Inthispaper,weareinterestedinrandomgraphswithaxeddegree

Size: px
Start display at page:

Download "Inthispaper,weareinterestedinrandomgraphswithaxeddegree"

Transcription

1 ACRITICALPOINTFORRANDOM GRAPHSWITHAGIVENDEGREE DepartmentofMathematics PittsburghPA15213,U.S.A. Carnegie-MellonUniversity SEQUENCE MichaelMolloy UniversitePierreetMarieCurie EquipeCombinatoire BruceReed August14,2000 Paris,France CNRS thenalmostsurelyallcomponentsinsuchgraphsaresmall.wecan sumto1,weconsiderrandomgraphshavingapproximatelyinverticesofdegreei.essentially,weshowthatifpi(i?2)i>0thensuch Givenasequenceofnon-negativerealnumbers0;1;:::which Abstract graphsalmostsurelyhaveagiantcomponent,whileifpi(i?2)i<0 applytheseresultstogn;p;gn;m,andotherwell-knownmodelsof randomgraphs.therearealsoapplicationsrelatedtothechromatic numberofsparserandomgraphs. 1

2 berofverticesandthenumberofcyclesinthelargestcomponent.ofcourse, fromwhichthegraphsarepicked.inonestandardmodelwepickarandom thebehaviouroftheseparametersdependsontheprobabilitydistribution Inthispaperweconsidertwoparametersofcertainrandomgraphs:thenum- graphgn;mwithnverticesandmedgeswhereeachsuchgraphisequally 1IntroductionandOverview ofnandletngotoinnity.thepointm=12nisreferredtoasthecritical likely.weareinterestedinwhathappenswhenwechoosemasafunction size(n2=3).ifm=cnforc>12thenthereareconstants;>0dependent probabilitytendingtooneasntendstoinnity)gn;mhasnocomponentof pointorthedouble-jumpthresholdbecauseofclassicalresultsduetoerd}os oncsuchthata.s.gn;mhasacomponentonatleastnverticeswithat sizegreaterthano(logn),andnocomponenthasmorethanonecycle.if M=12n+o(n),thenalmostsurely(a.s.)thelargestcomponentofGn;Mhas andrenyi[8]concerningthedramaticchangeswhichoccurtotheseparametersatthispoint.ifm=cn+o(n)forc<12thenalmostsurely(i.e.with leastncycles,andnoothercomponenthasmorethano(logn)verticesor see[3],[11],or[14]. probability.ofcourse,wehavetosaywhatwemeanbyadegreesequence. sequencewhereeachgraphwiththatdegreesequenceischosenwithequal Ifthenumberofverticesinourgraph,nisxed,thenadegreesequenceis ofgn;m.formorespecicsonthesetwoparametersatandaroundm=12n morethanonecycle.thiscomponentisreferredtoasthegiantcomponent simplyasequenceofnnumbers.however,weareconcernedherewithwhat quenceofsequences".thus,wegeneralizethedenitionofdegreesequence: happensasymptoticallyasntendstoinnity,sowehavetolookata\se- Inthispaper,weareinterestedinrandomgraphswithaxeddegree valuedfunctionsd=d0(n);d1(n);:::suchthat 2.Pi0di(n)=n. 1.di(n)=0forin; GivenanasymptoticdegreesequenceD,wesetDntobethedegree Denition:Anasymptoticdegreesequenceisasequenceofinteger- sequencefc1;c2;:::;cng,wherecjcj+1andjfj:cj=igj=di(n)foreach i0..denedntobethesetofallgraphswithvertexset[n]withdegree 2

3 sequencedn.arandomgraphonnverticeswithdegreesequencedisa degreesequenced,wewantthesequencesdntobeinsomesensesimilar. alln1. uniformlyrandommemberofdn. Denition:AnasymptoticdegreesequenceDisfeasibleifDn6=;for constantsisuchthatlimn!1di(n)=n=i. Wedothisbyinsistingthatforanyxedi,theproportionofverticesof degreeiisroughlythesameineachsequence. Becausewewishtodiscussasymptoticpropertiesofrandomgraphswith Inthispaper,wewillonlydiscussfeasibledegreesequences. andweonlyclaimthingstobetrueforsucientlylargen. beenrandomregulargraphs.perhapsthemostimportantrecentresultisby Denition:AnasymptoticdegreesequenceDissmoothifthereexist graphforanyconstantk3,thengisa.s.hamiltonian. RobinsonandWormald[20],[21],whoprovedthatifGisarandomk-regular Throughoutthispaper,allasymptoticswillbetakenasntendsto1 quencecomesfromtheanalysisofthechromaticnumberofsparserandom graphs.thisisbecauseaminimally(r+1)-chromaticgraphmusthavemini- Inthepast,themostcommonlystudiedrandomgraphsofthistypehave mumdegreeatleastr.inanattempttodeterminehowmanyedgeswerenec- iedtheexpectednumberofsubgraphsofminimumdegreethreeinrandom cessarytoforcearandomgraphtoa.s.benot3-colourable,chvatal[7]stud- graphswithalinearnumberofedges.heshowedthatforc<c=1:442:::, Anothermotivationforstudyingrandomgraphsonaxeddegreese- theprobabilitythatarandomgraphonnverticeswithminimumdegree authorsusedaspecialcaseofthemaintheoremofthispapertoshowthat threeandatmost1:793nedgesisminimally4-chromaticisexponentially ponentiallylarge.intheworkthatmotivatedtheresultsofthispaper,the whileforc>ctheexpectednumberofsuchsubgraphsingn;m=cnisex- small[18].weusedthistoshowthatforcalittlebitbiggerthanc,the theexpectednumberofsuchsubgraphsingn;m=cnisexponentiallysmall, nentiallysmall.thissuggeststhatdeterminingtheminimumvalueofcfor expectednumberofminimally4-chromaticsubgraphsofgn;m=cnisexpo- whicharandomgraphwithcnedgesisa.s.4-chromaticmayrequiremore thanastudyofthesubgraphswithminimumdegree3. Recently Luczak[14]showed(amongotherthings)thatifGisarandom 3

4 thenallthecomponentsofsucharandomgrapharea.s.quitesmall.note giantcomponent.ourmaintheoremalsogeneralizesthisresult. graphonaxeddegreesequence1,withnoverticesofdegreelessthan2, howcloselythisparallelsthephenomenoninthemorestandardmodelgn;m. andatleast(n)verticesofdegreegreaterthan2,thenga.s.hasaunique foranymodelofrandomgraphsaslongas:(i)wecandeterminethedegree sequenceofgraphsinthemodelwithreasonableaccuracy,and(ii)oncethe graphwithdegreesequenceda.s.hasagiantcomponent,whileifq(d)<0 Notefurtherthattheseresultsallowustodetermineasimilarthreshold WesetQ(D)=Pi1i(i?2)i.EssentiallyifQ(D)>0thenarandom degreesequenceisdetermined,everygraphonthatdegreesequenceisequally likely.gn;pissuchamodel,andthus(asweseelater),ourresultscanbe Dnhas(i+o(1))nverticesofdegreeiforeachi0.Pickarandomvertex usedtoverifythepreviouslyknownthresholdforgn;p. inourgraphandexposethecomponentinwhichitliesusingabranching itsneighbours,repeatinguntiltheentirecomponentisexposed.nowwhen ofwhyitdetermineswhetherornotagiantcomponentexists.supposethat process.inotherwords,exposeitsneighbours,andthentheneighboursof avertexofdegreeiisexposed,thenthenumberof\unknown"neighbours Beforedeningtheparameterprecisely,wegiveanintuitiveexplanation increasesbyi?2.theprobabilitythatacertainvertexisselectedasa neighbourisproportionaltoitsdegree.thereforetheexpectedincreasein thenumberofunknownneighboursis(roughly)pi1i(i?2)i.thisis,of course,q(d). quickly.however,ifitispositivethenthenumberofunknownneighbours, formally. mainthrustofourarguments.wewillnowbegintostateallofthismore andthusthesizeofthecomponent,mightgrowquitelarge.thisgivesthe Thus,ifQ(D)isnegativethenthecomponentwilla.s.beexposedvery translate. insistthattheasymptoticdegreesequencesweconsiderarewell-behaved. Inparticular,whenthemaximumdegreeinourdegreesequencegrowswith n,wecanrunintosomeproblemsifthingsdonotconvergeuniformly.for example,ifd1(n)=n?dn:9e;di(n)=dn:9eifi=dpne,anddi(n)=0 1Hedidn'tusetheasymptoticdegreesequenceintroducedhere,buttheresults Thereareafewcaveats,soinorderforourresultstohold,wemust 4

5 However,thisisdeceivingasthereareenoughverticesofdegreepntoensure otherwise,then1=1,andi=0fori>1,andwegetq(d)=?1. thatagiantcomponentcontainingn?o(n)verticesa.s.exists. 1.Disfeasibleandsmooth. 2.i(i?2)di(n)=ntendsuniformlytoi(i?2)i;i.e.forall>0there Denition:AnasymptoticdegreesequenceDiswell-behavedif: 3. existsnsuchthatforalln>nandforalli0: L(D)=lim ji(i?2)di(n) n n!1xi1i(i?2)di(n)=n?i(i?2)ij< exists,andthesumapproachesthelimituniformly,i.e.: (a)ifl(d)isnitethenforall>0,thereexistsi;nsuchthatfor (b)ifl(d)isinnitethenforallt>0,thereexistsi;nsuchthat alln>n: foralln>n: jixi=1i(i?2)di(n)=n?l(d)j< WenotethatitisaneasyexercisetoshowthatifDiswell-behavedthen: L(D)=Q(D) ixi=1i(i?2)di(n)=n>t assparse: numberofedgesinourdegreesequence.wedenesuchadegreesequence Itisnotsurprisingthatthethresholdoccurswhentherearealinear 5

6 K+o(1)forsomeconstantK. Denition:AnasymptoticdegreesequenceDissparseifPi0idi(n)=n= chosenuniformlyatrandomfromamongstallsuchgraphs.then: di(n)=0.letgbeagraphwithnvertices,di(n)ofwhichhavedegreei, nitethendissparse. degreesequenceforwhichthereexists>0suchthatforallnandi>n14?, Themainresultinthispaperisthefollowing: Notethatforawell-behavedasymptoticdegreesequenceD,ifQ(D)is Theorem1LetD=d0(n);d1(n);:::beawell-behavedsparseasymptotic (a)ifq(d)>0thenthereexistconstants1;2>0dependentond (b)ifq(d)<0andforsomefunction0!(n)n18?,di(n)=0 foralli!(n),thenforsomeconstantrdependentonq(d),g dependentond. suchthatga.s.hasacomponentwithatleast1nverticesand hasfewerthan2r!(n)2logncycles.also,a.s.nocomponentof a.s.hasnocomponentwithatleastr!(n)2lognvertices,anda.s. onecomponentofsizegreaterthanlognforsomeconstant 2ncycles.Furthermore,ifQ(D)isnitethenGa.s.hasexactly analogoustothecasec=1inthemodelgn;p=c=n,andwouldbeinteresting Theorem1(a)agiantcomponent. NotealsothatTheorem1failstocoverthecasewhereQ(D)=0.Thisis NotethatifQ(D)<0thenQ(D)isnite. ConsistentwiththemodelGn;M,wecallthecomponentreferedtoin Ghasmorethanonecycle. toanalyze. onaxedwell-behaveddegreesequencewithcn+o(n)edgesforanyc>1 isthatitisdiculttogeneratesuchgraphsdirectly.insteadishasbecome standardtostudyrandomcongurationsonaxeddegreesequence,and Pi1ii>2;Pi1i(i?2)i<0;Pi1i=1;0i1. thenga.s.hasagiantcomponent,asthereisnosolutionto OneimmediateapplicationofTheorem1isthatifGisarandomgraph usesomelemmaswhichallowustotranslateresultsfromonemodeltothe andrenedbybollobas[3]andalsowormald[22]. other.thecongurationmodelwasintroducedbybenderandcaneld[2] Amajordicultyinthestudyofrandomgraphsonxeddegreesequences 6

7 degreesequence,wedothefollowing: 1.FormasetLcontainingdeg(v)distinctcopiesofeachvertexv. 2.ChoosearandommatchingoftheelementsofL. Inordertogeneratearandomcongurationwithnverticesandaxed denedbythepairsinthematching.wesaythatacongurationhasa graphicalpropertypifitsunderlyingmultigraphdoes. ofarandomcongurationonadegreesequencemeetingtheconditionsof Theorem1issimplewithprobabilitytendingtoe?(D),forsome (D)<O(n1=2?).Theconditiondi(n)=0foralli>n1=4?isneededto Eachcongurationrepresentsanunderlyingmultigraphwhoseedgesare applythisresult.ifq(d)isnitethen(d)tendstoaconstant. urations,whichisclearlyequalforallgraphsonthesamedegreesequence Usingthemainresultin[17]itfollowsthattheunderlyingmultigraph andthesamenumberofvertices. propertypwithprobabilityatleast1?znforsomeconstantz<1,thena meetingtheconditionsoftheorem1(withq(d)possiblyunbounded)hasa Thisgivesusthefollowingveryusefullemmas: Also,anysimplegraphGcanberepresentedbyQv2V(G)deg(v)!cong- thenarandomgraphwiththesamedegreesequencea.s.hasp. meetingtheconditionsoftheorem1a.s.hasapropertyp,andifq(d)<1, Lemma2IfarandomcongurationwithagivendegreesequenceD Lemma1IfarandomcongurationwithagivendegreesequenceD conguration. opedindependentlybybollobasandfrieze[6],flajolet,knuthandpittel graphsonagivendegreesequence. [10],andChvatal[7].Bothmodelsareveryusefulwhenworkingwithrandom Thecongurationmodelisverysimilartothepseudographmodeldevel- UsingtheseLemmas,itwillbeenoughtoproveTheorem1forarandom inwhichwearestudyingthem,wecannowgiveamoreformaloverviewof theproof.theremainderofthissectionisdevotedtothisoverview.inthe seesomeapplicationsoftheorem1:theaforementionedworkconcerningthe followingtwosectionswegiveallthedetailsoftheproof.insection4,we Havingdenedthepreciseobjectsthatweareinterestedin,andthemodel 7

8 bemorespecicregardingtheorderinwhichweexposethepairsofthe randommatching. nishthissectionandthenskipaheadtothelastone. readerwhoisnotinterestedinthedetailsoftheproofmightwanttojust chromaticnumberofsparserandomgraphs,andanewproofofaclassical double-jumptheorem,showingthatthisworkgeneralizesthatresult.a whichhavedegreeiasfollows: exposed.avertexsomebutnotallofwhosecopiesareinexposedpairsis GivenD,wewillexposearandomcongurationFonnvertices,di(n)of Inordertoexaminethecomponentsofourrandomconguration,wewill partiallyexposed.allotherverticesareunexposed.thecopiesofpartially exposedverticeswhicharenotinexposedpairsareopen. 1.FormasetLconsistingofidistinctcopiesofeachofthedi(n)vertices Ateachstep,avertexallofwhosecopiesareinexposedpairsisentirely 2.RepeatuntilLisempty: whichhavedegreei. (a)exposeapairoffbyrstchoosinganymemberofl,andthen Allrandomchoicesaremadeuniformly. (b)repeatuntiltherearenopartiallyexposedvertices: Chooseanopencopyofapartiallyexposedvertex,andpairit withanotherrandomlychosenmemberofl.removethemboth choosingitspartneratrandom.removethemfroml. atime.whenanycomponentiscompletelyexposed,wemoveontoanew one;i.e.werepeatstep2(a). Essentiallyweareexposingtherandomcongurationonecomponentat ofthisfreedom,butinmostcaseswewillpickitrandomlyinthesamemanner 2(a).Inafewplacesinthispaper,itwillbeimportantthatwetakeadvantage withthesameprobabilityunderthisprocedure,andhencethisisavalidway inwhichwepickalltheothervertex-copies,i.e.unlesswestateotherwise, tochoosearandomconguration. Itisclearthateverypossiblematchingamongstthevertex-copiesoccurs wewillalwaysjustpickauniformlyrandommemberofl. NotethatwehavecompletefreedomastowhichvertexwepickinStep 8

9 isexposed.iftheneighbourofvchoseninstep2(b)isofdegreed,then Xigoesupbyd?2.Eachtimeacomponentiscompletelyexposedand werepeatstep2(a)thenifthepairexposedinstep2(a)involvesverticesof ofdegreedisrd,thentheprobabilitythatwepickacopyofavertexof degreed1andd2thenxiissettoavalueofd1+d2?2. Now,letXirepresentthenumberofopenvertex-copiesaftertheithpair degreedinstep3(b)isrd=pi1ri.thereforeinitiallytheexpectedchange inxiisapproximatelypi1i(i?2)di(n) Notethatifthenumberofvertex-copiesinLwhicharecopiesofvertices Walk",withanexpectedchangeofQ(D) Markovprocessverycloseindistributiontothewell-studied\Drunkard's standardresultofrandomwalktheory(seeforexample[9])impliesthatif Therefore,atleastinitially,ifthisvalueispositivethenXifollowsa Pj1jdj(n)=Q(D) Q(D)>0,thenafter(n)steps,Xiisa.s.oforder(n). K.SinceXi+1Xi?1always,a K: quickly,andthiswillgiveustheotherpartoftheorem1,asthesizesof seethatifq(d)isbounded,thenthisgiantcomponentisa.s.unique. thecomponentsoffareboundedabovebythedistancesbetweenvaluesof cyclesinit,andthiswillgiveustherstpartoftheorem1.wewillalso on(n)vertices.wewillseethatsuchacomponenta.s.hasatleast(n) Ontheotherhand,ifQ(D)<0,thenXia.s.returnstozerofairly Itfollowsthatourrandomcongurationa.s.hasatleastonecomponent isuchthatxi=0. Therearethreemajorcomplications: 1.Apurerandomwalkcandropbelow0.WheneverXireaches0,it OfcoursetherandomwalkfollowedbyXiisnotreallyassimpleasthis. 3.Asmoreandmoreverticesareexposed,theratioofthemembersofL 2.Weneglectedtoconsiderthatthesecondvertex-copychoseninStep Wewillcallsuchapairofvertex-copiesabackedge. resetsitselftoapositivenumber. ofxichanges. whicharecopiesofverticesofdegreedshifts,andtheexpectedincrease 2(b)mightbeanopenvertex-copyinwhichcaseXidecreasesby2. 9

10 1.ThiswillincreasetheprobabilityofXigrowinglarge,andsothisonly Thesecomplicationsarehandledasfollows: posesapotentialprobleminprovingpart(b).inthiscase,wewill 3.Inprovingpart(a),welookatourcomponentatatimewhentheexpectedincreaseinXiisstillatleast12itsoriginalvalue.Wewillsee thatthecomponentbeingexposedatthispointisa.s.agiantcomponent.inprovingpart(b),itisenoughtoconsidertheconguration 2.Wewillseethatthisa.s.doesn'thappenoftenenoughtoposeaserious problem,unlessthepartiallyexposedcomponentisalreadyofsize(n). o(n?1),andhenceevenifwe\tryagain"ntimes,thiswilla.s.never happen. showthattheprobabilityofacomponentgrowingtoobigisoforder 2GraphsWithNoLargeComponents twosections. Thisisaroughoutlineoftheproof.Wewillllinthedetailsinthenext signicantly. aftero(n)steps.atthispoint,theexpectedincreasehasn'tchanged theconditionsgivenintheorem1(b),thenfa.s.doesnothaveanylarge graphs.wewillrstprovethatiffisarandomcongurationmeeting components. InthissectionwewillprovethattheanalogueofTheorem1(b)holdsfor randomcongurations.lemma1willthenimplythatitholdsforrandom somefunction0!(n)n18?fhasnoverticesofdegreegreaterthan!(n),thenfa.s.hasnocomponentswithmorethan=dr!(n)2logne vertices. sequencednmeetingtheconditionsoftheorem1.ifq(d)<0andiffor GivenQ(D)<0set=?Q(D)=KandsetR=150 Lemma3LetFbearandomcongurationwithnverticesanddegree ThefollowingtheoremofAzumawillplayanimportantrole: 2. Azuma'sInequality[1]Let0=X0;:::;Xnbeamartingalewith jxi+1?xij1 10

11 forall0i<n.let>0bearbitrary.then eachi:maxje(f()j1;2;:::i+1)?e(f()j1;2;:::i)jci f()=f(1;2;:::;n)bearandomvariabledenedbythesei.iffor Thisyieldsthefollowingveryusefulstandardcorollary. CorollaryLet=1;2;:::;nbeasequenceofrandomevents.Let Pr[jXnj>pn]<e?2=2 jf?e(f)j>tisatmost:2exp wheree(f)denotestheexpectedvalueoff,thentheprobabilitythat argumentsseeeither[16]or[5]. Formoredetailsonthiscorollaryandanexcellentdiscussionofmartingale 2Pc2i! insection1. InordertoproveLemma3,wewillanalyzetheMarkovprocessdescribed?t2 sumofdeg(v)?2overallverticesvcompletelyorpartiallyexposedduring therstisteps.wenotethatwi=xi+2yi?2ci. backedgesformed,andcibethenumberofcomponentsthathavebeenat leastpartiallyexposedduringtherstisteps.wealsodenewitobethe congurationhavebeenexposed.similarly,weletyibethenumberof NowWi\stalls"wheneverabackedgeisformed,andonlychangeswheneveranewvertexiscompletelyorpartiallyexposed.Forthisreason,itis easiertoanalyzewiwhenitisindexednotbythenumberofpairsexposed, rstjnewvertices(partiallyorcompletely)exposed. ablewhichdoesexactlythis.weletzjbethesumofdeg(v)?2overthe butbythenumberofnewverticesexposed.thusweintroduceanothervari- expectedincreaseasxi,butbehavesmuchmorenicely.inparticular,it Section1.Specically,ifaftertherstjverticeshavebeencompletelyor isn'taectedbytherstandsecondcomplicationsdiscussedattheendof ThereasonthatweareintroducingZjisthatithasthesameinitial RecallthatXiisthenumberofopenvertex-copiesafteripairsofour 11

12 partiallyexposed,thereareexactlyri(j)unexposedverticesofdegreei,then Zj+1=Zj+(i?2)withprobabilityiri(j)=Piri(j). thann?2. thejthvertexispartiallyexposed;i.e.wij=zj. vinf,theprobabilitythatvliesonacomponentofsizeatleastisless randomvariableijwhichisthenumberofpairsexposedbythetimethat Recallthat=R!(n)2logn. Lemma4SupposethatFisasdescribedinLemma3.Givenanyvertex NowinordertodiscussXiandZjatthesametime,wewillintroducethe thatxi>0forall1i.thus,wewillconsidertheprobabilityofthe latter. canalsogetzixi?2.thisisbecauseateachiterationweeitherhavea theprobabilitythatvliesonacomponentthatlargeisatmosttheprobability Notethatforanyi,ifCi=1thenWi=Xi+2Yi?2Xi?2.Infact,we Proof: backedgeorexposeanewvertex.thusiniterationi,wehaveexposedi?yi HerewewillinsistthatvistherstvertexchoseninStep2(a).Therefore step;thereforezizi?yi?yiwi?yixi+yi?2xi?2. newvertices,thereforewi=zi?yi.nowzidecreasesbyatmostoneateach thatxi>0forall1iisatmosttheprobabilitythatz>?2.we willconcentrateonthisprobability,aszibehavesmuchmorepredictably thanxi. NowifXi>0forall1i,thenC=1.Therefore,theprobability rstjvertex-copieschosenwereallcopiesofverticesofdegree1.ifthiswere thecasethentheexpectedincreaseinzjwouldbe:?2ṫhisistruebecausetheexpectedincreaseofzjwouldbehighestifthe?+o(1).weclaimthatforj,theexpectedincreaseinzjislessthan InitiallytheexpectedincreaseinZjisPi1i(i?2)di(n)=Pi1idi(n)= forsucientlylargen,asj=o(n)andidi(n)!iuniformly. Therefore,theexpectedvalueofZislessthan?2+deg(v)<?3.?(d1(n)?j)+Pi2i(i?2)di(n) (d1(n)?j)+pi2idi(n)+o(1)=?+o(1) 12?2

13 veryclosetoitsexpectedvalue. andf()=z.weneedtobound WewillusethecorollaryofAzuma'sInequalitytoshowthatZisa.s. Letbethesetofunexposedverticesatthispoint.Thesizeofisn?i. iwillindicatethechoiceoftheithnewvertexexposed,i=1;:::;, istheeventthatxisthe(i+1)stnewvertexexposed. Supposethatwearechoosingthe(i+1)stvertextobepartiallyexposed. Foreachx2,deneEi+1(x)tobeE(Zj1;2;:::;i+1)wherei+1 Consideranytwoverticesu;v2.WewillboundjEi+1(u)?Ei+1(v)j. je(f()j1;2;:::i+1)?e(f()j1;2;:::i)j: nextvertex.now,z=zj?1+(px2sdeg(x)?2)+deg(y1)?2+deg(y2)?2, thedistributionofthisorderisunaectedbythepositionsofu;v. w.therefore,themostthatchoosingbetweenu;vcanaecttheconditional wherey1isthejthvertexexposed(eitheruorv)andy2iseitheru;v;or expectedvalueofzistwicethemaximumdegree,i.e.jei+1(u)?ei+1(v)j Considertheorderthattheverticesin?fu;vgareexposed.Notethat 2!(n). LetSbethesetoftherst?2verticesunderthisorder,andletwbethe wehavethat Since,E(f()j1;2;:::i)=Xx2PrfxischosengEi+1(x); Z>0isatmost:2exp ThereforebythecorollaryofAzuma'sInequality,theprobabilitythat je(f()j1;2;:::i+1)?e(f()j1;2;:::i)j2!(n): AndnowLemma3followsquiteeasily: ProofofLemma3:?(3R!(n)2logn)2 2P(2!(n))2!=2n?2 <n?2: 72R 13 2

14 ofsizeatleastiso(1).thereforea.s.noneexist. throughouttheexposureofourconguration. ByLemma4,theexpectednumberofverticeswhichlieoncomponents wouldnotbeabletoreach0withinr!(n)2lognsteps. WealsogetthefollowingCorollary: Corollary3UnderthesameconditionsasLemma3,a.s.Xi<2 Proof: BecauseXidropsbyatmost2ateachstep,ifitevergotthathigh,it seethatita.s.hasnomulticycliccomponents. asinlemma3.fa.s.hasnocomponentwithatleast2cycles. WewillnowshowthatFa.s.doesn'thavemanycycles.First,wewill Lemma5LetFbearandomcongurationmeetingthesameconditions Proof: Chooseanyvertexv.LetEvbetheeventthatvliesonacomponentof 2 ofthiscomponent,xi<2. sizeoftherstcomponentisatmostthenthesecondbackedgemustbe sizeatmostwithmorethanonecycle,andthatthroughouttheexposure chosenwithinatmost+2steps.thereforetheprobabilitythateholdsis lessthan WewillinsistthatvistherstvertexexaminedunderStep2(a).Ifthe sotheprobabilitythatevholdsforanyviso(1). as!(n)<n18?. ThereforebyLemma3andCorollary3a.s.nocomponentsofFhave ThereforetheexpectednumberofverticesforwhichEvholdsiso(1)and 2!2 M?2?32=on?1 morethanonecycle. asinlemma3.fa.s.haslessthan2logncycles. thatita.s.doesnothavemanycycliccomponents. WecannowshowthatFa.s.doesnothavemanycycles,byshowing Lemma6LetFbearandomcongurationmeetingthesameconditions Proof: Wewillshowthata.s.throughouttheexposureofF,atmost2logn 2 back-edgesareformed.therestwillthenfollow,sincebylemma5,a.s.no infisexactlythenumberofbackedges. componentcontainsmorethanonecycle,andsoa.s.thenunmberofcycles 14

15 i.clearlythenumberofbackedgesformedisatmostthenumberofsuccessfulti's,plusthenumberofbackedgesformedattimeswhenxi>2. NowbyCorollary3,weknowthattherearea.s.noneofthelattertypeof M?2i+12and1otherwise. Nowthenumberofvertex-copiestochoosefromisPj1jdj(n)?2i+ ThereforetheexpectedvalueofT,thenumberofsuccessfulTi'sis: E(T)=2+(M?2)=2 Xi=1M?2i+1=log(M)(1+o(1)) 2 M?2i+1,for addallofltobi.lettibetheeventthatamemberofbiischoseninstep tion,thenletbiconsistofany2ofthem.otherwise,letbiconsistofthe sizeofbiupto.ofcourseiflistoosmalltodothis,thenwewilljust openvertex-copiesandenougharbitrarilychosenmembersofltobringthe FirstwemustdeneasetBiofunmatchedvertex-copies: Foreachi,iftherearemorethan2openvertex-copiesattheithitera- 1=M?2i+1.ThereforetheprobabilityofTiholdingis2 backedges,sowewillconcentrateonthenumberoftheformertype. muchbiggerthane(t). NowwewilluseasecondmomentargumenttoshowthatTisa.s.not Therefore,byChebyshev'sinequality,theprobabilitythatT>1:5log(M) E(T2)=Xi6=j =(E(T)2+E(T))(1+o(1)) (M?2i+1)(M?2j+1)+E(T) 2 2logn,provingtheresult. isatmost1=(4e(t))(1+o(1))=o(1). ProofofTheorem1(b): ThisclearlyfollowsfromLemmas2,3,5,and6. AndnowwecanproveTheorem1(b). Therefore,a.s.thenumberofbackedgesformedislessthan1:5log(M)< 2 15

16 3GraphsWithGiantComponents InthissectionwewillprovetheanalogueofTheorem1(a)forrandomcon- gurations.lemmas1and2willthenimplythattheorem1(a)holds. existconstants1;2>0dependentondsuchthatfa.s.hasacomponent sequencednmeetingtheconditionsoftheorem1.ifq(d)>0thenthere withatleast1nverticesand2ncycles.moreover,theprobabilityofthe converseisatmostzn,forsomexed0<z<1. Lemma7LetFbearandomcongurationwithnverticesanddegree Firstwewillshowthatagiantcomponentexistswithhighprobability: 0<<a.s.Zdne>n.Moreover,theprobabilityoftheconverseisat hold. discussedintheprevioussection.again,thekeywillbetoconcentrateon therandomvariablezj. AsinSection2,wewillproveLemma7byanalyzingtheMarkovprocess ThroughoutthissectionwewillassumethattheconditionsofLemma7 partnerispi(n)=idi(n)=pj1jdj(n)=ii=k+o(1). most(z1)n,forsomexed0<z1<1. Proof: Forsimplicity,wewillassumethatnisaninteger. Initially,theprobabilitythatavertex-copyofdegreeiischosenasa Lemma8Thereexists0<<1;0<<min(14;K4)suchthatforall attheendofsection2,i.e.thatfactthattheratiosofunexposedverticesof dierentdegreesareshifting. (n)steps.thuswehavetoworryaboutthethirdcomplicationdescribed UnlikeinSection2,wehavetoconsiderthebehaviourofourwalkafter i>iischosen,wesubtractonefromzjinsteadofaddingi?2toit,then thatifwechangezjslightlybysayingthateverytimeavertexofdegree ofhighdegree.sowhatwewilldoisshowthatwecanndavaluei,such wewillstillhavepositiveexpectedincrease. one,suchthatforeach2ii,iisalittlelessthantheinitialprobability Wewillthenshowthatwecanndasequence1;:::;isummingto Itturnsoutthatthisproblemismuchlessseriousifwecanignorevertices wewouldstillhaveapositiveexpectedincrease. ofavertexofdegreeibeingchosen.however,ifweweretoadjustzjalittle furtherbyselectingavertexofdegreeiwithprobabilityiateachstep,then Wewillcallthis\adjustedZj"Zj.Clearly,ifwendsomeJsuchthat 16

17 asbigastheprobabilitythatzj>r.wewillconcentrateonthesecond afterjsteps,theprobabilityofchoosingavertexofdegreeiisstillatleast ifor2ii,thentheprobabilitythatzj>rforanyrisatleast probabilityaszjismuchsimplertoanalyze. 1.Pi=1; 2.0<i<ii=K,for2ii,unless0=i=ii=K; 3.Pi1i(i?2)i>0. Moreformally,whatwewishdoischooseasequence1:::;isuchthat Notethat:Xi1(i?2)pi(n)=Xi1(i?1)pi(n)?Xi1pi(n) ii,pi>i>0unlesspi=i=0,1=1?2?3?:::?i,and PiSinceDiswell-behavedandQ(D)>0,thereexistsisuchthat i=2(i?1)pi>1+0,forsome0>0andsucientlylargen. Therefore,wecanchooseasequence1;:::;isuchthatforall2 Setpi=ii=K. =Xi2(i?1)pi(n)?1: walk: i=2(i?1)i=1+0 ConsidertherandomvariableZjwhichfollowsthefollowingrandom Zj+1=Zj+(i?2)withprobabilityi,1ii. Z0=0 2.ItfollowsthatPi1(i?2)i=0 Fori=2;:::;i,chooseanyi>0suchthatii?i 2. =minf2;:::;i;k4g.clearly,afteratmostiterations,theprobability ofchoosingacopyofavertexofdegreei2isatleasti.therefore,for 0jn,therandomvariableZjmajorisesZj;i.e.foranyR: NowtheexpectedincreaseinZjatanystepis0 Pr[Zj>R]Pr[Zj>R:] 2.Thusthelemma K<i,andset followsbyletting=04,asitiswell-known(seeforexample[9])thatzn 17

18 asclaimed. isa.s.concentratedarounditsexpectedvaluewhichis2n,andthatthe probabilityofdeviatingfromtheexpectedvaluebymorethan(n)isaslow analyzexj.inordertodothis,recallthattherandomvariableijisdened tobethenumberofpairsexposedbythetimethatthejthvertexispartially exposed;i.e.wij=zj. a.s.existssome1iidne.suchthatxi>n,where=min(2;14). WehavejustshownthatZja.s.growslarge.However,wereallywantto Lemma9Thereexists0<0<suchthatforany0<0there 2 Moreover,theprobabilityoftheconverseisatmost(z2)nforsome0<z2<1, dependenton. chosenisxi a.s.w<2nfor0. orinpairshavebeenexposed.weclaimthatwecanchoose0suchthat Proof: Forsimplicity,wewillassumethatnisaninteger. Atanystepi;1iIn,theprobabilitythatanopenvertex-copyis WewillcountW,thenumberofbackedgesformedbeforeeitherXi>n 0ifXj>nandatmostp= NowIjj+YIjj+Zj Therefore,ateachstep,theprobabilitythatsuchabackedgeisformedis Kn?2i+o(1),regardlessofthechoicesmadeprevioustothatstep. ifxjn. 2(+)n. variablebin(p;in). Thusthenumberofsuchcopieschosenismajorisedbythebinomial ThereforethelemmafollowssolongaspInp(+)n<2n,whichis K?2?2 12 thatthereisa.s.agiantcomponent: equivalentto4+4<k,yielding0. atstepi=id0newilla.s.haveatleast1nverticesand2ncycles.moreover, atleast NowifXinforall1i<InthenWisequaltoYIn. theprobabilityoftheconverseisatmost(z3)n,forsomexed0<z3<1. NowthatweknowthatXia.s.getstobeaslargeas(n),wecanshow Lemma10Thereexists1;2>0suchthatthecomponentbeingexposed ThereforeXIn=Zn?2YInwhichwithprobabilityatleast1?(z1)nis 2n,whichyieldsourresult. 2 18

19 1nofthesewillbematchedwithmembersof,andatleast2nofthesewill beforethiscomponentisentirelyexposed.wewillshowthata.s.atleast vertices.formasetconsistingofexactlyonecopyofeachofthem. Proof: lemma. bematchedwithotheropenvertex-copiesfrom.clearlythiswillprovethe Notethatatthispointtherearea.s.atleastn?20n?n>n5unexposed ThereisasetofXIopenvertex-copieswhosepartnersmustbeexposed whereeachmatchingisequallyprobable.theexpectednumberofpairs containingonevertexfromeachof;isatleastn5xi cedureforexposingfsimplygeneratesarandommatchingamongstthem NowthereareM?2Ivertex-copiesavailabletobematched.Ourprobers,anditfollowsfromtheChernoboundsthatthesenumbersarea.s.at asclaimed.thereforethecomponenta.s.hasatleast1nverticesandat leasthalfoftheirexpectedvalueswiththeprobabilityoftheconverseaslow pectednumberofpairsofopenvertex-copieswhichformanedgeoffis M2?IXI Thepreviouslemmasgiveusalowerboundof21n;22nonthesenum- M?2I2. 2M?I,andtheex- least2ncycles. thenfa.s.hasexactlyonecomponentonmorethantlognvertices,for AndnowLemma7followsquiteeasily: ProofofLemma7: ThisisclearlyacorollaryofLemma10. WewillnowseethatFa.s.hasonlyonelargecomponent. Lemma11IfFisarandomcongurationasdescribedinLemma7, 2 ertyaifuandvlieoncomponentsofsizeatleast1nandtlognrespectively. WewillshowthatforanappropriatechoiceofT,theprobabilitythat(u;v) sizeatleast1n.wewillseeherethatnoothercomponentsoffarelarge. someconstanttdependentonthedegreesequence. haspropertyaiso(n?2),whichisenoughtoprovethelemma. Consideranyorderedpairofvertices(u;v).Wesaythat(u;v)hasprop- Proof: Recallthatwemaychooseanyvertex-copywewishtostarttheexposure WehavealreadyshownthatFa.s.hasatleastonegiantcomponentof with.wewillchooseu. ByLemma9,therea.s.existssomeIId1ne,suchthatXI>nwhere 19

20 thecontrary.denetobethesetofopenvertex-copiesafteristeps. exposedacopyofv,then(u;v)doesnothavepropertya,sowewillassume afteristeps,wearenotstillexposingtherstcomponent,c1,orifwehave =min(0 restofc1untillater.wewillseethatifc2getstoobig,thenitwilla.s. exposingv'scomponent,c2,immediately,andputotheexposureofthe Herewewillbreakfromthestandardmethodofexposure.Wewillstart 2;1 2;14),andsowecanassumethistobethecase.Notethatif v,andexposingitspartner.wecontinueexposingpairs,alwayschoosing includeamemberof. acopyofapartially-exposedvertexwhichisknowntobeinc2(ifoneis available),andexposingitspartner.wechecktoseeifthispartnerliesin.thiswouldimplythatvliesinc1.oncec2isentirelyexposed,ifitis disjointfromc1thenwereturntoexposingtherestofc1andcontinueto exposefinthenormalmanner.notethatthisisavalidwaytoexposef. WeexposeC2inthefollowingway.Westartbypickinganycopyof atleasttlognstepstoexposethiscomponent.therefore,theprobability thatvliesonacomponentofsizegreaterthantlognwhichisnotc1isat Also,ifvliesonacomponentofsizegreaterthanTlogn,thenitmusttake most: Ateachstep,theprobabilitythatamemberofischosenisatleastK. tozeroasn!1,soa.s.noneexist. forasuitablevalueoft. ThereforetheexpectednumberofpairsofverticeswithpropertyAtends 1?KTlogn=on?2 morethanonecycle. thenfa.s.hasnomulti-cycliccomponentonatmosttlognvertices,for anyconstantt. ItonlyremainstobeshownthatFa.s.hasnosmallcomponentswith Lemma12IfFisarandomcongurationasdescribedinLemma7, Proof: 2 ofstep2(a).nowifthiscomponentcontainsatmosttlognvertices,then itisentirelyexposedafteratmosto(n1=4)stepsasthemaximumdegreeis n1=4?. Considertheprobabilityofsomevertexvlyingonsuchacomponent. Wewillinsistthatweexposeanedgecontainingvintherstexecution 20

DESIGNINGCRYPTOGRAPHICPOSTAGEINDICIA. NevinHEINTZE BellLaboratories 600MountainAve,MurrayHillNJ07974,USA

DESIGNINGCRYPTOGRAPHICPOSTAGEINDICIA. NevinHEINTZE BellLaboratories 600MountainAve,MurrayHillNJ07974,USA DESIGNINGCRYPTOGRAPHICPOSTAGEINDICIA UniversityofCalifornia,SanDiego BennetYEE ComputerScienceDept,5000ForbesAve,PittsburghPA15213,USA J.D.TYGAR DeptofCompSciandEng,0114,LaJolla,CA92093,USA CarnegieMellonUniversity

More information

APPLICATIONS OF THE ORDER FUNCTION

APPLICATIONS OF THE ORDER FUNCTION APPLICATIONS OF THE ORDER FUNCTION LECTURE NOTES: MATH 432, CSUSM, SPRING 2009. PROF. WAYNE AITKEN In this lecture we will explore several applications of order functions including formulas for GCDs and

More information

Solutions to Homework 6

Solutions to Homework 6 Solutions to Homework 6 Debasish Das EECS Department, Northwestern University ddas@northwestern.edu 1 Problem 5.24 We want to find light spanning trees with certain special properties. Given is one example

More information

The Inverse of a Square Matrix

The Inverse of a Square Matrix These notes closely follow the presentation of the material given in David C Lay s textbook Linear Algebra and its Applications (3rd edition) These notes are intended primarily for in-class presentation

More information

A REMARK ON ALMOST MOORE DIGRAPHS OF DEGREE THREE. 1. Introduction and Preliminaries

A REMARK ON ALMOST MOORE DIGRAPHS OF DEGREE THREE. 1. Introduction and Preliminaries Acta Math. Univ. Comenianae Vol. LXVI, 2(1997), pp. 285 291 285 A REMARK ON ALMOST MOORE DIGRAPHS OF DEGREE THREE E. T. BASKORO, M. MILLER and J. ŠIRÁŇ Abstract. It is well known that Moore digraphs do

More information

Lecture 4: BK inequality 27th August and 6th September, 2007

Lecture 4: BK inequality 27th August and 6th September, 2007 CSL866: Percolation and Random Graphs IIT Delhi Amitabha Bagchi Scribe: Arindam Pal Lecture 4: BK inequality 27th August and 6th September, 2007 4. Preliminaries The FKG inequality allows us to lower bound

More information

Lecture 5/6. Enrico Bini

Lecture 5/6. Enrico Bini Advanced Lecture 5/6 November 8, 212 Outline 1 2 3 Theorem (Lemma 3 in [?]) Space of feasible C i N is EDF-schedulable if and only if i U i 1 and: t D n i=1 { max, t + Ti D i T i } C i t with D = {d i,k

More information

Analysis of Algorithms I: Optimal Binary Search Trees

Analysis of Algorithms I: Optimal Binary Search Trees Analysis of Algorithms I: Optimal Binary Search Trees Xi Chen Columbia University Given a set of n keys K = {k 1,..., k n } in sorted order: k 1 < k 2 < < k n we wish to build an optimal binary search

More information

Brendan D. McKay Computer Science Dept., Vanderbilt University, Nashville, Tennessee 37235

Brendan D. McKay Computer Science Dept., Vanderbilt University, Nashville, Tennessee 37235 139. Proc. 3rd Car. Conf. Comb. & Comp. pp. 139-143 SPANNING TREES IN RANDOM REGULAR GRAPHS Brendan D. McKay Computer Science Dept., Vanderbilt University, Nashville, Tennessee 37235 Let n~ < n2

More information

On an anti-ramsey type result

On an anti-ramsey type result On an anti-ramsey type result Noga Alon, Hanno Lefmann and Vojtĕch Rödl Abstract We consider anti-ramsey type results. For a given coloring of the k-element subsets of an n-element set X, where two k-element

More information

Scheduling Shop Scheduling. Tim Nieberg

Scheduling Shop Scheduling. Tim Nieberg Scheduling Shop Scheduling Tim Nieberg Shop models: General Introduction Remark: Consider non preemptive problems with regular objectives Notation Shop Problems: m machines, n jobs 1,..., n operations

More information

Section 3 Sequences and Limits, Continued.

Section 3 Sequences and Limits, Continued. Section 3 Sequences and Limits, Continued. Lemma 3.6 Let {a n } n N be a convergent sequence for which a n 0 for all n N and it α 0. Then there exists N N such that for all n N. α a n 3 α In particular

More information

The distribution of second degrees in the Buckley Osthus random graph model

The distribution of second degrees in the Buckley Osthus random graph model The distribution of second degrees in the Bucley Osthus random graph model Andrey Kupavsii, Liudmila Ostroumova, Dmitriy Shabanov, Prasad Tetali Abstract We consider a random graph process analogous to

More information

Class One: Degree Sequences

Class One: Degree Sequences Class One: Degree Sequences For our purposes a graph is a just a bunch of points, called vertices, together with lines or curves, called edges, joining certain pairs of vertices. Three small examples of

More information

Approximation Algorithms. Scheduling. Approximation algorithms. Scheduling jobs on a single machine

Approximation Algorithms. Scheduling. Approximation algorithms. Scheduling jobs on a single machine Approximation algorithms Approximation Algorithms Fast. Cheap. Reliable. Choose two. NP-hard problems: choose 2 of optimal polynomial time all instances Approximation algorithms. Trade-off between time

More information

Ramsey numbers for bipartite graphs with small bandwidth

Ramsey numbers for bipartite graphs with small bandwidth Ramsey numbers for bipartite graphs with small bandwidth Guilherme O. Mota 1,, Gábor N. Sárközy 2,, Mathias Schacht 3,, and Anusch Taraz 4, 1 Instituto de Matemática e Estatística, Universidade de São

More information

Finding and counting given length cycles

Finding and counting given length cycles Finding and counting given length cycles Noga Alon Raphael Yuster Uri Zwick Abstract We present an assortment of methods for finding and counting simple cycles of a given length in directed and undirected

More information

SYMMETRIC ENCRYPTION. Mihir Bellare UCSD 1

SYMMETRIC ENCRYPTION. Mihir Bellare UCSD 1 SYMMETRIC ENCRYPTION Mihir Bellare UCSD 1 Syntax A symmetric encryption scheme SE = (K,E,D) consists of three algorithms: K and E may be randomized, but D must be deterministic. Mihir Bellare UCSD 2 Correct

More information

8.1 Min Degree Spanning Tree

8.1 Min Degree Spanning Tree CS880: Approximations Algorithms Scribe: Siddharth Barman Lecturer: Shuchi Chawla Topic: Min Degree Spanning Tree Date: 02/15/07 In this lecture we give a local search based algorithm for the Min Degree

More information

Note on some explicit formulae for twin prime counting function

Note on some explicit formulae for twin prime counting function Notes on Number Theory and Discrete Mathematics Vol. 9, 03, No., 43 48 Note on some explicit formulae for twin prime counting function Mladen Vassilev-Missana 5 V. Hugo Str., 4 Sofia, Bulgaria e-mail:

More information

IMPLICIT COLLUSION IN DEALER MARKETS WITH DIFFERENT COSTS OF MARKET MAKING ANDREAS KRAUSE Abstract. This paper introduces dierent costs into the Dutta-Madhavan model of implicit collusion between market

More information

SHARP BOUNDS FOR THE SUM OF THE SQUARES OF THE DEGREES OF A GRAPH

SHARP BOUNDS FOR THE SUM OF THE SQUARES OF THE DEGREES OF A GRAPH 31 Kragujevac J. Math. 25 (2003) 31 49. SHARP BOUNDS FOR THE SUM OF THE SQUARES OF THE DEGREES OF A GRAPH Kinkar Ch. Das Department of Mathematics, Indian Institute of Technology, Kharagpur 721302, W.B.,

More information

Our goal first will be to define a product measure on A 1 A 2.

Our goal first will be to define a product measure on A 1 A 2. 1. Tensor product of measures and Fubini theorem. Let (A j, Ω j, µ j ), j = 1, 2, be two measure spaces. Recall that the new σ -algebra A 1 A 2 with the unit element is the σ -algebra generated by the

More information

Single machine models: Maximum Lateness -12- Approximation ratio for EDD for problem 1 r j,d j < 0 L max. structure of a schedule Q...

Single machine models: Maximum Lateness -12- Approximation ratio for EDD for problem 1 r j,d j < 0 L max. structure of a schedule Q... Lecture 4 Scheduling 1 Single machine models: Maximum Lateness -12- Approximation ratio for EDD for problem 1 r j,d j < 0 L max structure of a schedule 0 Q 1100 11 00 11 000 111 0 0 1 1 00 11 00 11 00

More information

* Research supported in part by KBN Grant No. PBZ KBN 016/P03/1999.

* Research supported in part by KBN Grant No. PBZ KBN 016/P03/1999. PROBABILrn AND MATHEMATICAL STATISTICS Vol. 24, Fsgc 1 (2W4), pp 1-15 ON ANNUITIES UNDER RANDOM RATES OF INTEREST' WITH PAYMENTS VARYING IN ARITHMETIC AND GEOMETRIC PROGRESSION BY K. BURNECKI*, A. MARCINIUB

More information

Linear Programming I

Linear Programming I Linear Programming I November 30, 2003 1 Introduction In the VCR/guns/nuclear bombs/napkins/star wars/professors/butter/mice problem, the benevolent dictator, Bigus Piguinus, of south Antarctica penguins

More information

Connectivity and cuts

Connectivity and cuts Math 104, Graph Theory February 19, 2013 Measure of connectivity How connected are each of these graphs? > increasing connectivity > I G 1 is a tree, so it is a connected graph w/minimum # of edges. Every

More information

Hardware Assisted Virtualization

Hardware Assisted Virtualization Hardware Assisted Virtualization G. Lettieri 21 Oct. 2015 1 Introduction In the hardware-assisted virtualization technique we try to execute the instructions of the target machine directly on the host

More information

On the k-path cover problem for cacti

On the k-path cover problem for cacti On the k-path cover problem for cacti Zemin Jin and Xueliang Li Center for Combinatorics and LPMC Nankai University Tianjin 300071, P.R. China zeminjin@eyou.com, x.li@eyou.com Abstract In this paper we

More information

A simple criterion on degree sequences of graphs

A simple criterion on degree sequences of graphs Discrete Applied Mathematics 156 (2008) 3513 3517 Contents lists available at ScienceDirect Discrete Applied Mathematics journal homepage: www.elsevier.com/locate/dam Note A simple criterion on degree

More information

Introduction to Scheduling Theory

Introduction to Scheduling Theory Introduction to Scheduling Theory Arnaud Legrand Laboratoire Informatique et Distribution IMAG CNRS, France arnaud.legrand@imag.fr November 8, 2004 1/ 26 Outline 1 Task graphs from outer space 2 Scheduling

More information

URBANA HIGH SCHOOL SUMMER SCHOOL 2015. Urbana School District #116. Summer School Principal Mr. Michael Gourley (217) 384-3505 mgourley@usd116.

URBANA HIGH SCHOOL SUMMER SCHOOL 2015. Urbana School District #116. Summer School Principal Mr. Michael Gourley (217) 384-3505 mgourley@usd116. URBANA HIGH SCHOOL SUMMER SCHOOL 2015 Summer School Principal Mr. Michael Gourley (217) 384-3505 mgourley@usd116.org Urbana School District #116 UHS Summer School 2015 Session 1: June 8 June 25 Session

More information

Marathon To Finish for runners and walkers How to Train for Marathon by Jeff Galloway.

Marathon To Finish for runners and walkers How to Train for Marathon by Jeff Galloway. Marathon To Finish for runners and walkers How to Train for Marathon by Jeff Galloway http://www.jeffgalloway.com/training/marathon.html This program is designed for those who have been doing some running

More information

Odd induced subgraphs in graphs of maximum degree three

Odd induced subgraphs in graphs of maximum degree three Odd induced subgraphs in graphs of maximum degree three David M. Berman, Hong Wang, and Larry Wargo Department of Mathematics University of New Orleans New Orleans, Louisiana, USA 70148 Abstract A long-standing

More information

x a x 2 (1 + x 2 ) n.

x a x 2 (1 + x 2 ) n. Limits and continuity Suppose that we have a function f : R R. Let a R. We say that f(x) tends to the limit l as x tends to a; lim f(x) = l ; x a if, given any real number ɛ > 0, there exists a real number

More information

The number of generalized balanced lines

The number of generalized balanced lines The number of generalized balanced lines David Orden Pedro Ramos Gelasio Salazar Abstract Let S be a set of r red points and b = r + 2δ blue points in general position in the plane, with δ 0. A line l

More information

A Sublinear Bipartiteness Tester for Bounded Degree Graphs

A Sublinear Bipartiteness Tester for Bounded Degree Graphs A Sublinear Bipartiteness Tester for Bounded Degree Graphs Oded Goldreich Dana Ron February 5, 1998 Abstract We present a sublinear-time algorithm for testing whether a bounded degree graph is bipartite

More information

Correspondence analysis for strong three-valued logic

Correspondence analysis for strong three-valued logic Correspondence analysis for strong three-valued logic A. Tamminga abstract. I apply Kooi and Tamminga s (2012) idea of correspondence analysis for many-valued logics to strong three-valued logic (K 3 ).

More information

WinCC OA Partner Program. Highest quality for our customers

WinCC OA Partner Program. Highest quality for our customers WinCC OA Partner Program Highest quality for our customers Objectives - Benefits Highest quality standard through certification of existing and new ETM Partners Positioning of PVSS Distribution Partner

More information

Data Structures Fibonacci Heaps, Amortized Analysis

Data Structures Fibonacci Heaps, Amortized Analysis Chapter 4 Data Structures Fibonacci Heaps, Amortized Analysis Algorithm Theory WS 2012/13 Fabian Kuhn Fibonacci Heaps Lacy merge variant of binomial heaps: Do not merge trees as long as possible Structure:

More information

17.3.1 Follow the Perturbed Leader

17.3.1 Follow the Perturbed Leader CS787: Advanced Algorithms Topic: Online Learning Presenters: David He, Chris Hopman 17.3.1 Follow the Perturbed Leader 17.3.1.1 Prediction Problem Recall the prediction problem that we discussed in class.

More information

Trigonometry Hard Problems

Trigonometry Hard Problems Solve the problem. This problem is very difficult to understand. Let s see if we can make sense of it. Note that there are multiple interpretations of the problem and that they are all unsatisfactory.

More information

Cycles and clique-minors in expanders

Cycles and clique-minors in expanders Cycles and clique-minors in expanders Benny Sudakov UCLA and Princeton University Expanders Definition: The vertex boundary of a subset X of a graph G: X = { all vertices in G\X with at least one neighbor

More information

ON THE COMPLEXITY OF THE GAME OF SET. {kamalika,pbg,dratajcz,hoeteck}@cs.berkeley.edu

ON THE COMPLEXITY OF THE GAME OF SET. {kamalika,pbg,dratajcz,hoeteck}@cs.berkeley.edu ON THE COMPLEXITY OF THE GAME OF SET KAMALIKA CHAUDHURI, BRIGHTEN GODFREY, DAVID RATAJCZAK, AND HOETECK WEE {kamalika,pbg,dratajcz,hoeteck}@cs.berkeley.edu ABSTRACT. Set R is a card game played with a

More information

FUNCTIONAL ANALYSIS LECTURE NOTES: QUOTIENT SPACES

FUNCTIONAL ANALYSIS LECTURE NOTES: QUOTIENT SPACES FUNCTIONAL ANALYSIS LECTURE NOTES: QUOTIENT SPACES CHRISTOPHER HEIL 1. Cosets and the Quotient Space Any vector space is an abelian group under the operation of vector addition. So, if you are have studied

More information

Network (Tree) Topology Inference Based on Prüfer Sequence

Network (Tree) Topology Inference Based on Prüfer Sequence Network (Tree) Topology Inference Based on Prüfer Sequence C. Vanniarajan and Kamala Krithivasan Department of Computer Science and Engineering Indian Institute of Technology Madras Chennai 600036 vanniarajanc@hcl.in,

More information

The risks of mesothelioma and lung cancer in relation to relatively lowlevel exposures to different forms of asbestos

The risks of mesothelioma and lung cancer in relation to relatively lowlevel exposures to different forms of asbestos WATCH/2008/7 Annex 1 The risks of mesothelioma and lung cancer in relation to relatively lowlevel exposures to different forms of asbestos What statements can reliably be made about risk at different exposure

More information

The Ergodic Theorem and randomness

The Ergodic Theorem and randomness The Ergodic Theorem and randomness Peter Gács Department of Computer Science Boston University March 19, 2008 Peter Gács (Boston University) Ergodic theorem March 19, 2008 1 / 27 Introduction Introduction

More information

THE NUMBER OF GRAPHS AND A RANDOM GRAPH WITH A GIVEN DEGREE SEQUENCE. Alexander Barvinok

THE NUMBER OF GRAPHS AND A RANDOM GRAPH WITH A GIVEN DEGREE SEQUENCE. Alexander Barvinok THE NUMBER OF GRAPHS AND A RANDOM GRAPH WITH A GIVEN DEGREE SEQUENCE Alexer Barvinok Papers are available at http://www.math.lsa.umich.edu/ barvinok/papers.html This is a joint work with J.A. Hartigan

More information

Using GeoGebra to create applets for visualization and exploration.

Using GeoGebra to create applets for visualization and exploration. Handouts for ICTCM workshop on GeoGebra, March 2007 By Mike May, S.J. mikemaysj@gmail.com Using GeoGebra to create applets for visualization and exploration. Overview: I) We will start with a fast tour

More information

{f 1 (U), U F} is an open cover of A. Since A is compact there is a finite subcover of A, {f 1 (U 1 ),...,f 1 (U n )}, {U 1,...

{f 1 (U), U F} is an open cover of A. Since A is compact there is a finite subcover of A, {f 1 (U 1 ),...,f 1 (U n )}, {U 1,... 44 CHAPTER 4. CONTINUOUS FUNCTIONS In Calculus we often use arithmetic operations to generate new continuous functions from old ones. In a general metric space we don t have arithmetic, but much of it

More information

FIND ALL LONGER AND SHORTER BOUNDARY DURATION VECTORS UNDER PROJECT TIME AND BUDGET CONSTRAINTS

FIND ALL LONGER AND SHORTER BOUNDARY DURATION VECTORS UNDER PROJECT TIME AND BUDGET CONSTRAINTS Journal of the Operations Research Society of Japan Vol. 45, No. 3, September 2002 2002 The Operations Research Society of Japan FIND ALL LONGER AND SHORTER BOUNDARY DURATION VECTORS UNDER PROJECT TIME

More information

Dynamic TCP Acknowledgement: Penalizing Long Delays

Dynamic TCP Acknowledgement: Penalizing Long Delays Dynamic TCP Acknowledgement: Penalizing Long Delays Karousatou Christina Network Algorithms June 8, 2010 Karousatou Christina (Network Algorithms) Dynamic TCP Acknowledgement June 8, 2010 1 / 63 Layout

More information

CHAPTER 3 Numbers and Numeral Systems

CHAPTER 3 Numbers and Numeral Systems CHAPTER 3 Numbers and Numeral Systems Numbers play an important role in almost all areas of mathematics, not least in calculus. Virtually all calculus books contain a thorough description of the natural,

More information

Two Dimensional YD-modules over U q (sl 2 ) are trivial

Two Dimensional YD-modules over U q (sl 2 ) are trivial Two Dimensiona YD-modues over U q (s 2 ) are trivia Emine Yidirim University of New Brunswick June 27th, 2014 Emine Yidirim (University of New Brunswick) Hopf Agebras in (co)action June 27th, 2014 1 /

More information

Exponentially concave functions and multiplicative cyclical monotonicity

Exponentially concave functions and multiplicative cyclical monotonicity Exponentially concave functions and multiplicative cyclical monotonicity W. Schachermayer University of Vienna Faculty of Mathematics 11th December, RICAM, Linz Based on the paper S. Pal, T.L. Wong: The

More information

A generalized allocation scheme

A generalized allocation scheme Annales Mathematicae et Informaticae 39 (202) pp. 57 70 Proceedings of the Conference on Stochastic Models and their Applications Faculty of Informatics, University of Debrecen, Debrecen, Hungary, August

More information

00412296/00000.0/A /0001/A20438/99999999/0000/PRINT DATE: 6/03/06

00412296/00000.0/A /0001/A20438/99999999/0000/PRINT DATE: 6/03/06 THIS BENEFITS GUIDE HIGHLIGHTS THE PLAN BENEFITS AND FEATURES CHOSEN BY YOUR EMPLOYER. THIS IS NOT AN INSURANCE CONTRACT OR A COMPLETE DESCRIPTION OF PLAN PROVISIONS. A COMPREHENSIVE BENEFIT DESCRIPTION

More information

Cycles in a Graph Whose Lengths Differ by One or Two

Cycles in a Graph Whose Lengths Differ by One or Two Cycles in a Graph Whose Lengths Differ by One or Two J. A. Bondy 1 and A. Vince 2 1 LABORATOIRE DE MATHÉMATIQUES DISCRÉTES UNIVERSITÉ CLAUDE-BERNARD LYON 1 69622 VILLEURBANNE, FRANCE 2 DEPARTMENT OF MATHEMATICS

More information

SEQUENCES OF MAXIMAL DEGREE VERTICES IN GRAPHS. Nickolay Khadzhiivanov, Nedyalko Nenov

SEQUENCES OF MAXIMAL DEGREE VERTICES IN GRAPHS. Nickolay Khadzhiivanov, Nedyalko Nenov Serdica Math. J. 30 (2004), 95 102 SEQUENCES OF MAXIMAL DEGREE VERTICES IN GRAPHS Nickolay Khadzhiivanov, Nedyalko Nenov Communicated by V. Drensky Abstract. Let Γ(M) where M V (G) be the set of all vertices

More information

Single machine parallel batch scheduling with unbounded capacity

Single machine parallel batch scheduling with unbounded capacity Workshop on Combinatorics and Graph Theory 21th, April, 2006 Nankai University Single machine parallel batch scheduling with unbounded capacity Yuan Jinjiang Department of mathematics, Zhengzhou University

More information

Math 55: Discrete Mathematics

Math 55: Discrete Mathematics Math 55: Discrete Mathematics UC Berkeley, Fall 2011 Homework # 5, due Wednesday, February 22 5.1.4 Let P (n) be the statement that 1 3 + 2 3 + + n 3 = (n(n + 1)/2) 2 for the positive integer n. a) What

More information

GROUPS SUBGROUPS. Definition 1: An operation on a set G is a function : G G G.

GROUPS SUBGROUPS. Definition 1: An operation on a set G is a function : G G G. Definition 1: GROUPS An operation on a set G is a function : G G G. Definition 2: A group is a set G which is equipped with an operation and a special element e G, called the identity, such that (i) the

More information

Formal Modeling and Reasoning about the Android Security Framework

Formal Modeling and Reasoning about the Android Security Framework Formal Modeling and Reasoning about the Android Security Framework Alessandro Armando: Fondazione Bruno Kessler Gabriele Costa: Università di Genova Alessio Merlo: Università E-Campus TGC 2012 Outline

More information

with functions, expressions and equations which follow in units 3 and 4.

with functions, expressions and equations which follow in units 3 and 4. Grade 8 Overview View unit yearlong overview here The unit design was created in line with the areas of focus for grade 8 Mathematics as identified by the Common Core State Standards and the PARCC Model

More information

Matrix-Chain Multiplication

Matrix-Chain Multiplication Matrix-Chain Multiplication Let A be an n by m matrix, let B be an m by p matrix, then C = AB is an n by p matrix. C = AB can be computed in O(nmp) time, using traditional matrix multiplication. Suppose

More information

Objectives. Distributed Databases and Client/Server Architecture. Distributed Database. Data Fragmentation

Objectives. Distributed Databases and Client/Server Architecture. Distributed Database. Data Fragmentation Objectives Distributed Databases and Client/Server Architecture IT354 @ Peter Lo 2005 1 Understand the advantages and disadvantages of distributed databases Know the design issues involved in distributed

More information

ONLINE DEGREE-BOUNDED STEINER NETWORK DESIGN. Sina Dehghani Saeed Seddighin Ali Shafahi Fall 2015

ONLINE DEGREE-BOUNDED STEINER NETWORK DESIGN. Sina Dehghani Saeed Seddighin Ali Shafahi Fall 2015 ONLINE DEGREE-BOUNDED STEINER NETWORK DESIGN Sina Dehghani Saeed Seddighin Ali Shafahi Fall 2015 ONLINE STEINER FOREST PROBLEM An initially given graph G. s 1 s 2 A sequence of demands (s i, t i ) arriving

More information

VIRGINIA MASON PRODUCTION SYSTEM (VMPS)

VIRGINIA MASON PRODUCTION SYSTEM (VMPS) Source: Virginia Mason Medical Center VIRGINIA MASON PRODUCTION SYSTEM (VMPS) The Patient is GOD Toyota Production System How it translates to the Virginia Mason Production System Benefits Results Conclusion

More information

0 0 such that f x L whenever x a

0 0 such that f x L whenever x a Epsilon-Delta Definition of the Limit Few statements in elementary mathematics appear as cryptic as the one defining the limit of a function f() at the point = a, 0 0 such that f L whenever a Translation:

More information

Reliability Guarantees in Automata Based Scheduling for Embedded Control Software

Reliability Guarantees in Automata Based Scheduling for Embedded Control Software 1 Reliability Guarantees in Automata Based Scheduling for Embedded Control Software Santhosh Prabhu, Aritra Hazra, Pallab Dasgupta Department of CSE, IIT Kharagpur West Bengal, India - 721302. Email: {santhosh.prabhu,

More information

Quantum Physics II (8.05) Fall 2013 Assignment 4

Quantum Physics II (8.05) Fall 2013 Assignment 4 Quantum Physics II (8.05) Fall 2013 Assignment 4 Massachusetts Institute of Technology Physics Department Due October 4, 2013 September 27, 2013 3:00 pm Problem Set 4 1. Identitites for commutators (Based

More information

SPERNER S LEMMA AND BROUWER S FIXED POINT THEOREM

SPERNER S LEMMA AND BROUWER S FIXED POINT THEOREM SPERNER S LEMMA AND BROUWER S FIXED POINT THEOREM ALEX WRIGHT 1. Intoduction A fixed point of a function f from a set X into itself is a point x 0 satisfying f(x 0 ) = x 0. Theorems which establish the

More information

Topology-based network security

Topology-based network security Topology-based network security Tiit Pikma Supervised by Vitaly Skachek Research Seminar in Cryptography University of Tartu, Spring 2013 1 Introduction In both wired and wireless networks, there is the

More information

Reinforcement Learning

Reinforcement Learning Reinforcement Learning LU 2 - Markov Decision Problems and Dynamic Programming Dr. Martin Lauer AG Maschinelles Lernen und Natürlichsprachliche Systeme Albert-Ludwigs-Universität Freiburg martin.lauer@kit.edu

More information

Path Querying on Graph Databases

Path Querying on Graph Databases Path Querying on Graph Databases Jelle Hellings Hasselt University and transnational University of Limburg 1/38 Overview Graph Databases Motivation Walk Logic Relations with FO and MSO Relations with CTL

More information

INDISTINGUISHABILITY OF ABSOLUTELY CONTINUOUS AND SINGULAR DISTRIBUTIONS

INDISTINGUISHABILITY OF ABSOLUTELY CONTINUOUS AND SINGULAR DISTRIBUTIONS INDISTINGUISHABILITY OF ABSOLUTELY CONTINUOUS AND SINGULAR DISTRIBUTIONS STEVEN P. LALLEY AND ANDREW NOBEL Abstract. It is shown that there are no consistent decision rules for the hypothesis testing problem

More information

CSC2420 Fall 2012: Algorithm Design, Analysis and Theory

CSC2420 Fall 2012: Algorithm Design, Analysis and Theory CSC2420 Fall 2012: Algorithm Design, Analysis and Theory Allan Borodin November 15, 2012; Lecture 10 1 / 27 Randomized online bipartite matching and the adwords problem. We briefly return to online algorithms

More information

Reinforcement Learning

Reinforcement Learning Reinforcement Learning LU 2 - Markov Decision Problems and Dynamic Programming Dr. Joschka Bödecker AG Maschinelles Lernen und Natürlichsprachliche Systeme Albert-Ludwigs-Universität Freiburg jboedeck@informatik.uni-freiburg.de

More information

SEMITOTAL AND TOTAL BLOCK-CUTVERTEX GRAPH

SEMITOTAL AND TOTAL BLOCK-CUTVERTEX GRAPH CHAPTER 3 SEMITOTAL AND TOTAL BLOCK-CUTVERTEX GRAPH ABSTRACT This chapter begins with the notion of block distances in graphs. Using block distance we defined the central tendencies of a block, like B-radius

More information

OPTIMAL SELECTION BASED ON RELATIVE RANK* (the "Secretary Problem")

OPTIMAL SELECTION BASED ON RELATIVE RANK* (the Secretary Problem) OPTIMAL SELECTION BASED ON RELATIVE RANK* (the "Secretary Problem") BY Y. S. CHOW, S. MORIGUTI, H. ROBBINS AND S. M. SAMUELS ABSTRACT n rankable persons appear sequentially in random order. At the ith

More information

AT&Tsalesdataset:theneedistostoreamultiGiga-bytematrixon-line,withcustomersforrows,daysforcolumns,andamountspentineachcellofthematrix.

AT&Tsalesdataset:theneedistostoreamultiGiga-bytematrixon-line,withcustomersforrows,daysforcolumns,andamountspentineachcellofthematrix. DataMiningatCALD-CMU:Tools,Experiencesand C.Faloutsos,G.Gibson,T.Mitchell,A.Moore,S.Thrun CenterforAutomatedLearningandDiscovery(CALD) ResearchDirections inthecenterforautomatedlearninganddiscovery(cald)atcmu.specically,

More information

1 Derivation of the cost function: The production

1 Derivation of the cost function: The production 1 Derivation of the cost function: The production manager s problem revised April 1, 1 Let s consider the cost function in a bit more detail. Where does it come from? Imagine that you have graduated from

More information

Master's projects at ITMO University. Daniil Chivilikhin PhD Student @ ITMO University

Master's projects at ITMO University. Daniil Chivilikhin PhD Student @ ITMO University Master's projects at ITMO University Daniil Chivilikhin PhD Student @ ITMO University General information Guidance from our lab's researchers Publishable results 2 Research areas Research at ITMO Evolutionary

More information

Topological properties of Rauzy fractals

Topological properties of Rauzy fractals Topological properties of Rauzy fractals Anne Siegel (IRISA-CNRS, Rennes) Joerg Thuswaldner (Univ. Leoben, Autriche) Kanazawa April 2008 Many shapes for Rauzy fractals... Several properties on examples

More information

CIRCLE COORDINATE GEOMETRY

CIRCLE COORDINATE GEOMETRY CIRCLE COORDINATE GEOMETRY (EXAM QUESTIONS) Question 1 (**) A circle has equation x + y = 2x + 8 Determine the radius and the coordinates of the centre of the circle. r = 3, ( 1,0 ) Question 2 (**) A circle

More information

OPERATING SYSTEM - VIRTUAL MEMORY

OPERATING SYSTEM - VIRTUAL MEMORY OPERATING SYSTEM - VIRTUAL MEMORY http://www.tutorialspoint.com/operating_system/os_virtual_memory.htm Copyright tutorialspoint.com A computer can address more memory than the amount physically installed

More information

TRAINING PROGRAM Experienced Runners (those who have been running for at least 6 months) GOAL: To Finish - 10K on 9/5/15 and Half Marathon on 9/6/15

TRAINING PROGRAM Experienced Runners (those who have been running for at least 6 months) GOAL: To Finish - 10K on 9/5/15 and Half Marathon on 9/6/15 TRAINING PROGRAM Experienced Runners (those who have been running for at least 6 months) GOAL: To Finish - 10K on 9/5/15 and Half Marathon on 9/6/15 This proven training program has led thousands of runners

More information

Warm-up: Compound vs. Annuity!

Warm-up: Compound vs. Annuity! Warm-up: Compound vs. Annuity! 1) How much will you have after 5 years if you deposit $500 twice a year into an account yielding 3% compounded semiannually? 2) How much money is in the bank after 3 years

More information

Towards Interface Types for Haskell

Towards Interface Types for Haskell Towards Interface Types for Haskell Work in Progress Peter Thiemann Joint work with Stefan Wehr Universität Freiburg, Germany WG 2.8 Meeting, Nesjavellir, Island, 17.07.2007 What is a type class? A type

More information

Section 4.2: The Division Algorithm and Greatest Common Divisors

Section 4.2: The Division Algorithm and Greatest Common Divisors Section 4.2: The Division Algorithm and Greatest Common Divisors The Division Algorithm The Division Algorithm is merely long division restated as an equation. For example, the division 29 r. 20 32 948

More information

Cryptography for the Cloud

Cryptography for the Cloud Cryptography for the Cloud ENS - CNRS - INRIA Cyber-Sécurité - SPECIF CNAM, Paris, France - November 7th, 2014 The Cloud Introduction 2 Access from Anywhere Introduction 3 Available for Everything One

More information

Intro to Ancient Writing Systems

Intro to Ancient Writing Systems Cave painting from Lascaux, c. 15,000 10,000 B.C. Random placement and shifting scale signify prehistoric people s lack of structure and sequence in recording their experiences. Beautifully drawn but not

More information

INFINITY GAUNTLET CHALLENGE TRAINING PROGRAM

INFINITY GAUNTLET CHALLENGE TRAINING PROGRAM 2016 INFINITY GAUNTLET CHALLENGE TRAINING PROGRAM Experienced Runners (those who have been running for at least 6 months) GOAL: To Finish - 10K on 11/12/16 and Half Marathon on 11/13/16 This proven training

More information

PRODUCTION PLANNING AND SCHEDULING Part 1

PRODUCTION PLANNING AND SCHEDULING Part 1 PRODUCTION PLANNING AND SCHEDULING Part Andrew Kusiak 9 Seamans Center Iowa City, Iowa - 7 Tel: 9-9 Fax: 9-669 andrew-kusiak@uiowa.edu http://www.icaen.uiowa.edu/~ankusiak Forecasting Planning Hierarchy

More information

DEGREES OF ORDERS ON TORSION-FREE ABELIAN GROUPS

DEGREES OF ORDERS ON TORSION-FREE ABELIAN GROUPS DEGREES OF ORDERS ON TORSION-FREE ABELIAN GROUPS ASHER M. KACH, KAREN LANGE, AND REED SOLOMON Abstract. We construct two computable presentations of computable torsion-free abelian groups, one of isomorphism

More information

Approximating the Minimum Chain Completion problem

Approximating the Minimum Chain Completion problem Approximating the Minimum Chain Completion problem Tomás Feder Heikki Mannila Evimaria Terzi Abstract A bipartite graph G = (U, V, E) is a chain graph [9] if there is a bijection π : {1,..., U } U such

More information

Generating Elementary Combinatorial Objects

Generating Elementary Combinatorial Objects Fall 2009 Combinatorial Generation Combinatorial Generation: an old subject Excerpt from: D. Knuth, History of Combinatorial Generation, in pre-fascicle 4B, The Art of Computer Programming Vol 4. Combinatorial

More information

A Graph-Theoretic Network Security Game

A Graph-Theoretic Network Security Game A Graph-Theoretic Network Security Game Marios Mavronicolas 1, Vicky Papadopoulou 1, Anna Philippou 1, and Paul Spirakis 2 1 Department of Computer Science, University of Cyprus, Nicosia CY-1678, Cyprus.

More information

CSC 505, Fall 2000: Week 8

CSC 505, Fall 2000: Week 8 Objecties: CSC 505, Fall 2000: Week 8 learn abot the basic depth-first search algorithm learn how properties of a graph can be inferred from the strctre of a DFS tree learn abot one nontriial application

More information