5.6 10 6 (count number of places from first non-zero digit to

4a 4ab b 4 2 4 2 5 5 16 40 25. 5.6 10 6 (count number of places from first non-zero digit to . Simplify: 0 4 ( 8) 0 64 ( 8) 0 ( 8) = (Ode of opeations fom left to ight: Paenthesis, Exponents, Multiplication, Division, Addition Subtaction). Simplify: (a 4) + (a ) (a+) = a 4 + a 0 a = a 7. Evaluate

More information

Chapter 30: Magnetic Fields Due to Currents

Chapter 30: Magnetic Fields Due to Currents d Chapte 3: Magnetic Field Due to Cuent A moving electic chage ceate a magnetic field. One of the moe pactical way of geneating a lage magnetic field (.1-1 T) i to ue a lage cuent flowing though a wie.

More information

The Role of Gravity in Orbital Motion

The Role of Gravity in Orbital Motion ! The Role of Gavity in Obital Motion Pat of: Inquiy Science with Datmouth Developed by: Chistophe Caoll, Depatment of Physics & Astonomy, Datmouth College Adapted fom: How Gavity Affects Obits (Ohio State

More information

Multiple choice questions [70 points]

Multiple choice questions [70 points] Multiple choice questions [70 points] Answe all of the following questions. Read each question caefull. Fill the coect bubble on ou scanton sheet. Each question has exactl one coect answe. All questions

More information

Displacement, Velocity And Acceleration

Displacement, Velocity And Acceleration Displacement, Velocity And Acceleation Vectos and Scalas Position Vectos Displacement Speed and Velocity Acceleation Complete Motion Diagams Outline Scala vs. Vecto Scalas vs. vectos Scala : a eal numbe,

More information

Mechanics 1: Work, Power and Kinetic Energy

Mechanics 1: Work, Power and Kinetic Energy Mechanics 1: Wok, Powe and Kinetic Eneg We fist intoduce the ideas of wok and powe. The notion of wok can be viewed as the bidge between Newton s second law, and eneg (which we have et to define and discuss).

More information

TORQUE AND ANGULAR MOMENTUM IN CIRCULAR MOTION

TORQUE AND ANGULAR MOMENTUM IN CIRCULAR MOTION MISN-0-34 TORQUE AND ANGULAR MOMENTUM IN CIRCULAR MOTION shaft TORQUE AND ANGULAR MOMENTUM IN CIRCULAR MOTION by Kiby Mogan, Chalotte, Michigan 1. Intoduction..............................................

More information

Solution Derivations for Capa #8

Solution Derivations for Capa #8 Solution Deivations fo Capa #8 1) A ass spectoete applies a voltage of 2.00 kv to acceleate a singly chaged ion (+e). A 0.400 T field then bends the ion into a cicula path of adius 0.305. What is the ass

More information

Vector Calculus: Are you ready? Vectors in 2D and 3D Space: Review

Vector Calculus: Are you ready? Vectors in 2D and 3D Space: Review Vecto Calculus: Ae you eady? Vectos in D and 3D Space: Review Pupose: Make cetain that you can define, and use in context, vecto tems, concepts and fomulas listed below: Section 7.-7. find the vecto defined

More information

Coordinate Systems L. M. Kalnins, March 2009

Coordinate Systems L. M. Kalnins, March 2009 Coodinate Sstems L. M. Kalnins, Mach 2009 Pupose of a Coodinate Sstem The pupose of a coodinate sstem is to uniquel detemine the position of an object o data point in space. B space we ma liteall mean

More information

F G r. Don't confuse G with g: "Big G" and "little g" are totally different things.

F G r. Don't confuse G with g: Big G and little g are totally different things. G-1 Gavity Newton's Univesal Law of Gavitation (fist stated by Newton): any two masses m 1 and m exet an attactive gavitational foce on each othe accoding to m m G 1 This applies to all masses, not just

More information

Gauss Law. Physics 231 Lecture 2-1

Gauss Law. Physics 231 Lecture 2-1 Gauss Law Physics 31 Lectue -1 lectic Field Lines The numbe of field lines, also known as lines of foce, ae elated to stength of the electic field Moe appopiately it is the numbe of field lines cossing

More information

Forces & Magnetic Dipoles. r r τ = μ B r

Forces & Magnetic Dipoles. r r τ = μ B r Foces & Magnetic Dipoles x θ F θ F. = AI τ = U = Fist electic moto invented by Faaday, 1821 Wie with cuent flow (in cup of Hg) otates aound a a magnet Faaday s moto Wie with cuent otates aound a Pemanent

More information

Chapter 5 Using Newton s Laws: Friction, Circular Motion, Drag Forces. Copyright 2009 Pearson Education, Inc.

Chapter 5 Using Newton s Laws: Friction, Circular Motion, Drag Forces. Copyright 2009 Pearson Education, Inc. Chapter 5 Using Newton s Laws: Friction, Circular Motion, Drag Forces Units of Chapter 5 Applications of Newton s Laws Involving Friction Uniform Circular Motion Kinematics Dynamics of Uniform Circular

More information

Fluids Lecture 15 Notes

Fluids Lecture 15 Notes Fluids Lectue 15 Notes 1. Unifom flow, Souces, Sinks, Doublets Reading: Andeson 3.9 3.12 Unifom Flow Definition A unifom flow consists of a velocit field whee V = uî + vĵ is a constant. In 2-D, this velocit

More information

Figure 2. So it is very likely that the Babylonians attributed 60 units to each side of the hexagon. Its resulting perimeter would then be 360!

Figure 2. So it is very likely that the Babylonians attributed 60 units to each side of the hexagon. Its resulting perimeter would then be 360! 1. What ae angles? Last time, we looked at how the Geeks intepeted measument of lengths. Howeve, as fascinated as they wee with geomety, thee was a shape that was much moe enticing than any othe : the

More information

Solutions for Physics 1301 Course Review (Problems 10 through 18)

Solutions for Physics 1301 Course Review (Problems 10 through 18) Solutions fo Physics 1301 Couse Review (Poblems 10 though 18) 10) a) When the bicycle wheel comes into contact with the step, thee ae fou foces acting on it at that moment: its own weight, Mg ; the nomal

More information

Carter-Penrose diagrams and black holes

Carter-Penrose diagrams and black holes Cate-Penose diagams and black holes Ewa Felinska The basic intoduction to the method of building Penose diagams has been pesented, stating with obtaining a Penose diagam fom Minkowski space. An example

More information

Lab M4: The Torsional Pendulum and Moment of Inertia

Lab M4: The Torsional Pendulum and Moment of Inertia M4.1 Lab M4: The Tosional Pendulum and Moment of netia ntoduction A tosional pendulum, o tosional oscillato, consists of a disk-like mass suspended fom a thin od o wie. When the mass is twisted about the

More information

8.4. Motion of Charged Particles in Magnetic Fields

8.4. Motion of Charged Particles in Magnetic Fields Motion of Chaged Paticles in Magnetic Fields Atos and olecules ae paticles that ae the building blocks of ou uniese. How do scientists study the natue of these sall paticles? The ass spectoete shown in

More information

Mechanics 1: Motion in a Central Force Field

Mechanics 1: Motion in a Central Force Field Mechanics : Motion in a Cental Foce Field We now stud the popeties of a paticle of (constant) ass oving in a paticula tpe of foce field, a cental foce field. Cental foces ae ve ipotant in phsics and engineeing.

More information

Multiple choice questions [60 points]

Multiple choice questions [60 points] 1 Multiple choice questions [60 points] Answe all o the ollowing questions. Read each question caeully. Fill the coect bubble on you scanton sheet. Each question has exactly one coect answe. All questions

More information

Skills Needed for Success in Calculus 1

Skills Needed for Success in Calculus 1 Skills Needed fo Success in Calculus Thee is much appehension fom students taking Calculus. It seems that fo man people, "Calculus" is snonmous with "difficult." Howeve, an teache of Calculus will tell

More information

Chapter 19: Electric Charges, Forces, and Fields ( ) ( 6 )( 6

Chapter 19: Electric Charges, Forces, and Fields ( ) ( 6 )( 6 Chapte 9 lectic Chages, Foces, an Fiels 6 9. One in a million (0 ) ogen molecules in a containe has lost an electon. We assume that the lost electons have been emove fom the gas altogethe. Fin the numbe

More information

A r. (Can you see that this just gives the formula we had above?)

A r. (Can you see that this just gives the formula we had above?) 24-1 (SJP, Phys 1120) lectic flux, and Gauss' law Finding the lectic field due to a bunch of chages is KY! Once you know, you know the foce on any chage you put down - you can pedict (o contol) motion

More information

L-9 Conservation of Energy, Friction and Circular Motion. Kinetic energy. conservation of energy. Potential energy. Up and down the track

L-9 Conservation of Energy, Friction and Circular Motion. Kinetic energy. conservation of energy. Potential energy. Up and down the track L-9 Conseration of Energy, Friction and Circular Motion Kinetic energy, potential energy and conseration of energy What is friction and what determines how big it is? Friction is what keeps our cars moing

More information

Quantity Formula Meaning of variables. 5 C 1 32 F 5 degrees Fahrenheit, 1 bh A 5 area, b 5 base, h 5 height. P 5 2l 1 2w

Quantity Formula Meaning of variables. 5 C 1 32 F 5 degrees Fahrenheit, 1 bh A 5 area, b 5 base, h 5 height. P 5 2l 1 2w 1.4 Rewite Fomulas and Equations Befoe You solved equations. Now You will ewite and evaluate fomulas and equations. Why? So you can apply geometic fomulas, as in Ex. 36. Key Vocabulay fomula solve fo a

More information

Moment and couple. In 3-D, because the determination of the distance can be tedious, a vector approach becomes advantageous. r r

Moment and couple. In 3-D, because the determination of the distance can be tedious, a vector approach becomes advantageous. r r Moment and couple In 3-D, because the detemination of the distance can be tedious, a vecto appoach becomes advantageous. o k j i M k j i M o ) ( ) ( ) ( + + M o M + + + + M M + O A Moment about an abita

More information

Angular acceleration α

Angular acceleration α Angular Acceleration Angular acceleration α measures how rapidly the angular velocity is changing: Slide 7-0 Linear and Circular Motion Compared Slide 7- Linear and Circular Kinematics Compared Slide 7-

More information

Physics HSC Course Stage 6. Space. Part 1: Earth s gravitational field

Physics HSC Course Stage 6. Space. Part 1: Earth s gravitational field Physics HSC Couse Stage 6 Space Pat 1: Eath s gavitational field Contents Intoduction... Weight... 4 The value of g... 7 Measuing g...8 Vaiations in g...11 Calculating g and W...13 You weight on othe

More information

UNIT CIRCLE TRIGONOMETRY

UNIT CIRCLE TRIGONOMETRY UNIT CIRCLE TRIGONOMETRY The Unit Cicle is the cicle centeed at the oigin with adius unit (hence, the unit cicle. The equation of this cicle is + =. A diagam of the unit cicle is shown below: + = - - -

More information

Lecture 7 Force and Motion. Practice with Free-body Diagrams and Newton s Laws

Lecture 7 Force and Motion. Practice with Free-body Diagrams and Newton s Laws Lecture 7 Force and Motion Practice with Free-body Diagrams and Newton s Laws oday we ll just work through as many examples as we can utilizing Newton s Laws and free-body diagrams. Example 1: An eleator

More information

Deflection of Electrons by Electric and Magnetic Fields

Deflection of Electrons by Electric and Magnetic Fields Physics 233 Expeiment 42 Deflection of Electons by Electic and Magnetic Fields Refeences Loain, P. and D.R. Coson, Electomagnetism, Pinciples and Applications, 2nd ed., W.H. Feeman, 199. Intoduction An

More information

Chapter 17 The Kepler Problem: Planetary Mechanics and the Bohr Atom

Chapter 17 The Kepler Problem: Planetary Mechanics and the Bohr Atom Chapte 7 The Keple Poblem: Planetay Mechanics and the Boh Atom Keple s Laws: Each planet moves in an ellipse with the sun at one focus. The adius vecto fom the sun to a planet sweeps out equal aeas in

More information

Lesson 7 Gauss s Law and Electric Fields

Lesson 7 Gauss s Law and Electric Fields Lesson 7 Gauss s Law and Electic Fields Lawence B. Rees 7. You may make a single copy of this document fo pesonal use without witten pemission. 7. Intoduction While it is impotant to gain a solid conceptual

More information

CHAPTER 9 THE TWO BODY PROBLEM IN TWO DIMENSIONS

CHAPTER 9 THE TWO BODY PROBLEM IN TWO DIMENSIONS 9. Intoduction CHAPTER 9 THE TWO BODY PROBLEM IN TWO DIMENSIONS In this chapte we show how Keple s laws can be deived fom Newton s laws of motion and gavitation, and consevation of angula momentum, and

More information

Spirotechnics! September 7, 2011. Amanda Zeringue, Michael Spannuth and Amanda Zeringue Dierential Geometry Project

Spirotechnics! September 7, 2011. Amanda Zeringue, Michael Spannuth and Amanda Zeringue Dierential Geometry Project Spiotechnics! Septembe 7, 2011 Amanda Zeingue, Michael Spannuth and Amanda Zeingue Dieential Geomety Poject 1 The Beginning The geneal consensus of ou goup began with one thought: Spiogaphs ae awesome.

More information

Gravity. A. Law of Gravity. Gravity. Physics: Mechanics. A. The Law of Gravity. Dr. Bill Pezzaglia. B. Gravitational Field. C.

Gravity. A. Law of Gravity. Gravity. Physics: Mechanics. A. The Law of Gravity. Dr. Bill Pezzaglia. B. Gravitational Field. C. Physics: Mechanics 1 Gavity D. Bill Pezzaglia A. The Law of Gavity Gavity B. Gavitational Field C. Tides Updated: 01Jul09 A. Law of Gavity 3 1a. Invese Squae Law 4 1. Invese Squae Law. Newton s 4 th law

More information

Analytical Proof of Newton's Force Laws

Analytical Proof of Newton's Force Laws Analytical Poof of Newton s Foce Laws Page 1 1 Intouction Analytical Poof of Newton's Foce Laws Many stuents intuitively assume that Newton's inetial an gavitational foce laws, F = ma an Mm F = G, ae tue

More information

Physics Core Topic 9.2 Space

Physics Core Topic 9.2 Space Physics 9. Space Syllabus Notes Physics Coe Topic 9. Space Summay of Contextual Outline Scientists daw on othe aeas of science to deelop iable spacecaft Launch, e enty and landing ae dangeous Huge foces

More information

Chapter 4: Fluid Kinematics

Chapter 4: Fluid Kinematics Oveview Fluid kinematics deals with the motion of fluids without consideing the foces and moments which ceate the motion. Items discussed in this Chapte. Mateial deivative and its elationship to Lagangian

More information

Gravitational Mechanics of the Mars-Phobos System: Comparing Methods of Orbital Dynamics Modeling for Exploratory Mission Planning

Gravitational Mechanics of the Mars-Phobos System: Comparing Methods of Orbital Dynamics Modeling for Exploratory Mission Planning Gavitational Mechanics of the Mas-Phobos System: Compaing Methods of Obital Dynamics Modeling fo Exploatoy Mission Planning Alfedo C. Itualde The Pennsylvania State Univesity, Univesity Pak, PA, 6802 This

More information

Motion Control Formulas

Motion Control Formulas ems: A = acceleation ate {in/sec } C = caiage thust foce {oz} D = deceleation ate {in/sec } d = lead of scew {in/ev} e = lead scew efficiency ball scew 90% F = total fictional foce {oz} GR = gea atio J

More information

Structure and evolution of circumstellar disks during the early phase of accretion from a parent cloud

Structure and evolution of circumstellar disks during the early phase of accretion from a parent cloud Cente fo Tubulence Reseach Annual Reseach Biefs 2001 209 Stuctue and evolution of cicumstella disks duing the ealy phase of accetion fom a paent cloud By Olusola C. Idowu 1. Motivation and Backgound The

More information

Chapter 2. Electrostatics

Chapter 2. Electrostatics Chapte. Electostatics.. The Electostatic Field To calculate the foce exeted by some electic chages,,, 3,... (the souce chages) on anothe chage Q (the test chage) we can use the pinciple of supeposition.

More information

The Gravity Field of the Earth - Part 1 (Copyright 2002, David T. Sandwell)

The Gravity Field of the Earth - Part 1 (Copyright 2002, David T. Sandwell) 1 The Gavity Field of the Eath - Pat 1 (Copyight 00, David T. Sandwell) This chapte coves physical geodesy - the shape of the Eath and its gavity field. This is just electostatic theoy applied to the Eath.

More information

4.1 - Trigonometric Functions of Acute Angles

4.1 - Trigonometric Functions of Acute Angles 4.1 - Tigonometic Functions of cute ngles a is a half-line that begins at a point and etends indefinitel in some diection. Two as that shae a common endpoint (o vete) fom an angle. If we designate one

More information

In order to master the techniques explained here it is vital that you undertake plenty of practice exercises so that they become second nature.

In order to master the techniques explained here it is vital that you undertake plenty of practice exercises so that they become second nature. Radians mc-ty-adians-2009-1 Atschoolweusuallyleantomeasueanangleindegees. Howeve,theeaeothewaysof measuinganangle. Onethatweaegoingtohavealookatheeismeasuinganglesinunits called adians. In many scientific

More information

Lab #7: Energy Conservation

Lab #7: Energy Conservation Lab #7: Enegy Consevation Photo by Kallin http://www.bungeezone.com/pics/kallin.shtml Reading Assignment: Chapte 7 Sections 1,, 3, 5, 6 Chapte 8 Sections 1-4 Intoduction: Pehaps one of the most unusual

More information

TECHNICAL DATA. JIS (Japanese Industrial Standard) Screw Thread. Specifications

TECHNICAL DATA. JIS (Japanese Industrial Standard) Screw Thread. Specifications JIS (Japanese Industial Standad) Scew Thead Specifications TECNICAL DATA Note: Although these specifications ae based on JIS they also apply to and DIN s. Some comments added by Mayland Metics Coutesy

More information

Chapter 3 Savings, Present Value and Ricardian Equivalence

Chapter 3 Savings, Present Value and Ricardian Equivalence Chapte 3 Savings, Pesent Value and Ricadian Equivalence Chapte Oveview In the pevious chapte we studied the decision of households to supply hous to the labo maket. This decision was a static decision,

More information

SELF-INDUCTANCE AND INDUCTORS

SELF-INDUCTANCE AND INDUCTORS MISN-0-144 SELF-INDUCTANCE AND INDUCTORS SELF-INDUCTANCE AND INDUCTORS by Pete Signell Michigan State Univesity 1. Intoduction.............................................. 1 A 2. Self-Inductance L.........................................

More information

Continuous Compounding and Annualization

Continuous Compounding and Annualization Continuous Compounding and Annualization Philip A. Viton Januay 11, 2006 Contents 1 Intoduction 1 2 Continuous Compounding 2 3 Pesent Value with Continuous Compounding 4 4 Annualization 5 5 A Special Poblem

More information

4.4 VOLUME AND SURFACE AREA

4.4 VOLUME AND SURFACE AREA 160 CHAPTER 4 Geomety 4.4 VOLUME AND SURFACE AREA Textbook Refeence Section 8.4 CLAST OBJECTIVES Calculate volume and uface aea Infe fomula fo meauing geometic figue Select applicable fomula fo computing

More information

Charges, Coulomb s Law, and Electric Fields

Charges, Coulomb s Law, and Electric Fields Q&E -1 Chages, Coulomb s Law, and Electic ields Some expeimental facts: Expeimental fact 1: Electic chage comes in two types, which we call (+) and ( ). An atom consists of a heavy (+) chaged nucleus suounded

More information

SAMPLE CHAPTERS UNESCO EOLSS THE MOTION OF CELESTIAL BODIES. Kaare Aksnes Institute of Theoretical Astrophysics University of Oslo

SAMPLE CHAPTERS UNESCO EOLSS THE MOTION OF CELESTIAL BODIES. Kaare Aksnes Institute of Theoretical Astrophysics University of Oslo THE MOTION OF CELESTIAL BODIES Kaae Aksnes Institute of Theoetical Astophysics Univesity of Oslo Keywods: celestial mechanics, two-body obits, thee-body obits, petubations, tides, non-gavitational foces,

More information

Gravitation and Kepler s Laws

Gravitation and Kepler s Laws 3 Gavitation and Keple s Laws In this chapte we will ecall the law of univesal gavitation and will then deive the esult that a spheically symmetic object acts gavitationally like a point mass at its cente

More information

CHAPTER 5 GRAVITATIONAL FIELD AND POTENTIAL

CHAPTER 5 GRAVITATIONAL FIELD AND POTENTIAL CHATER 5 GRAVITATIONAL FIELD AND OTENTIAL 5. Intoduction. This chapte deals with the calculation of gavitational fields and potentials in the vicinity of vaious shapes and sizes of massive bodies. The

More information

GAUSS S LAW APPLIED TO CYLINDRICAL AND PLANAR CHARGE DISTRIBUTIONS ` E MISN-0-133. CHARGE DISTRIBUTIONS by Peter Signell, Michigan State University

GAUSS S LAW APPLIED TO CYLINDRICAL AND PLANAR CHARGE DISTRIBUTIONS ` E MISN-0-133. CHARGE DISTRIBUTIONS by Peter Signell, Michigan State University MISN-0-133 GAUSS S LAW APPLIED TO CYLINDRICAL AND PLANAR CHARGE DISTRIBUTIONS GAUSS S LAW APPLIED TO CYLINDRICAL AND PLANAR CHARGE DISTRIBUTIONS by Pete Signell, Michigan State Univesity 1. Intoduction..............................................

More information

4 Impulse and Impact. Table of contents:

4 Impulse and Impact. Table of contents: 4 Impulse and Impact At the end of this section you should be able to: a. define momentum and impulse b. state principles of conseration of linear momentum c. sole problems inoling change and conseration

More information

Thank you for participating in Teach It First!

Thank you for participating in Teach It First! Thank you fo paticipating in Teach It Fist! This Teach It Fist Kit contains a Common Coe Suppot Coach, Foundational Mathematics teache lesson followed by the coesponding student lesson. We ae confident

More information

Problems of the 2 nd and 9 th International Physics Olympiads (Budapest, Hungary, 1968 and 1976)

Problems of the 2 nd and 9 th International Physics Olympiads (Budapest, Hungary, 1968 and 1976) Poblems of the nd and 9 th Intenational Physics Olympiads (Budapest Hungay 968 and 976) Péte Vankó Institute of Physics Budapest Univesity of Technology and Economics Budapest Hungay Abstact Afte a shot

More information

Experiment MF Magnetic Force

Experiment MF Magnetic Force Expeiment MF Magnetic Foce Intoduction The magnetic foce on a cuent-caying conducto is basic to evey electic moto -- tuning the hands of electic watches and clocks, tanspoting tape in Walkmans, stating

More information

AP Physics Circular Motion Practice Test B,B,B,A,D,D,C,B,D,B,E,E,E, 14. 6.6m/s, 0.4 N, 1.5 m, 6.3m/s, 15. 12.9 m/s, 22.9 m/s

AP Physics Circular Motion Practice Test B,B,B,A,D,D,C,B,D,B,E,E,E, 14. 6.6m/s, 0.4 N, 1.5 m, 6.3m/s, 15. 12.9 m/s, 22.9 m/s AP Physics Circular Motion Practice Test B,B,B,A,D,D,C,B,D,B,E,E,E, 14. 6.6m/s, 0.4 N, 1.5 m, 6.3m/s, 15. 12.9 m/s, 22.9 m/s Answer the multiple choice questions (2 Points Each) on this sheet with capital

More information

VISCOSITY OF BIO-DIESEL FUELS

VISCOSITY OF BIO-DIESEL FUELS VISCOSITY OF BIO-DIESEL FUELS One of the key assumptions fo ideal gases is that the motion of a given paticle is independent of any othe paticles in the system. With this assumption in place, one can use

More information

A discus thrower spins around in a circle one and a half times, then releases the discus. The discus forms a path tangent to the circle.

A discus thrower spins around in a circle one and a half times, then releases the discus. The discus forms a path tangent to the circle. Page 1 of 6 11.2 Popeties of Tangents Goal Use popeties of a tangent to a cicle. Key Wods point of tangency p. 589 pependicula p. 108 tangent segment discus thowe spins aound in a cicle one and a half

More information

Functions of a Random Variable: Density. Math 425 Intro to Probability Lecture 30. Definition Nice Transformations. Problem

Functions of a Random Variable: Density. Math 425 Intro to Probability Lecture 30. Definition Nice Transformations. Problem Intoduction One Function of Random Vaiables Functions of a Random Vaiable: Density Math 45 Into to Pobability Lectue 30 Let gx) = y be a one-to-one function whose deiatie is nonzeo on some egion A of the

More information

The Electric Potential, Electric Potential Energy and Energy Conservation. V = U/q 0. V = U/q 0 = -W/q 0 1V [Volt] =1 Nm/C

The Electric Potential, Electric Potential Energy and Energy Conservation. V = U/q 0. V = U/q 0 = -W/q 0 1V [Volt] =1 Nm/C Geneal Physics - PH Winte 6 Bjoen Seipel The Electic Potential, Electic Potential Enegy and Enegy Consevation Electic Potential Enegy U is the enegy of a chaged object in an extenal electic field (Unit

More information

Graphs of Equations. A coordinate system is a way to graphically show the relationship between 2 quantities.

Graphs of Equations. A coordinate system is a way to graphically show the relationship between 2 quantities. Gaphs of Equations CHAT Pe-Calculus A coodinate sstem is a wa to gaphicall show the elationship between quantities. Definition: A solution of an equation in two vaiables and is an odeed pai (a, b) such

More information

Questions & Answers Chapter 10 Software Reliability Prediction, Allocation and Demonstration Testing

Questions & Answers Chapter 10 Software Reliability Prediction, Allocation and Demonstration Testing M13914 Questions & Answes Chapte 10 Softwae Reliability Pediction, Allocation and Demonstation Testing 1. Homewok: How to deive the fomula of failue ate estimate. λ = χ α,+ t When the failue times follow

More information

C B A T 3 T 2 T 1. 1. What is the magnitude of the force T 1? A) 37.5 N B) 75.0 N C) 113 N D) 157 N E) 192 N

C B A T 3 T 2 T 1. 1. What is the magnitude of the force T 1? A) 37.5 N B) 75.0 N C) 113 N D) 157 N E) 192 N Three boxes are connected by massless strings and are resting on a frictionless table. Each box has a mass of 15 kg, and the tension T 1 in the right string is accelerating the boxes to the right at a

More information

www.sakshieducation.com

www.sakshieducation.com Viscosity. The popety of viscosity in gas is due to ) Cohesive foces between the moecues ) Coisions between the moecues ) Not having a definite voume ) Not having a definite size. When tempeatue is inceased

More information

2. TRIGONOMETRIC FUNCTIONS OF GENERAL ANGLES

2. TRIGONOMETRIC FUNCTIONS OF GENERAL ANGLES . TRIGONOMETRIC FUNCTIONS OF GENERAL ANGLES In ode to etend the definitions of the si tigonometic functions to geneal angles, we shall make use of the following ideas: In a Catesian coodinate sstem, an

More information