Hilbert Transform Relations


 Austin Malone
 3 years ago
 Views:
Transcription
1 BULGARIAN ACADEMY OF SCIENCES CYBERNEICS AND INFORMAION ECHNOLOGIES Volume 5, No Sofia 5 Hilber rasform Relaios Each coiuous problem (differeial equaio) has may discree approximaios (differece equaios) Gilber Srag (SIAM Review, Vol 4, 999, No, 3547) Bozha Zhechev Isiue of Compuer ad Commuicaio Sysems, 3 Sofia Absrac : I his paper he Hilber rasform differe cases for coiuous, periodic ad discree sigals are aalyzed he mai aeio is paid o he properies of he discree cyclic rasform he eigevecors ad eigevalues of his rasform, projecors oo he regio of he values, pseudoiverse edomorphism, ad coecios wih aoher varias are foud he properies of he magiude respose of he differe Hilber s filers are demosraed Keywords: digial sigal processig, iverse filerig, badpass sigals, siglesidebad modulaio, image processig, discree Fourier rasform (DF), fas rasforms, ivaria spaces, pseudoiverse I Iroducio he Hilber rasform (or more correcly edomorphism) is applied i may areas: geeraig of siglesidebad sigals, iverse filerig, image processig, speech processig, radiolocaio, compressig ad ec [,, 3] A purpose of his paper is o represe compleely whe sigals are defied o he se of he real umbers R, ieger umbers Z, oedimesioal orus R Z ad complee residue sysem modulo, Z Z [8] his approach gives possibiliies o obai he basic properies ha are difficul o be aalyzed separaely II Coiuous case (sigals o R) Le sigals domai be he real lie R he fucio / is o summable i he viciiy of he poi =, bu i s well ow [4] ha if has limied regio of suppor ad is a leas oe ime differeiable a he begiig of he coordiaes, his iegral exiss: 3
2 ( () (vp ( ) vp d Here vp symbols deoe Cauchy pricipal value of he iegral ha follows his iegral defies liear coiuous form of, herefore vp / is а disribuio (or geeralized fucio) [4] hese disribuios repeaedly are applied i quaum mechaics: () vp, j v vp j v hey are he Fourier rasforms of he ui sep Y( [4] ad is mirror owards he ordiae axis Y( = Y( (he operaor reverses direcio of he ime, ad δ is Dirac dela fucio) If F is he Fourier operaor ( =, frequecy), i is wellow ha F j sg( v), (3), sg( ),,, Y( Y( Y( ( sg( ) A direc prove of he firs equaio could be doe applyig Lobachevsi iegral [5], or periodizaig /: (4) 4 I ( a) F si( a d sg( a) j v e d j si( d sg( a), si(v ) d I (v) j sg( v) j Hilber rasform ca be defied as a covoluio of he sigal x( ad vp / ( ) (5) ( ( )) vp ( ) x x x d he PaleyWieer codiio [6] is ecessary ad sufficie for exisig of Hilber rasform, ad he reverse rasform is give by III Coiuous case (sigals o = R/Z) Le x( is such a fucio, ha x( = x(+т), where is a real umber he socalled period he umber is always period; a umber opposed o he period is period oo
3 ad he sum of wo periods is agai a period hus he periods are some subgroup of he addiive group of he real umbers R (see he defiiios a he ed of he paper) I is he socalled group of he periods If x( is coiuous fucio is group of periods is closed subgroup of R Bu here exis oly hree closed subgroups of R: he subgroup, reduced o A fucio wihou periods differe of is aperiodic A whole group R; a fucio ha has as a period every real umber is a cosa 3 he se of muliples, >, ieger from Z If he group of periods belogs o oe of he laes wo cases, x( is periodic; he umber of he hird oe is so called mai period of x( Le is a circle wih a ceer O ad legh i he plae Ox Every fucio x( o ca be coeced wih a fucio x ~ o R, if x ~ ( = x(m), where M is a poi of wih a curviliear abscissa s = he begiig of he referece is he poi A of o he axis O ad direcio is couerclocwise he fucio x ~ is periodic wih period Ad vice versa, if x ~ is periodic fucio o R wih period, i ca be received wih previous procedure from oe ad oly fucio x he mappig x x ~ is a isomorphism bewee he fucios o ad R Oe of he reasos for iroducig of he periodic fucios is ha he fucios o he rigoomeric circle ca be cosidered as fucios of he agle θ wih a period of [4] Le φ is a fucio o R, ha could be made periodical i his way: ~ (6) ( ) ( l) l If his fucioal series coverges (for isace if j is wih limied suppor, ~ will be periodic fucio wih period Whe j ( = / ad his equilaeral hyperbola i (6) is coiled o he ui circle, i will be uiformly coverge series: (7) ~ ( l l 4 l l l he ex ideiy ca be proved by iducio [7, p 37]: (8) cg( l cg l cg g l l l l cg cg For he firs erm of he secod row of (8) coverges o /, ad he lh erm o l Hece he fucio series i (7) is expasio of (cg(/))/ Aoher proof of his expasio (Euler s expasio) ca be foud i [5] We have from here for he Hilber rasform of a periodical fucio x( wih period p: 5
4 (9) ( x( ) x( d x( ) d (( ) ) ( ) x( d ( ) x( )cg d his resul ca be foud i [, p78; 3, p 68] From (4) ad (5) ad he basic propery of he Fourier operaor o rasform covoluio io algebraic muliplicaio [4], ad from F(cos( ) ( ( v ) ( v )), F(si( ) ( ( v ) ( v )) j (here d() is a Dirac dela fucio [4]), follows: (a) (cos() = si( his resul ca be obaied from (6) oo, because cos( is а periodic fucio wih mai period p I ca be foud oo, ha (b) (si() = cos( hese wellow ad ofeapplied formulae (a) ad (b), are he mos impora relaios of he Hilber edomorphism (i his case acs as a iegral operaor) hey refer o every pair {cos(p, si(p}, From hem follow may ieresig resuls Hilber rasform coecs real ad imagiary par of he frequecy respose of a causal sysem, gai ad phase of such a sysem, he evelope ad phase of badpass sigals ad ec [, 6] IV Discree sigals (sigals o Z Z) IV Geeral properies of he discree (cyclic) edomorphism of Hilber Le s iroduce hese wo operaors (liear represeaios of he geeraors of a dihedral group D ) [8]: = [,l ], = [,l ],, l =,,, (mod ) (), 4 4 hese are respecively he righshif operaor ad sig operaor σ for he sigals o Z Z he las se ca be preseed as verexes of he iscribed i circle (wih legh = ) regular polygo, received afer coilig o i of R, ad herefore of Z oo I ha way oe ca cosruc he class of he discree periodic 6
5 fucios For he coiuous case whe R (or i discree case, whe Z) hese are he auomorphisms: ρ: x( x( ), σ: x( x ( I () l, is he Kroecer s symbol Les he dimesio of he sigals ( vecors ) space is a eve umber, ad he discree dela (vecor) of Dirac has he form: δ [,,,, ] I ha case he sig vecor aalog of sg(v) from (4), has he form / () s ( ρ ) ρ δ For = 8 his vecor loos lie his: / Т s [,,,,,,, ] 8 If is odd he middle zero will disappears As i he coiuous case, whe σ sg( ν) sg( ν) sg( ν), his vecor is odd, ie σ s s he discree Fourier operaor has he form l j l (3) F e ρ δ δ ρ,l his operaor is uiary, ie Hermiiacojugaed coicide wih is iverse oe [9]: F F * = herefore from () ad of hese depedeces (hey are demosraed i [8]; modulaio operaor? is defied afer (5), ad f is he h colum of he discree Fourier operaor from (3)), F ρ? F; F δ ;? f, oe ca obai: * κ F ( j s ) cg ( ( )) ρ δ /, (4) κ ( ρ) cg ( ( ) ) ρ / he firs row of (4) is he impulse respose, ad he secod oe is he cyclic discree edomorphism (sysem fucio) of Hilber (a ideal cyclic Hilber rasformer or 9 degree phase shifer), ha is aisymmeric ad (ai) commue wih σ, ie κ κ σ κ σ σ κ κ σ σ κ κ σ he magiude respose of his filer for = 6 is give o Figs ad he 8 verical lies of he grid are draw rough he pois wih abscises { /6}, for which he value is exacly db, ad he magiude respose is pure imagiary For he oher frequecies deviaios are big ad a real compoe appears he same behavior is, as i is show i [3], of he aalyzig filers of he Fas Fourier rasform (FF) Whe desigig of Hilber rasformers, he objecive is a equiripple 7
6 approximaio of he sigfucio [, 3] Applyig of he (cyclic) FF wih such bad filers demosraes, ha his approach is o always obligaory I is of ieres he edomorphism (), ie double applyig of a Hilber filer Direc evaluaig from (4) seems isuperable he covoluio of he impulse resposes of wo serial filers ad he formula for he h coordiae of a covoluio, derived i [8] gives us κ κ κ, κ ( κ ρ σ κ) ( F κ F ρ σ κ) (here ( а b ) is a ier produc of wo vecors [9, ]), / / (5) κ ( ρ) ρ?? / I previous equaio? diag(, w, w,,w ); w e, is he meioed before modulaio operaor [8] ad is he vecor of all s From i follows several impora coclusios: I) he operaor () is orhogoal projecor, as i is symmeric ad ( ())( ()) = () II) From (5) follows ha 3 () = (); he wo vecors, / are mapped from io he zero vecor (i frequecy area i s obvious) III) he geeralize iverse edomorphism of is ; he pseudoiverse of could be received if oe ca ae io cosideraio I и II ad ha he pseudoiverse of a orhogoal projecor P + coiside wih he same projecor P []: 3 (6) κ ( ) ( ) ( ) ( )( ) IV) Le ( κ) { z:z κ( x)} is he rage of he edomorphism ha is a liear subspace [9, ] I s well ow ha + is a orhogoal projecor io his subspace, herefore his projecor coiside wih () Cosequely we have for he dimesios of his subspace: (7) dim ( ) dim ( ) r( ) From (5) follows, ha he race of he projecor is Тr( κ ) he erel [9] Ker() is o oly he zero vecor ad his gives a reaso o be see as a edomorphism bu o as a rasform, ha will require i o be a auomorphisms IV Eigevecors ad eigevalues of he Hilber edomorphism is preseed i he caoical bases { ρ δ } from he circula marix (4), ha s why is eigevecors coiside wih he Fourier rasforms colums [8]: (8) κ F F Λ; F κ Λ F; κ κ; F F j 8
7 Here is a diagoal marix of he eigevalues Bu he Fourier rasform of he impulse respose of (from (4)) has by defiiio he form: (9) F κ F κ( ρ) δ Λ F δ Λ j s herefore he diagoal marix of he eigevalues has he form () Λ diag ( j s ) diag(, j, j,, j,, j, j,, j) he edomorphism is a aisymmeric edomorphism, ad hece i has pure imagiary eigevalues ad if l is a eigevalue, ha eigevalue is l Whe is eve, he zero ad he / rows of have ad whe is odd he middle drops ou Le F = C js, ad hese vecors are colums of C, S(C = C; S = S) respecively: { c,s;,,, }; { c c; s s,,, / } he from (8) ad () i follows: κ c s,, () κ s c, I ca be see here, ha roaes o 9 he pairs of orhogoal bases vecors { c, s } of he wodimesioal subspaces of dihedral group D [8] (9degree phase shifer) excep he zero ad (/)h oedimesioal subspaces, ha have basis respecively { c,c / } ad are mapped io zero he edomorphism roaes o 9 every vecor wih real coordiaes x : ( x κ x) ( κ x x) ( κ x x) ( x κ x) From here x κ x ad if x do have compoes from he erel Ker(), his will be pure roaio Oherwise besides roaio of 9, he vecor will be shored because of is erel compoes If i is from he erel, i will be mapped io he zero Equaios () specify how does his roaio ad shoreig become I s received from (9) ad () he orm [9, p33] of as he maximal (real) eigevalue of he symmeric marix : κ κ x λ κ κ F ( κ ) F F ( Λ max κ (κ κ), herefore shore he sigals, ad i he bes case i saves heir eergy (orm) he resuls of his par have may ieresig applicaios he complex filer (+ j) forms he socalled aalyic sigal [,, 3, 6] I has, as follows from (9) ad (), oly oesided Fourier rasform: F( j κ) x ( j Λ) F x Y X; F x X ; Y /,,,,, /,,,, 9 x ),
8 Here Y is he discree ui sep; is zero ad / compoes are? (he symbol deoes compoewise muliplicaio of wo vecors or Schur s muliplicaio) Тhe filer + j exracs, i coiuous case, he upper sidebad, bu i he discree oe his is o eirely he same, maily because of he form of Y I ca be desiged a his oe filer: β ρ ( κ ) j κ; β ; β * β he auomorphisms β is a ivoluio (is square is ideiy) ad i is a Hermiia morphism ie coicide wih is Hermiiacojugaed I ha case for he wo orhogoal projecors (+β)/ ad ( β)/ i will be rue ha: β F diag (, ) F, β F diag (, ) F he firs projecor cus off he upper / coordiaes of he specrum of a sigal, ad he secod oe he lower / coordiaes I ca be show ha hese wo filers paricipae i cosrucig of he full recursive form of FF [8, 3] he real filer +, i coras o, is a auomorphisms, ie here exiss iverse oe, which permis recosrucio of he ipu sigal he iverse filer is ( ) ( ) Every oe of he orhogoal sigals x ad x ca be exraced wih his filer from he mixure of hem he mos impora propery of he Fourier rasform is, as i is well ow, ha i rasforms covoluio io muliplicaio ad viceversa muliplicaio io covoluio [4] For he sigals o Z Z his propery loos lie: F ( x y) F x F y, F ( x y) F x F y Le c F c, s are he h colums of C ad S from () I s easy o be show ha ( ρ ρ ) δ; F s ( ρ j ρ ) δ; ( ρ Applyig of hese relaios ad formig of he real sigal z c x κ ( c ) κ ( x) c x s κ ( x), gives (Y is he discree ui sep): F z ( ρ (( σ Y ) X ) ρ ( Y X )) δ) x ρ hese formulae represe discree varia of he wellow scheme of Harley for modulaio wih a sigle sidebad x
9 V Discree sigals (sigals o Z) he Hilber edomorphism could be obaied for sigals o Z from he former case he las row of (4) ca be represe i he form (we assume ha is divisible of 4; his does decrease geeraliy): κ( ρ) / 4 cg ( ( )) ρ / 4 / cg ( ( ) ) ρ If we chage i he secod sum he variable ( ), i ca be obaied he form (oe ca see he ocausaliy ad aisymmery of he Hilber s filer): ( ) () κ ( ρ) cg ( ( ))( ρ ρ ) Whe goes o ifiiy / 4 (3) lim ( cg ( ( ))) ( ) We obai he edomorphism of Hilber for sigals o Z: ( ) (4) κ ( ρ) ( ρ ρ ) ( ) Here ρ ges he meaig of a righ shif operaor (delayig) defied afer (5), where is a umber from Z his resul could be obaied direcly if we cosider he expasio of he impulse respose of he Hilber filer (defied as a fucio o he group of he ieger umbers Z) by he group of characers of Z, isomorphic of he group of he oedimesioal orus a corollary of he socalled Poryagi dualiy) [, ] If he frequecy respose has by defiiio o he ierval [?,? ] (icludig fully he ui circle, w = p) he form (5) j sg( ν) j, ν /,, ν,, / ν, he for he h coefficie of he impulse respose will be obaied / si ( ) j ν j ν (6) κ j e dν j e dν,, /, his is he h coefficie of he expasio i (4) his very resul is give i [, p79] he problems begi from here for desigig of appropriae filer wih fiie impulse respose O he Fig 3 is give magiude respose of he filer from (4) wih he firs four erms of he series he covergece of his series o he sgfucio is o uiform bu mea square Comparig of Figs ad 3 shows ha by
10 equal umber of erms he cyclic filer has smaller ripples More over, i goes very / accuraely rough he ui (or db) io he pois of samplig { / } VI Coclusio his paper deals wih a ew approach o he differe relaios of he Hilber rasform rough iroducig of he differe regios of defiiio were revealed some sides of he relaio coiuousdiscree sigals Discree cyclic Hilber rasform was aalyzed he eigevecors ad eigevalues of his rasform, pseudoiverse rasform, projecors io he regio of he values, was foud I s show ha roaes o 9 he ivaria spaces of he dihedral group he magiude respose of he cyclic Hilber rasformer, show o he Fig ad Fig possess ieresig properies I is wih big ripples bu i he samplig pois i s very accurae he obaied properies of his rasform permis o be aalyzed coecios of he (cyclic!) Fas Fourier rasform wih he Hilber rasform, ha will be a objec of aoher wor Ampl db Discree Hilber rasform Rad Freq w Fig Magiude respose; Eq () has 4 erms ( = 6) Ampl db Rad Freq w Fig Magiude respose ear ; Eq () ( = 6)
11 Ampl db Discree Hilber rasform  dom Z Rad Freq w Fig 3 Magiude respose; firs 4 erms of Eq (4) Some defiiios he group G is a se G wih biary operaio G G G, oed as ( a, b) ab ad such, ha: I is associaive Ideiy eleme ug exiss, ie ua = a = au for every a G 3 For every eleme a G a iverse eleme a' G exiss, ad aa' = u = a'a If G ad H are groups, he morphism :G H of hese groups is a fucio from G o H, which is morphism of heir biary operaios, ie (ab)=(a)(b) for all a,bg R e f e r e c e s O p p e h e i m, A, R S c h a f e r, J B u c Discreeime Sigal Processig Preice Hall, d ed, 999 P a p o u l i s, A Sysems ad rasforms wih Applicaios i Opic McGrawHill, P r o a i s, J, D M a o l a i s Digial Sigal Processig PreiceHall, I, S c h w a r z, L Meodes Mahemaiques Pour les Scieces Physiques Paris, Herma, 96 5 Ф и х т е н г о л ь ц, Г М Курс дифферециального и интегрального вычисления Москва, Наука,968 6 M a s o, S J, H J Z i m m e r m a Elecroic Circuis, Sigals ad Sysems Joh Wiley & Sos Ic, 96 7 G r a h a m, R, D K u h, O P a a s h i Cocree Mahemaics a Foudaio for Compuer Sciece AddisoWesley, Z h e c h e v, B Ivaria spaces ad fas rasforms I: IEEE ras o Circuis ad Sys II: Aalog ad Digial Sigal Proc, February 999, p 6 9 S r a g, G Liear Algebra ad is Applicaios Academic Press, 976 A l b e r, A Regressio ad he MoorPerose Pseudoiverse Academic Press, 97 S e r r e, JP Represeaios Lieaires des Groupes Fiis Herma, Paris, 967 M o r r i s, SA Poryagi Dualiy ad he Srucure of Locally Compac Abelia Groups Lodo, New Yor, Cambridge Uiversiy Press, Z h e c h e v, B Fas rasforms aalysis I: I Coferece Auomaics ad Iformaics, Sofia, Bulgaria, 3 May, I69, I7 3
1/22/2007 EECS 723 intro 2/3
1/22/2007 EES 723 iro 2/3 eraily, all elecrical egieers kow of liear sysems heory. Bu, i is helpful o firs review hese coceps o make sure ha we all udersad wha his heory is, why i works, ad how i is useful.
More informationSecond Order Linear Partial Differential Equations. Part II
Secod Order iear Parial Differeial Equaios Par II Fourier series; EulerFourier formulas; Fourier Covergece Theorem; Eve ad odd fucios; Cosie ad Sie Series Eesios; Paricular soluio of he hea coducio equaio
More informationConfidence Intervals for Paired Means
Chaper 496 Cofidece Iervals for Paired Meas Iroducio This rouie calculaes he sample size ecessary o achieve a specified disace from he paired sample mea erece o he cofidece limi(s) a a saed cofidece level
More informationChapter 1 Signal and Systems
ELG 3 Sigals ad Sysems Chaper Chaper Sigal ad Sysems. Coiuousime ad discreeime Sigals.. Examples ad Mahemaical represeaio Sigals are represeed mahemaically as fucios of oe or more idepede variables.
More informationChapter 2 Linear TimeInvariant Systems
ELG 3 Sigals ad Sysems Caper Caper Liear TimeIvaria Sysems. Iroducio May pysical sysems ca be modeled as liear imeivaria (LTI sysems Very geeral sigals ca be represeed as liear combiaios of delayed impulses.
More informationAC VOLTAGE CONTROLLER (ACAC CONVERTER)
AC LAGE CRLLER (ACAC CERER) AC volage corollers (ac lie volage corollers) are eployed o vary he RM value of he aleraig volage applied o a load circui by iroducig hyrisors bewee he load ad a cosa volage
More informationMechanical Vibrations Chapter 4
Mechaical Vibraios Chaper 4 Peer Aviabile Mechaical Egieerig Deparme Uiversiy of Massachuses Lowell 22.457 Mechaical Vibraios  Chaper 4 1 Dr. Peer Aviabile Modal Aalysis & Corols Laboraory Impulse Exciaio
More informationANNUITIES AND LIFE INSURANCE UNDER RANDOM INTEREST RATES
ANNUITIES AND LIFE INSURANCE UNDER RANDOM INTEREST RATES Bey Levikso Deparme of Saisical Uiversiy of Haifa Haifa, 395 ISRAEL beyl@rsa.haifa.ac.il Rami Yosef Deparme of Busiess Admiisraio Be Gurio Uiversiy,
More informationDuration Outline and Reading
Deb Isrumes ad Markes Professor Carpeer Duraio Oulie ad Readig Oulie Ieres Rae Sesiiviy Dollar Duraio Duraio Buzzwords Parallel shif Basis pois Modified duraio Macaulay duraio Readig Tuckma, Chapers 5
More informationOn Motion of Robot Endeffector Using The Curvature Theory of Timelike Ruled Surfaces With Timelike Ruling
O Moio of obo Edeffecor Usig he Curvaure heory of imelike uled Surfaces Wih imelike ulig Cumali Ekici¹, Yasi Ülüürk¹, Musafa Dede¹ B. S. yuh² ¹ Eskişehir Osmagazi Uiversiy Deparme of Mahemaics, 6480UKEY
More informationREVISTA INVESTIGACION OPERACIONAL VOL. 31, No.2, 159170, 2010
REVISTA INVESTIGACION OPERACIONAL VOL. 3, No., 5970, 00 AN ALGORITHM TO OBTAIN AN OPTIMAL STRATEGY FOR THE MARKOV DECISION PROCESSES, WITH PROBABILITY DISTRIBUTION FOR THE PLANNING HORIZON. Gouliois E.
More informationAnalogue and Digital Signal Processing. First Term Third Year CS Engineering By Dr Mukhtiar Ali Unar
Analogue and Digial Signal Processing Firs Term Third Year CS Engineering By Dr Mukhiar Ali Unar Recommended Books Haykin S. and Van Veen B.; Signals and Sysems, John Wiley& Sons Inc. ISBN: 073807 Ifeachor
More informationThe Term Structure of Interest Rates
The Term Srucure of Ieres Raes Wha is i? The relaioship amog ieres raes over differe imehorizos, as viewed from oday, = 0. A cocep closely relaed o his: The Yield Curve Plos he effecive aual yield agais
More informationDAMPING AND ENERGY DISSIPATION
DAMPING AND ENERGY DISSIPATION Liear Viscous Dampig Is A Propery Of The Compuer Model Ad Is No A Propery Of A Real Srucure 19.1. INTRODUCTION I srucural egieerig, viscous, velociydepede dampig is very
More informationBullwhip Effect Measure When Supply Chain Demand is Forecasting
J. Basic. Appl. Sci. Res., (4)4743, 01 01, TexRoad Publicaio ISSN 0904304 Joural of Basic ad Applied Scieific Research www.exroad.com Bullwhip Effec Measure Whe Supply Chai emad is Forecasig Ayub Rahimzadeh
More informationFORECASTING MODEL FOR AUTOMOBILE SALES IN THAILAND
FORECASTING MODEL FOR AUTOMOBILE SALES IN THAILAND by Wachareepor Chaimogkol Naioal Isiue of Developme Admiisraio, Bagkok, Thailad Email: wachare@as.ida.ac.h ad Chuaip Tasahi Kig Mogku's Isiue of Techology
More informationDistributed Containment Control with Multiple Dynamic Leaders for DoubleIntegrator Dynamics Using Only Position Measurements
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 57, NO. 6, JUNE 22 553 Disribued Coaime Corol wih Muliple Dyamic Leaders for DoubleIegraor Dyamics Usig Oly Posiio Measuremes Jiazhe Li, Wei Re, Member, IEEE,
More information17 Laplace transform. Solving linear ODE with piecewise continuous right hand sides
7 Laplace ransform. Solving linear ODE wih piecewise coninuous righ hand sides In his lecure I will show how o apply he Laplace ransform o he ODE Ly = f wih piecewise coninuous f. Definiion. A funcion
More informationA Queuing Model of the Ndesign Multiskill Call Center with Impatient Customers
Ieraioal Joural of u ad e ervice, ciece ad Techology Vol.8, o., pp. hp://dx.doi.org/./ijuess..8.. A Queuig Model of he desig Muliskill Call Ceer wih Impaie Cusomers Chuya Li, ad Deua Yue Yasha Uiversiy,
More informationhttp://www.ejournalofscience.org Monitoring of Network Traffic based on Queuing Theory
VOL., NO., November ISSN XXXXXXXX ARN Joural of Sciece a Techology  ARN Jourals. All righs reserve. hp://www.ejouralofsciece.org Moiorig of Newor Traffic base o Queuig Theory S. Saha Ray,. Sahoo Naioal
More informationManaging Learning and Turnover in Employee Staffing*
Maagig Learig ad Turover i Employee Saffig* YogPi Zhou Uiversiy of Washigo Busiess School Coauhor: Noah Gas, Wharo School, UPe * Suppored by Wharo Fiacial Isiuios Ceer ad he Sloa Foudaio Call Ceer Operaios
More informationCOLLECTIVE RISK MODEL IN NONLIFE INSURANCE
Ecoomic Horizos, May  Augus 203, Volume 5, Number 2, 6775 Faculy of Ecoomics, Uiversiy of Kragujevac UDC: 33 eissn 2279232 www. ekfak.kg.ac.rs Review paper UDC: 005.334:368.025.6 ; 347.426.6 doi: 0.5937/ekohor30263D
More informationState Machines: Brief Introduction to Sequencers Prof. Andrew J. Mason, Michigan State University
Inroducion ae Machines: Brief Inroducion o equencers Prof. Andrew J. Mason, Michigan ae Universiy A sae machine models behavior defined by a finie number of saes (unique configuraions), ransiions beween
More informationCHAPTER 22 ASSET BASED FINANCING: LEASE, HIRE PURCHASE AND PROJECT FINANCING
CHAPTER 22 ASSET BASED FINANCING: LEASE, HIRE PURCHASE AND PROJECT FINANCING Q.1 Defie a lease. How does i differ from a hire purchase ad isalme sale? Wha are he cash flow cosequeces of a lease? Illusrae.
More informationFactors of sums of powers of binomial coefficients
ACTA ARITHMETICA LXXXVI.1 (1998) Factors of sums of powers of biomial coefficiets by Neil J. Cali (Clemso, S.C.) Dedicated to the memory of Paul Erdős 1. Itroductio. It is well ow that if ( ) a f,a = the
More informationGranger Causality Analysis in Irregular Time Series
Grager Causaliy Aalysis i Irregular Time Series Mohammad Taha Bahadori Ya Liu Absrac Learig emporal causal srucures bewee ime series is oe of he key ools for aalyzig ime series daa. I may realworld applicaios,
More informationReaction Rates. Example. Chemical Kinetics. Chemical Kinetics Chapter 12. Example Concentration Data. Page 1
Page Chemical Kieics Chaper O decomposiio i a isec O decomposiio caalyzed by MO Chemical Kieics I is o eough o udersad he soichiomery ad hermodyamics of a reacio; we also mus udersad he facors ha gover
More informationAsymptotic Growth of Functions
CMPS Itroductio to Aalysis of Algorithms Fall 3 Asymptotic Growth of Fuctios We itroduce several types of asymptotic otatio which are used to compare the performace ad efficiecy of algorithms As we ll
More informationIntroduction to Statistical Analysis of Time Series Richard A. Davis Department of Statistics
Iroduio o Saisial Aalysis of Time Series Rihard A. Davis Deparme of Saisis Oulie Modelig obeives i ime series Geeral feaures of eologial/eviromeal ime series Compoes of a ime series Frequey domai aalysishe
More informationUNDERWRITING AND EXTRA RISKS IN LIFE INSURANCE Katarína Sakálová
The process of uderwriig UNDERWRITING AND EXTRA RISKS IN LIFE INSURANCE Kaaría Sakálová Uderwriig is he process by which a life isurace compay decides which people o accep for isurace ad o wha erms Life
More informationResponse of a Damped System under Harmonic Force. Equating the coefficients of the sine and the cosine terms, we get two equations:
Respose of a Damped Sysem uder Harmoic Force The equaio of moio is wrie i he form: m x cx kx F cos ( Noe ha F is he ampliude of he drivig force ad is he drivig (or forcig frequecy, o o be cofused wih.
More informationOutline. Numerical Analysis Boundary Value Problems & PDE. Exam. Boundary Value Problems. Boundary Value Problems. Solution to BVProblems
Oulie Numericl Alysis oudry Vlue Prolems & PDE Lecure 5 Jeff Prker oudry Vlue Prolems Sooig Meod Fiie Differece Meod ollocio Fiie Eleme Fll, Pril Differeil Equios Recp of ove Exm You will o e le o rig
More informationTheorems About Power Series
Physics 6A Witer 20 Theorems About Power Series Cosider a power series, f(x) = a x, () where the a are real coefficiets ad x is a real variable. There exists a real oegative umber R, called the radius
More information7. Sample Covariance and Correlation
1 of 8 7/16/2009 6:06 AM Virtual Laboratories > 6. Radom Samples > 1 2 3 4 5 6 7 7. Sample Covariace ad Correlatio The Bivariate Model Suppose agai that we have a basic radom experimet, ad that X ad Y
More informationCombining Adaptive Filtering and IF Flows to Detect DDoS Attacks within a Router
KSII RANSAIONS ON INERNE AN INFORMAION SYSEMS VOL. 4, NO. 3, Jue 2 428 opyrigh c 2 KSII ombiig Adapive Filerig ad IF Flows o eec os Aacks wihi a Rouer Ruoyu Ya,2, Qighua Zheg ad Haifei Li 3 eparme of ompuer
More informationUnsteady State Molecular Diffusion
Chaper. Differeial Mass Balae Useady Sae Moleular Diffusio Whe he ieral oeraio gradie is o egligible or Bi
More informationResearch Article Dynamic Pricing of a Web Service in an Advance Selling Environment
Hidawi Publishig Corporaio Mahemaical Problems i Egieerig Volume 215, Aricle ID 783149, 21 pages hp://dx.doi.org/1.1155/215/783149 Research Aricle Dyamic Pricig of a Web Service i a Advace Sellig Evirome
More informationModeling the Nigerian Inflation Rates Using Periodogram and Fourier Series Analysis
CBN Joural of Applied Saisics Vol. 4 No.2 (December, 2013) 51 Modelig he Nigeria Iflaio Raes Usig Periodogram ad Fourier Series Aalysis 1 Chukwuemeka O. Omekara, Emmauel J. Ekpeyog ad Michael P. Ekeree
More informationWavelet Transform of Fractional Integrals for Integrable Boehmians
Available a hp://pvamu.edu/aam Appl. Appl. Mah. ISSN: 9329466 Vol. 5, Issue (Jue 200) pp. 0 (Previously, Vol. 5, No. ) Applicaios ad Applied Mahemaics: A Ieraioal Joural (AAM) Wavele Trasorm o Fracioal
More informationAdomian Decomposition Method with different polynomials for nonlinear Klein Gordon equation and a system of nonlinear partial differential equations
omia Decomposiio Meho wih iffere polyomials for oliear Klei Goro eqaio a a sysem of oliear parial iffereial eqaios Mohaa Riyah Saa Deparme of Mahemaics College of Sciece Uiversiy of Basra Iraq bsrac I
More information4. Levered and Unlevered Cost of Capital. Tax Shield. Capital Structure
4. Levered ad levered Cos Capial. ax hield. Capial rucure. Levered ad levered Cos Capial Levered compay ad CAP he cos equiy is equal o he reur expeced by sockholders. he cos equiy ca be compued usi he
More informationB1. Fourier Analysis of Discrete Time Signals
B. Fourier Aalysis of Discrete Time Sigals Objectives Itroduce discrete time periodic sigals Defie the Discrete Fourier Series (DFS) expasio of periodic sigals Defie the Discrete Fourier Trasform (DFT)
More informationWhy we use compounding and discounting approaches
Comoudig, Discouig, ad ubiased Growh Raes Near Deb s school i Souher Colorado. A examle of slow growh. Coyrigh 00004, Gary R. Evas. May be used for orofi isrucioal uroses oly wihou ermissio of he auhor.
More informationA panel data approach for fashion sales forecasting
A pael daa approach for fashio sales forecasig Shuyu Re(shuyu_shara@live.c), TsaMig Choi, Na Liu Busiess Divisio, Isiue of Texiles ad Clohig, The Hog Kog Polyechic Uiversiy, Hug Hom, Kowloo, Hog Kog Absrac:
More informationComplex Fourier Series. Adding these identities, and then dividing by 2, or subtracting them, and then dividing by 2i, will show that
Mah 344 May 4, Complex Fourier Series Par I: Inroducion The Fourier series represenaion for a funcion f of period P, f) = a + a k coskω) + b k sinkω), ω = π/p, ) can be expressed more simply using complex
More informationEE8407 Power Converter Systems. Topic 9. PWM Current Source Inverters (CSI) PWM CSI fed MV drive Courtesy of Rockwell Automation
Power Coverer Syem opic 9 PWM Curre Source verer CS PWM CS fe MV rive Courey of Rocwell Auomaio exboo: Bi Wu, HighPower Coverer a AC Drive, WileyEEE Pre, opic 9 PWM Curre Source verer CS Lecure opic
More informationUsing Kalman Filter to Extract and Test for Common Stochastic Trends 1
Usig Kalma Filer o Exrac ad Tes for Commo Sochasic Treds Yoosoo Chag 2, Bibo Jiag 3 ad Joo Y. Park 4 Absrac This paper cosiders a sae space model wih iegraed lae variables. The model provides a effecive
More informationPERFORMANCE COMPARISON OF TIME SERIES DATA USING PREDICTIVE DATA MINING TECHNIQUES
, pp.5766. Available olie a hp://www.bioifo.i/coes.php?id=32 PERFORMANCE COMPARISON OF TIME SERIES DATA USING PREDICTIVE DATA MINING TECHNIQUES SAIGAL S. 1 * AND MEHROTRA D. 2 1Deparme of Compuer Sciece,
More informationTagore Engineering College Department of Electrical and Electronics Engineering EC 2314 Digital Signal Processing University Question Paper PartA
Tagore Egieerig College Departmet of Electrical ad Electroics Egieerig EC 34 Digital Sigal Processig Uiversity Questio Paper PartA UitI. Defie samplig theorem?. What is kow as Aliasig? 3. What is LTI
More informationRanking of mutually exclusive investment projects how cash flow differences can solve the ranking problem
Chrisia Kalhoefer (Egyp) Ivesme Maageme ad Fiacial Iovaios, Volume 7, Issue 2, 2 Rakig of muually exclusive ivesme projecs how cash flow differeces ca solve he rakig problem bsrac The discussio abou he
More informationKyoungjae Kim * and Ingoo Han. Abstract
Simulaeous opimizaio mehod of feaure rasformaio ad weighig for arificial eural eworks usig geeic algorihm : Applicaio o Korea sock marke Kyougjae Kim * ad Igoo Ha Absrac I his paper, we propose a ew hybrid
More informationChapter 4 MultipleDegreeofFreedom (MDOF) Systems. Packing of an instrument
Chaper 4 MulpleDegreeofFreedom (MDOF Sysems Eamples: Pacg of a srume Number of degrees of freedom Number of masses he sysem X Number of possble ypes of moo of each mass Mehods: Newo s Law ad Lagrage
More informationSequences II. Chapter 3. 3.1 Convergent Sequences
Chapter 3 Sequeces II 3. Coverget Sequeces Plot a graph of the sequece a ) = 2, 3 2, 4 3, 5 + 4,...,,... To what limit do you thik this sequece teds? What ca you say about the sequece a )? For ǫ = 0.,
More informationA Strategy for Trading the S&P 500 Futures Market
62 JOURNAL OF ECONOMICS AND FINANCE Volume 25 Number 1 Sprig 2001 A Sraegy for Tradig he S&P 500 Fuures Marke Edward Olszewski * Absrac A sysem for radig he S&P 500 fuures marke is proposed. The sysem
More information{{1}, {2, 4}, {3}} {{1, 3, 4}, {2}} {{1}, {2}, {3, 4}} 5.4 Stirling Numbers
. Stirlig Numbers Whe coutig various types of fuctios from., we quicly discovered that eumeratig the umber of oto fuctios was a difficult problem. For a domai of five elemets ad a rage of four elemets,
More informationSteps for D.C Analysis of MOSFET Circuits
10/22/2004 Seps for DC Analysis of MOSFET Circuis.doc 1/7 Seps for D.C Analysis of MOSFET Circuis To analyze MOSFET circui wih D.C. sources, we mus follow hese five seps: 1. ASSUME an operaing mode 2.
More informationConvergence of Binomial Large Investor Models and General Correlated Random Walks
Covergece of Biomial Large Ivesor Models ad Geeral Correlaed Radom Walks vorgeleg vo Maser of Sciece i Mahemaics, DiplomWirschafsmahemaiker Urs M. Gruber gebore i Georgsmariehüe. Vo der Fakulä II Mahemaik
More informationDuration and Convexity ( ) 20 = Bond B has a maturity of 5 years and also has a required rate of return of 10%. Its price is $613.
Graduae School of Business Adminisraion Universiy of Virginia UVAF38 Duraion and Convexiy he price of a bond is a funcion of he promised paymens and he marke required rae of reurn. Since he promised
More informationPrincipal components of stock market dynamics. Methodology and applications in brief (to be updated ) Andrei Bouzaev, bouzaev@ya.
Principal componens of sock marke dynamics Mehodology and applicaions in brief o be updaed Andrei Bouzaev, bouzaev@ya.ru Why principal componens are needed Objecives undersand he evidence of more han one
More informationHYPERBOLIC DISCOUNTING IS RATIONAL: VALUING THE FAR FUTURE WITH UNCERTAIN DISCOUNT RATES. J. Doyne Farmer and John Geanakoplos.
HYPERBOLIC DISCOUNTING IS RATIONAL: VALUING THE FAR FUTURE WITH UNCERTAIN DISCOUNT RATES By J. Doye Farmer ad Joh Geaakoplos Augus 2009 COWLES FOUNDATION DISCUSSION PAPER NO. 1719 COWLES FOUNDATION FOR
More informationNow here is the important step
LINEST i Excel The Excel spreadsheet fuctio "liest" is a complete liear least squares curve fittig routie that produces ucertaity estimates for the fit values. There are two ways to access the "liest"
More informationChapter 5 O A Cojecture Of Erdíos Proceedigs NCUR VIII è1994è, Vol II, pp 794í798 Jeærey F Gold Departmet of Mathematics, Departmet of Physics Uiversity of Utah Do H Tucker Departmet of Mathematics Uiversity
More informationImplementation of Lean Manufacturing Through Learning Curve Modelling for Labour Forecast
Ieraioal Joural of Mechaical & Mecharoics Egieerig IJMMEIJENS Vol:09 No:0 35 Absrac I his paper, a implemeaio of lea maufacurig hrough learig curve modellig for labour forecas is discussed. Firs, various
More informationCooleyTukey. Tukey FFT Algorithms. FFT Algorithms. Cooley
Cooley CooleyTuey Tuey FFT Algorithms FFT Algorithms Cosider a legth sequece x[ with a poit DFT X[ where Represet the idices ad as +, +, Cooley CooleyTuey Tuey FFT Algorithms FFT Algorithms Usig these
More informationTHE PUBLISHING HOUSE PROCEEDINGS OF THE ROMANIAN ACADEMY, Series A, OF THE ROMANIAN ACADEMY Volume 16, Number 1/2015, pp. 3 10
THE PUBLISHING HOUSE PROCEEDINGS OF THE ROMANIAN ACADEMY Series A OF THE ROMANIAN ACADEMY Volume 6 Number /5 pp. ON THE SOLUTIONS OF TIMEFRACTIONAL GENERALIZED HIROTASATSUMA COUPLEDKDV EQUATION WITH
More informationPermutations and Combinations
Permuaions and Combinaions Combinaorics Copyrigh Sandards 006, Tes  ANSWERS Barry Mabillard. 0 www.mah0s.com 1. Deermine he middle erm in he expansion of ( a b) To ge he kvalue for he middle erm, divide
More informationChapter 5: Inner Product Spaces
Chapter 5: Ier Product Spaces Chapter 5: Ier Product Spaces SECION A Itroductio to Ier Product Spaces By the ed of this sectio you will be able to uderstad what is meat by a ier product space give examples
More information1 The basic circulation problem
2WO08: Graphs and Algorihms Lecure 4 Dae: 26/2/2012 Insrucor: Nikhil Bansal The Circulaion Problem Scribe: Tom Slenders 1 The basic circulaion problem We will consider he maxflow problem again, bu his
More informationData Protection and Privacy Technologies in Focus. Rashmi Chandrashekar, Accenture
Daa Proeio ad Privay Tehologies i Fous Rashmi Chadrashekar, Aeure Sesiive Creai Daa Lifeyle o Busiess sesiive daa proeio is o a sigle eve. Adequae proeio o mus be provided appropriaely hroughou Mai he
More informationCondensation of ideal Bose gas confined in a box within a canonical ensemble
PHYSICAL REVIEW A 76, 6364 27 Codesaio of ideal Bose gas cofied i a box wihi a caoical esemble Kosai Glaum* ad Hage Kleier Isiu für Theoreische Physik, Freie Uiversiä Berli, Arimallee 4, 495 Berli, Germay
More informationThe Field of Complex Numbers
The Field of Complex Numbers S. F. Ellermeyer The costructio of the system of complex umbers begis by appedig to the system of real umbers a umber which we call i with the property that i = 1. (Note that
More informationMocks.ie Maths LC HL Further Calculus mocks.ie Page 1
Maths Leavig Cert Higher Level Further Calculus Questio Paper By Cillia Fahy ad Darro Higgis Mocks.ie Maths LC HL Further Calculus mocks.ie Page Further Calculus ad Series, Paper II Q8 Table of Cotets:.
More informationUnderstanding Sequential Circuit Timing
ENGIN112: Inroducion o Elecrical and Compuer Engineering Fall 2003 Prof. Russell Tessier Undersanding Sequenial Circui Timing Perhaps he wo mos disinguishing characerisics of a compuer are is processor
More informationORDERS OF GROWTH KEITH CONRAD
ORDERS OF GROWTH KEITH CONRAD Itroductio Gaiig a ituitive feel for the relative growth of fuctios is importat if you really wat to uderstad their behavior It also helps you better grasp topics i calculus
More informationA simple SSDefficiency test
A simple SSDefficiecy es Bogda Grechuk Deparme of Mahemaics, Uiversiy of Leiceser, UK Absrac A liear programmig SSDefficiecy es capable of ideifyig a domiaig porfolio is proposed. I has T + variables
More informationTotal Return Index Calculation Methodology
Toal Reur Idex Calculaio Mehodology Las updaed: Ocober 31, 2011 1 Impora Noice: 1. This Eglish versio is o a officially accurae raslaio of he origial Thai docume. I ay cases where differeces arise bewee
More informationChapter 25. Waveforms
Chapter 5 Nosiusoidal Waveforms Waveforms Used i electroics except for siusoidal Ay periodic waveform may be expressed as Sum of a series of siusoidal waveforms at differet frequecies ad amplitudes 1 Waveforms
More informationAn antenna is a transducer of electrical and electromagnetic energy. electromagnetic. electrical
Basic Atea Cocepts A atea is a trasducer of electrical ad electromagetic eergy electromagetic electrical electrical Whe We Desig A Atea, We Care About Operatig frequecy ad badwidth Sometimes frequecies
More informationFIBONACCI NUMBERS: AN APPLICATION OF LINEAR ALGEBRA. 1. Powers of a matrix
FIBONACCI NUMBERS: AN APPLICATION OF LINEAR ALGEBRA. Powers of a matrix We begi with a propositio which illustrates the usefuless of the diagoalizatio. Recall that a square matrix A is diogaalizable if
More informationA New Hybrid Network Traffic Prediction Method
This full ex paper was peer reviewed a he direcio of IEEE Couicaios Sociey subjec aer expers for publicaio i he IEEE Globeco proceedigs. A New Hybrid Nework Traffic Predicio Mehod Li Xiag, XiaoHu Ge,
More informationA Heavy Traffic Approach to Modeling Large Life Insurance Portfolios
A Heavy Traffic Approach o Modelig Large Life Isurace Porfolios Jose Blache ad Hery Lam Absrac We explore a ew framework o approximae life isurace risk processes i he sceario of pleiful policyholders,
More informationUnit 7 Possibility and probability
Grammar o go! Lesso Lik Lesso legh: 45 mis Aim: 1. o review he use of may, migh, could, mus ad ca o express possibiliy ad probabiliy 2. o review he use of may, migh ad could whe alkig abou possibiliy ad
More informationAPPLICATIONS OF GEOMETRIC
APPLICATIONS OF GEOMETRIC SEQUENCES AND SERIES TO FINANCIAL MATHS The mos powerful force i he world is compoud ieres (Alber Eisei) Page of 52 Fiacial Mahs Coes Loas ad ivesmes  erms ad examples... 3 Derivaio
More informationMATHEMATICS: CONCEPTS, AND FOUNDATIONS Vol. I  Matrices, Vectors, Determinants, and Linear Algebra  Tadao ODA
MATRICES, VECTORS, DETERMINANTS, AND LINEAR ALGEBRA Tadao Tohoku Uiversity, Japa Keywords: matrix, determiat, liear equatio, Cramer s rule, eigevalue, Jorda caoical form, symmetric matrix, vector space,
More informationTeaching Bond Valuation: A Differential Approach Demonstrating Duration and Convexity
JOURNAL OF EONOMIS AND FINANE EDUATION olume Number 2 Wier 2008 3 Teachig Bod aluaio: A Differeial Approach Demosraig Duraio ad ovexi TeWah Hah, David Lage ABSTRAT A radiioal bod pricig scheme used i iroducor
More informationFourier Series and the Wave Equation Part 2
Fourier Series ad the Wave Equatio Part There are two big ideas i our work this week. The first is the use of liearity to break complicated problems ito simple pieces. The secod is the use of the symmetries
More informationA formulation for measuring the bullwhip effect with spreadsheets Una formulación para medir el efecto bullwhip con hojas de cálculo
irecció y rgaizació 48 (01) 933 9 www.revisadyo.com A formulaio for measurig he bullwhip effec wih spreadshees Ua formulació para medir el efeco bullwhip co hojas de cálculo Javier ParraPea 1, Josefa
More informationThe Economic Dynamics of Inflation and Unemployment
Theoreical Ecoomics Leers, 0,, 3340 h://dx.doi.org/0.436/el.0.05 Published Olie May 0 (h://www.scirp.org/joural/el) The Ecoomic Dyamics of Iflaio ad Uemloyme Tamara Todorova Dearme of Ecoomics, America
More information, and range, R, by (1) Figure 1 Relation of CrossRange distance to Beamwidth
.0 YNTHETIC APERTURE RADAR.1 INTRODUCTION The term sythetic aperture radar (AR) derives from the fact that the motio of a aircraft (airplae, satellite, UAV, etc.) is used to artificially create, or sythesize
More informationOverview on SBox Design Principles
Overview o SBox Desig Priciples Debdeep Mukhopadhyay Assistat Professor Departmet of Computer Sciece ad Egieerig Idia Istitute of Techology Kharagpur INDIA 721302 What is a SBox? SBoxes are Boolea
More informationEXISTENCE OF A SOLUTION FOR THE FRACTIONAL FORCED PENDULUM
Jourl of Alied Mhemics d Comuiol Mechics 4, 3(), 54 EXISENCE OF A SOUION FOR HE FRACIONA FORCED PENDUUM Césr orres Dermeo de Igeierí Memáic, Cero de Modelmieo Memáico Uiversidd de Chile, Sigo, Chile corres@dim.uchile.cl
More informationπ d i (b i z) (n 1)π )... sin(θ + )
SOME TRIGONOMETRIC IDENTITIES RELATED TO EXACT COVERS Joh Beebee Uiversity of Alaska, Achorage Jauary 18, 1990 Sherma K Stei proves that if si π = k si π b where i the b i are itegers, the are positive
More informationNATIONAL SENIOR CERTIFICATE GRADE 12
NATIONAL SENIOR CERTIFICATE GRADE MATHEMATICS P EXEMPLAR 04 MARKS: 50 TIME: 3 hours This questio paper cosists of 8 pages ad iformatio sheet. Please tur over Mathematics/P DBE/04 NSC Grade Eemplar INSTRUCTIONS
More informationFree vibration of single degree of freedom (SDOF) Chapter 2
Free vibraio of sigle degree of freedom (SDOF) Chaper Iroducio A sysem is said o udergo free vibraio whe i oscillaes oly uder a iiial disurbace wih o eeral forces acig afer he iiial disurbace Iroducio
More informationImproving Survivability through Traffic Engineering in MPLS Networks
Improvig Survivabiiy hrough Traffic Egieerig i MPLS Neworks Mia Ami, KiHo Ho, George Pavou, ad Michae Howarh Cere for Commuicaio Sysems Research, Uiversiy of Surrey, UK Emai:{M.Ami, K.Ho, G.Pavou, M.Howarh}@eim.surrey.ac.uk
More information23.3. Even and Odd Functions. Introduction. Prerequisites. Learning Outcomes
Even and Odd Funcions 3.3 Inroducion In his Secion we examine how o obain Fourier series of periodic funcions which are eiher even or odd. We show ha he Fourier series for such funcions is considerabl
More informationx(x 1)(x 2)... (x k + 1) = [x] k n+m 1
1 Coutig mappigs For every real x ad positive iteger k, let [x] k deote the fallig factorial ad x(x 1)(x 2)... (x k + 1) ( ) x = [x] k k k!, ( ) k = 1. 0 I the sequel, X = {x 1,..., x m }, Y = {y 1,...,
More informationDepartment of Computer Science, University of Otago
Departmet of Computer Sciece, Uiversity of Otago Techical Report OUCS200609 Permutatios Cotaiig May Patters Authors: M.H. Albert Departmet of Computer Sciece, Uiversity of Otago Micah Colema, Rya Fly
More informationSimulating Random Voltage or Current Sources In SPICE. Report NDT12072007 3 July 2007
Simulaig adom Volage or Curre Sources I SPICE epor NDT107007 3 July 007 Copyrigh 007 by NaoDoTek Permissio is graed o reproduce his repor provided ha appropriae credi is give o NaoDoTek as is auhor.
More information11. Properties of alternating currents of LCRelectric circuits
WS. Properies of alernaing currens of Lelecric circuis. Inroducion Socalled passive elecric componens, such as ohmic resisors (), capaciors () and inducors (L), are widely used in various areas of science
More information