Chapter 5 - Thermochemistry

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Chapter 5 - Thermochemistry"

Transcription

1 Chapter 5 - Thermochemistry Study of energy changes that accompany chemical rx s. I) Nature of Energy Energy / Capacity to do work Mechanical Work w = F x d Heat energy - energy used to cause the temperature of an object to inc. 1

2 A) Units of Energy w = F x d = ( m x a) x d = (kg m/s 2 ) m \ = (kg C m 2 )/ s 2 = N m = joule, J (SI unit) calorie (cal) original def: amt. of energy reg. to raise temp. of 1g of water by 1 C, from 14.5 C to 15.5 C 1 cal = J Cal - nutritional calorie 1 kcal 2

3 B) Kinetic & Potential Energy 1) Kinetic Energy KE = ½ m v 2 Energy due to motion SI units: Energy = kg (m/s) 2 = J 3

4 2) Potential Energy Energy stored in an object by virtue of its position or composition Chemical energy is due to composition of substances Electrostatic P.E. Interaction between charged particles E el = 6 Q 1 Q 2 d Q = charge d = distance between particles 4

5 5

6 C) System and Surroundings System = portion we single out for study - focus attention on changes which occur w/in definite boundaries Surroundings = everything else System : Contents of rx. flask Surround. : Flask & everything outside it Agueous soln. rx : System : dissolved ions & molecules Surround : H 2 O that forms the soln. 6

7 II) First Law of Thermodynamics Law of Conservation of Energy : Energy can be neither created nor destroyed but may be converted from one form to another. Energy lost = Energy gained by system by surroundings A) Internal Energy, E E = total energy of the system Actual value of E cannot be determined 7

8 )E, change in energy, can be determined ) = final state! initial state )E / E f! E i Sign of )E is important E f > E i, )E > 0 system gained energy E f < E i, )E < 0 system lost energy Systems tend to go to lower energy state - more stable products i.e. rx s in which )E < 0 8

9 B) Thermodynamic State & State Functions Thermodynamic State of a System defined by completely specifying ALL properites of the system - P, V, T, composition, physical st. 1) State Function prop. of a system determined by specifying its state. depends only on its present conditions & NOT how it got there )E = E final! E initial independent of path taken to carry out the change - Also is an extensive prop. 9

10 C) Relating )E to Heat & Work 2 types of energy exchanges occur between system & surroundings Heat & Work + q : heat absorbed, endothermic! q : heat evolved, exothermic + w : work done on the system! w : work done by the system 1) First Law )E = q + w 10

11 1) Exothermic Reactions heat is released 2 H 2 (g) + O 2 (g) 6 2 H 2 O(R) + heat 11

12 2) Endothermic Reactions heat is absorbed - reaction requires input of energy 2 H 2 O(R) + heat 6 2 H 2 (g) + O 2 (g) 12

13 III) Enthalpy In ordinary chem. rx., work generally arises as a result of pressure-volume changes Inc. vol. & system does work against pressure of the atmosphere has dimensions of work : = (F/A)V = m/ s m 2 ) m 3 = m 2 )/(s 2 ) = J Constant Pressure w =! P )V Negative because work done by system 13

14 )E = q! P )V A) )E at Constant Volume )E = q v B) )E at Constant Pressure : )E = q p! P )V q p = )E + P)V 14

15 C) Enthalpy, H H = E + PV Change in enthalpy at constant P is: )H = )E + P )V & )H = q p Can think of as heat content state fnc. & is extensive 15

16 IV) Enthalpies of Reaction )H rxn = H products! H reactants A) Exothermic Rx s H p < H r, )H rxn < O, exothermic Heat is evolved 2 H 2 (g) + O 2 (g) 6 2 H 2 O(R) )H =!572 kj Thermochemical eqn. Physical states are given and energy associated w. rx. written to right - MUST give physical states If product is H 2 O(g), )H =!484kJ 16

17 )H corresponds to molar quantities given in eqn. as written H 2 (g) + ½ O 2 (g) 6 H 2 O(R) )H =!286 kj B) Endothermic Rx s H p > H r, )H rxn > O, endothermic Heat is absorbed 2 H 2 O(R) 6 2 H 2 (g) + O 2 (g) )H = +572kJ Reverse of previous rx. 17

18 Enthalpy Diagram 2 H 2 (g) + O 2 (g) +572 kj!572 kj 2 H 2 O (R) 18

19 C) Guidelines 1) Enthalpy is extensive Multiply a rxn by some factor the )H is multiplied by that factor 2) )H reverse =! )H forward 3) Enthalpy is a state function )H depends on the states of reactants and products. 19

20 D) Determining )H for a Rx. Convenient sample sizes are reacted & conv. factors are used to obtain the heat energy 1) Ex 1: When 36.0g of Al reacts w. excess Fe 2 O 3 how much heat is released? 2 Al(s) + Fe 2 O 3 (s) 2 Fe(s) + Al 2 O 3 (s) )H rxn =!847 kj 1 mol Al 847 kj? kj = 36.0 g Al x x = kj = 565 kj g Al 2 mol Al 20

21 VII) Calorimetry Exp. method of obtaining )H & )E Heat evolved or absorbed by system will be reflected in the surroundings. Need surr. Heat Capacity, C C = q )T Quantity of heat required to raise the temp. of an object by 1 C Unit: (J/ C) or (J/K) 21

22 C m - molar heat capacity heat capacity per mole, J/molC C C s - specific heat heat capacity per gram, J/gC C C s of H 2 O = J/gC C q = C )T q = n C m )T q = m C s )T q gained =! q lost Calorimeter )H (q p ) Bomb Calorimeter )E (q v ) 22

23 23

24 A) Ex 1: What amt. of heat has been absorbed by kg of water if its temp. inc. from C to C? q = m C s )T = ( g) (4.184 J/gC C)(22.73!18.22) = 18, J = 18.9 kj (3 s.f.) C 24

25 B) Ex 2: A g sample of graphite is placed in a bomb calorimeter & ignited in the presence of excess O 2 at C & 1 atm. The temp. of the calorimeter rises to C. The heat capacity of the calorimeter & contents is 20.7 kj/ C. What is )H at C and 1 atm? C(graphite) + O 2 (g) 6 CO 2 (g) q (lost by rxn) =! q (gained by calor. & contents) q rxn =! C cal )T =! (20.7 kj/ C)(25.89 C C) =! 18.4 kj (q v or )E for g) 25

26 Want kj/mol, kj! 18.4 kj 12.0 g C? = x mol g C 1 mol C =! 3.93 x 10 2 kj/mol ΔE =! 3.9 x 10 2 kj/mol since no change in moles of gas ΔH = ΔE 26

27 VI) Hess s Law )H is a state fnc. Same whether the process occurs as a single step or as a series of steps The )H rxn is the sum of the )H s for the individual steps. )H rx = G )H steps Steps * Add chem. eqn s for steps to get overall rxn. * Add )H steps )H rxn 27

28 A) Ex 1 : What is )H for Ca(OH) 2 (s) + SO 3 (g) 6 CaSO 4 (s) + H 2 O(g) We know the following: Ca(OH) 2 (s) 6 CaO (s) + H 2 O(g) CaO(s) + SO 3 (g) 6 CaSO 4 (s) )H 1 = kj )H 2 =! 401 kj Ca(OH) 2 (s) + CaO(s) + SO 3 (g) 6 )H rxn =!292kJ CaSO 4 (s) + CaO(s) + H 2 O(g) )H rxn = )H 1 + )H 2 28

29 B) Ex 2 :Want )H for rxn. C 2 H 2 (g) + 5N 2 O(g) 6 2CO 2 (g) + H 2 O(g) + 5N 2 (g) Have: 2 C 2 H 2 (g) + 5 O 2 (g) 6 4 CO 2 (g) + 2 H 2 O(g) )H 1a =!2512 kj N 2 (g) + ½ O 2 (g) 6 N 2 O(g) )H 2a = kj Adjust eqn s so they are in proper amt s and the correct directions so they add up to the desired eqn. ALL substances NOT appearing in desired eqn. MUST cancel. 29

30 Divide eqn. 1a by 2 (also )H ) C 2 H 2 (g) + 5/2 O 2 (g) 6 2 CO 2 (g) + H 2 O(g) )H 1b =! 1256 kj Reverse eqn. 2a and multiply by 5 5 N 2 O(g) 6 5 N 2 (g) + 5/2 O 2 (g) )H 2b =! 408 kj Add & Cancel C 2 H 2 (g) + 5N 2 O(g) 6 2CO 2 (g) + H 2 O(g) + 5N 2 (g) )H rxn = )H 1b + )H 2b =! 1256 kj +! 408 kj =! 1664 kj 30

31 C) Note: In using Hess s Law: 1) If an eqn. is multiplied by a factor, )H is multiplied by the same factor. 2) If an eqn. is reversed, sign of )H changes 3) All substances NOT appearing in desired eqn. MUST cancel 31

32 VII) Enthalpy of Formation Enthalpy change for the formation of a compound from its elements )H f A) Standard enthalpy change Enthalpy change when all reactants and and products are in their standard states )H 32

33 1) Standard State Most stable state of a substance in its pure form under standard pressure (1 atm) & some specified temp. of interest (usually 25 C) 2) Thermochemical Standard States A) solid or liquid Pure substance at 1 atm b) gas pressure of 1 atm c) species in solution Conc. of 1 M 33

34 B) Standard Enthalpy of Formation )H for the rxn in which 1 mole of a cmpd. is formed from its elements with ALL substances in their standard states (in kj/mol) )H f Note: )H f = 0 for an element in its standard state )H f 1/2 N 2 (g) + 3/2 H 2 (g) 6 NH 3 (g)! 46.2 Na(s) + 1/2 Cl 2 (g) 6 NaCl(s)! C(graphite) 6 C(diamond)

35 35

36 C) Determine )H rxn from )H f )H rxn = 3 n )H f! 3 m )H f prod. react. n = coef. in bal. eqn. for each product m = coef. in bal. eqn. for each reactant 36

37 1) Ex1 : Find )H rxn for the following rx. using Hess s Law and )H f. 2 H 2 S(g) + 3 O 2 (g) 6 2 H 2 O(R) + 2 SO 2 (g) )H (kj/mol) (a) H 2 (g) + S(s) 6 H 2 S(g)! 20.2 (b) H 2 (g) + ½ O 2 (g) 6 H 2 O(R)! (c) S(s) + O 2 (g) 6 SO 2 (g)! Need to: Rev. eqn. (a) and 2 Add eqn. (b) 2 Add eqn. (c) 2 37

38 2H 2 S(g) 6 2H 2 (g) + 2S(s) )H rxn =!2C(!20.2) = kj 2H 2 (g) + O 2 (g) 6 2H 2 O (R) )H rxn = 2(!285.8) =! kj 2S(s) + 2O 2 (g) 6 2SO 2 (g) )H rxn = 2(!296.9) =! kj 2H 2 S + 2H 2 + 2S +3O 2 6 2H 2 + 2S + 2H 2 O + 2SO 2 2H 2 S + 3O 2 6 2H 2 O + 2SO 2 )H rx = (+ 40.4) + (!571.6) + (!593.8) =! 1125 kj 38

39 a) Use )H f instead )H rxn = [ 2 )H f (H 2 O) + 2 )H f (SO )] 2! [ 2 )H f (H 2 S) + 3 )H f (O 2 )] = [2 (!285.8) + 2 (!296.8)]! [2 (!20) + 3 (0)] =! 1125 kj 39

40 2) Ex 2: Useful when considering organic cmpds. for which )H f can not be determined directly. What is )H f for benzene? 6 C(s) + 3 H 2 (g) 6 C 6 H 6 (R) )H f =? This rx. does not happen. Use of exp. heat of combustion C 6 H 6 (R) + 15/2 O 2 (g) 6 6 CO 2 (g) + 3 H 2 O(R) )H rxn =! 3271 kj 40

41 )H rxn = [ 6 )H f (CO 2 ) + 3 )H f (H 2 O)]! [ )H f (C 6 H 6 ) + 15/2 )H f (O 2 )]!3271 kj = [ 6 (!393.5) + 3 (!285.8) ]! [ )H f (C 6 H 6 ) + 15/2 (0) ]!3271 kj = [! ]! [ )H f (C 6 H 6 ) ] )H f (C 6 H 6 ) = [! ]! (! 3271) = kj 41

Unit 5 Practice Test. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question.

Unit 5 Practice Test. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question. Name: Class: Date: Unit 5 Practice Test Multiple Choice Identify the choice that best completes the statement or answers the question. 1) The internal energy of a system is always increased by. A) adding

More information

Chapter 5 Principles of Chemical Reactivity: Energy and Chemical Reactions

Chapter 5 Principles of Chemical Reactivity: Energy and Chemical Reactions PRACTICING SKILLS Energy Chapter 5 Principles of Chemical Reactivity: 1. To move the lever, one uses mechanical energy. The energy resulting is manifest in electrical energy (which produces light); thermal

More information

Chapter 1 The Atomic Nature of Matter

Chapter 1 The Atomic Nature of Matter Chapter 1 The Atomic Nature of Matter 6. Substances that cannot be decomposed into two or more simpler substances by chemical means are called a. pure substances. b. compounds. c. molecules. d. elements.

More information

7. 1.00 atm = 760 torr = 760 mm Hg = 101.325 kpa = 14.70 psi. = 0.446 atm. = 0.993 atm. = 107 kpa 760 torr 1 atm 760 mm Hg = 790.

7. 1.00 atm = 760 torr = 760 mm Hg = 101.325 kpa = 14.70 psi. = 0.446 atm. = 0.993 atm. = 107 kpa 760 torr 1 atm 760 mm Hg = 790. CHATER 3. The atmosphere is a homogeneous mixture (a solution) of gases.. Solids and liquids have essentially fixed volumes and are not able to be compressed easily. have volumes that depend on their conditions,

More information

Science Department Mark Erlenwein, Assistant Principal

Science Department Mark Erlenwein, Assistant Principal Staten Island Technical High School Vincent A. Maniscalco, Principal The Physical Setting: CHEMISTRY Science Department Mark Erlenwein, Assistant Principal - Unit 1 - Matter and Energy Lessons 9-14 Heat,

More information

= 1.038 atm. 760 mm Hg. = 0.989 atm. d. 767 torr = 767 mm Hg. = 1.01 atm

= 1.038 atm. 760 mm Hg. = 0.989 atm. d. 767 torr = 767 mm Hg. = 1.01 atm Chapter 13 Gases 1. Solids and liquids have essentially fixed volumes and are not able to be compressed easily. Gases have volumes that depend on their conditions, and can be compressed or expanded by

More information

Chemistry 2014 Scoring Guidelines

Chemistry 2014 Scoring Guidelines AP Chemistry 2014 Scoring Guidelines 2014 The College Board. College Board, Advanced Placement Program, AP, AP Central, and the acorn logo are registered trademarks of the College Board. Visit the College

More information

Chemical Bonds. Chemical Bonds. The Nature of Molecules. Energy and Metabolism < < Covalent bonds form when atoms share 2 or more valence electrons.

Chemical Bonds. Chemical Bonds. The Nature of Molecules. Energy and Metabolism < < Covalent bonds form when atoms share 2 or more valence electrons. The Nature of Molecules Chapter 2 Energy and Metabolism Chapter 6 Chemical Bonds Molecules are groups of atoms held together in a stable association. Compounds are molecules containing more than one type

More information

STATE UNIVERSITY OF NEW YORK COLLEGE OF TECHNOLOGY CANTON, NEW YORK COURSE OUTLINE CHEM 150 - COLLEGE CHEMISTRY I

STATE UNIVERSITY OF NEW YORK COLLEGE OF TECHNOLOGY CANTON, NEW YORK COURSE OUTLINE CHEM 150 - COLLEGE CHEMISTRY I STATE UNIVERSITY OF NEW YORK COLLEGE OF TECHNOLOGY CANTON, NEW YORK COURSE OUTLINE CHEM 150 - COLLEGE CHEMISTRY I PREPARED BY: NICOLE HELDT SCHOOL OF SCIENCE, HEALTH, AND PROFESSIONAL STUDIES SCIENCE DEPARTMENT

More information

AP Chemistry 2015 Free-Response Questions

AP Chemistry 2015 Free-Response Questions AP Chemistry 2015 Free-Response Questions College Board, Advanced Placement Program, AP, AP Central, and the acorn logo are registered trademarks of the College Board. AP Central is the official online

More information

Chapter 3 Stoichiometry

Chapter 3 Stoichiometry Chapter 3 Stoichiometry 3-1 Chapter 3 Stoichiometry In This Chapter As you have learned in previous chapters, much of chemistry involves using macroscopic measurements to deduce what happens between atoms

More information

Chapter 14 Solutions

Chapter 14 Solutions Chapter 14 Solutions 1 14.1 General properties of solutions solution a system in which one or more substances are homogeneously mixed or dissolved in another substance two components in a solution: solute

More information

CHAPTER 10: INTERMOLECULAR FORCES: THE UNIQUENESS OF WATER Problems: 10.2, 10.6,10.15-10.33, 10.35-10.40, 10.56-10.60, 10.101-10.

CHAPTER 10: INTERMOLECULAR FORCES: THE UNIQUENESS OF WATER Problems: 10.2, 10.6,10.15-10.33, 10.35-10.40, 10.56-10.60, 10.101-10. CHAPTER 10: INTERMOLECULAR FORCES: THE UNIQUENESS OF WATER Problems: 10.2, 10.6,10.15-10.33, 10.35-10.40, 10.56-10.60, 10.101-10.102 10.1 INTERACTIONS BETWEEN IONS Ion-ion Interactions and Lattice Energy

More information

Balancing chemical reaction equations (stoichiometry)

Balancing chemical reaction equations (stoichiometry) Balancing chemical reaction equations (stoichiometry) This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit

More information

(1) e.g. H hydrogen that has lost 1 electron c. anion - negatively charged atoms that gain electrons 16-2. (1) e.g. HCO 3 bicarbonate anion

(1) e.g. H hydrogen that has lost 1 electron c. anion - negatively charged atoms that gain electrons 16-2. (1) e.g. HCO 3 bicarbonate anion GS106 Chemical Bonds and Chemistry of Water c:wou:gs106:sp2002:chem.wpd I. Introduction A. Hierarchy of chemical substances 1. atoms of elements - smallest particles of matter with unique physical and

More information

The energy level diagram for this reaction is shown below.

The energy level diagram for this reaction is shown below. Q. Methanol can be made when methane reacts with oxygen. (a) The energy level diagram for this reaction is shown below. (i) What is the energy change represented by A? () (ii) Use the energy level diagram

More information

Gravitational Potential Energy

Gravitational Potential Energy Gravitational Potential Energy Consider a ball falling from a height of y 0 =h to the floor at height y=0. A net force of gravity has been acting on the ball as it drops. So the total work done on the

More information

Boyle s law - For calculating changes in pressure or volume: P 1 V 1 = P 2 V 2. Charles law - For calculating temperature or volume changes: V 1 T 1

Boyle s law - For calculating changes in pressure or volume: P 1 V 1 = P 2 V 2. Charles law - For calculating temperature or volume changes: V 1 T 1 Common Equations Used in Chemistry Equation for density: d= m v Converting F to C: C = ( F - 32) x 5 9 Converting C to F: F = C x 9 5 + 32 Converting C to K: K = ( C + 273.15) n x molar mass of element

More information

Name: Class: Date: 2) Which one of the following exhibits dipole-dipole attraction between molecules? A) XeF 4 B) AsH 3 C) CO 2 D) BCl 3 E) Cl 2

Name: Class: Date: 2) Which one of the following exhibits dipole-dipole attraction between molecules? A) XeF 4 B) AsH 3 C) CO 2 D) BCl 3 E) Cl 2 Name: Class: Date: IM Bonding 1) In liquids, the attractive intermolecular forces are. A) very weak compared with kinetic energies of the molecules B) strong enough to hold molecules relatively close together

More information

Part B 2. Allow a total of 15 credits for this part. The student must answer all questions in this part.

Part B 2. Allow a total of 15 credits for this part. The student must answer all questions in this part. Part B 2 Allow a total of 15 credits for this part. The student must answer all questions in this part. 51 [1] Allow 1 credit for 3 Mg(s) N 2 (g) Mg 3 N 2 (s). Allow credit even if the coefficient 1 is

More information

CHAPTER 13 Chemical Kinetics: Clearing the Air

CHAPTER 13 Chemical Kinetics: Clearing the Air CHAPTER 13 Chemical Kinetics: Clearing the Air 13.1. Collect and Organize For the plot of Figure P13.1, we are to identify which curves represent [N O] and [O ] over time for the conversion of N O to N

More information

CHEMICAL EQUILIBRIUM Chapter 13

CHEMICAL EQUILIBRIUM Chapter 13 Page 1 1 hemical Equilibrium EMIAL EQUILIBRIUM hapter 1 The state where the concentrations of all reactants and products remain constant with time. On the molecular level, there is frantic activity. Equilibrium

More information

Instructional Notes/Strategies. GLEs. Evidence / Assessments of learning Knowledge/Synthesis. Resources # SI-1 (E)

Instructional Notes/Strategies. GLEs. Evidence / Assessments of learning Knowledge/Synthesis. Resources # SI-1 (E) Lafayette Parish School System Curriculum Map Honors Chemistry (Pearson) Unit 1: Introduction to Chemistry Time Frame 1 week August 15 August 21, 2011 Unit Description - This unit focuses on Why It Is

More information

Chemical Kinetics. Reaction Rate: The change in the concentration of a reactant or a product with time (M/s). Reactant Products A B

Chemical Kinetics. Reaction Rate: The change in the concentration of a reactant or a product with time (M/s). Reactant Products A B Reaction Rates: Chemical Kinetics Reaction Rate: The change in the concentration of a reactant or a product with time (M/s). Reactant Products A B change in number of moles of B Average rate = change in

More information

Bonds. Bond Length. Forces that hold groups of atoms together and make them function as a unit. Bond Energy. Chapter 8. Bonding: General Concepts

Bonds. Bond Length. Forces that hold groups of atoms together and make them function as a unit. Bond Energy. Chapter 8. Bonding: General Concepts Bonds hapter 8 Bonding: General oncepts Forces that hold groups of atoms together and make them function as a unit. Bond Energy Bond Length It is the energy required to break a bond. The distance where

More information

Unit 11 Practice. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question.

Unit 11 Practice. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question. Name: Class: Date: Unit 11 Practice Multiple Choice Identify the choice that best completes the statement or answers the question. 1) Crystalline solids. A) have their particles arranged randomly B) have

More information

AP Chemistry 2006 Free-Response Questions

AP Chemistry 2006 Free-Response Questions AP Chemistry 006 Free-Response Questions The College Board: Connecting Students to College Success The College Board is a not-for-profit membership association whose mission is to connect students to college

More information

Prentice Hall. Chemistry (Wilbraham) 2008, National Student Edition - South Carolina Teacher s Edition. High School. High School

Prentice Hall. Chemistry (Wilbraham) 2008, National Student Edition - South Carolina Teacher s Edition. High School. High School Prentice Hall Chemistry (Wilbraham) 2008, National Student Edition - South Carolina Teacher s Edition High School C O R R E L A T E D T O High School C-1.1 Apply established rules for significant digits,

More information

Technical Thermodynamics

Technical Thermodynamics Technical Thermodynamics Chapter 2: Basic ideas and some definitions Prof. Dr.-Ing. habil. Egon Hassel University of Rostock, Germany Faculty of Mechanical Engineering and Ship Building Institute of Technical

More information

The First Law of Thermodynamics

The First Law of Thermodynamics Thermodynamics The First Law of Thermodynamics Thermodynamic Processes (isobaric, isochoric, isothermal, adiabatic) Reversible and Irreversible Processes Heat Engines Refrigerators and Heat Pumps The Carnot

More information

1. Read P. 368-375, P. 382-387 & P. 429-436; P. 375 # 1-11 & P. 389 # 1,7,9,12,15; P. 436 #1, 7, 8, 11

1. Read P. 368-375, P. 382-387 & P. 429-436; P. 375 # 1-11 & P. 389 # 1,7,9,12,15; P. 436 #1, 7, 8, 11 SCH3U- R.H.KING ACADEMY SOLUTION & ACID/BASE WORKSHEET Name: The importance of water - MAKING CONNECTION READING 1. Read P. 368-375, P. 382-387 & P. 429-436; P. 375 # 1-11 & P. 389 # 1,7,9,12,15; P. 436

More information

PROPERTIES OF TYPICAL COMMERCIAL LIME PRODUCTS. Quicklimes High Calcium Dolomitic

PROPERTIES OF TYPICAL COMMERCIAL LIME PRODUCTS. Quicklimes High Calcium Dolomitic National Lime Association L I M E The Versatile Chemical Fact Sheet PROPERTIES OF TYPICAL COMMERCIAL LIME PRODUCTS Quicklimes High Calcium Dolomitic Primary Constituents CaO CaO MgO Specific Gravity 3.2-3.4

More information

Southeastern Louisiana University Dual Enrollment Program--Chemistry

Southeastern Louisiana University Dual Enrollment Program--Chemistry Southeastern Louisiana University Dual Enrollment Program--Chemistry The Southeastern Dual Enrollment Chemistry Program is a program whereby high school students are given the opportunity to take college

More information

Candidate Style Answer

Candidate Style Answer Candidate Style Answer Chemistry A Unit F321 Atoms, Bonds and Groups High banded response This Support Material booklet is designed to accompany the OCR GCE Chemistry A Specimen Paper F321 for teaching

More information

Chapter 13 Gases. Review Skills

Chapter 13 Gases. Review Skills Chapter 13 Gases t s Monday morning, and Lilia is walking out of the chemistry building, thinking about the introductory lecture on gases that her instructor just presented. Dr. Scanlon challenged the

More information

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í CHEMICAL REACTIONS

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í CHEMICAL REACTIONS Chemical reaction = process during which original substances change to new substances, reactants turn to... The bonds of reactants... and new bonds are... The classification of reactions: 1. Classification

More information

Chapter 13 - Solutions

Chapter 13 - Solutions Chapter 13 - Solutions 13-1 Types of Mixtures I. Solutions A. Soluble 1. Capable of being dissolved B. Solution 1. A homogeneous mixture of two or more substances in a single phase C. Solvent 1. The dissolving

More information

English already has many collective nouns for fixed, given numbers of objects. Some of the more common collective nouns are shown in Table 7.1.

English already has many collective nouns for fixed, given numbers of objects. Some of the more common collective nouns are shown in Table 7.1. 96 Chapter 7: Calculations with Chemical Formulas and Chemical Reactions Chemical reactions are written showing a few individual atoms or molecules reacting to form a few atoms or molecules of products.

More information

Chapter 13 & 14 Practice Exam

Chapter 13 & 14 Practice Exam Name: Class: Date: Chapter 13 & 14 Practice Exam Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Acids generally release H 2 gas when they react with a.

More information

The final numerical answer given is correct but the math shown does not give that answer.

The final numerical answer given is correct but the math shown does not give that answer. Note added to Homework set 7: The solution to Problem 16 has an error in it. The specific heat of water is listed as c 1 J/g K but should be c 4.186 J/g K The final numerical answer given is correct but

More information

Name: Class: Date: 2 4 (aq)

Name: Class: Date: 2 4 (aq) Name: Class: Date: Unit 4 Practice Test Multiple Choice Identify the choice that best completes the statement or answers the question. 1) The balanced molecular equation for complete neutralization of

More information

Chapter 7 Energy and Energy Balances

Chapter 7 Energy and Energy Balances CBE14, Levicky Chapter 7 Energy and Energy Balances The concept of energy conservation as expressed by an energy balance equation is central to chemical engineering calculations. Similar to mass balances

More information

Acids and Bases. Chapter 16

Acids and Bases. Chapter 16 Acids and Bases Chapter 16 The Arrhenius Model An acid is any substance that produces hydrogen ions, H +, in an aqueous solution. Example: when hydrogen chloride gas is dissolved in water, the following

More information

- The value of a state function is independent of the history of the system. - Temperature is an example of a state function.

- The value of a state function is independent of the history of the system. - Temperature is an example of a state function. First Law of hermodynamics 1 State Functions - A State Function is a thermodynamic quantity whose value deends only on the state at the moment, i. e., the temerature, ressure, volume, etc - he value of

More information

Feasibility Analysis of Ternary Feed Mixtures of Methane with Oxygen, Steam, and Carbon Dioxide for the Production of Methanol Synthesis Gas

Feasibility Analysis of Ternary Feed Mixtures of Methane with Oxygen, Steam, and Carbon Dioxide for the Production of Methanol Synthesis Gas 1410 Ind. Eng. Chem. Res. 1998, 37, 1410-1421 Feasibility Analysis of Ternary Feed Mixtures of Methane with Oxygen, Steam, and Carbon Dioxide for the Production of Methanol Synthesis Gas George J. Tjatjopoulos*,

More information

Type of Chemical Bonds

Type of Chemical Bonds Type of Chemical Bonds Covalent bond Polar Covalent bond Ionic bond Hydrogen bond Metallic bond Van der Waals bonds. Covalent Bonds Covalent bond: bond in which one or more pairs of electrons are shared

More information

Guide To Preparation of Stock Standard Solutions

Guide To Preparation of Stock Standard Solutions chemias ft Guide To Preparation of Stock Standard Solutions First Edition May 2011 Na+ 1000 ppm Guide To Preparation Of Stock Standard Solutions By: CHEMIASOFT May 2011 Page 2 of 61 Page 3 of 61 Table

More information

Coimisiún na Scrúduithe Stáit State Examinations Commission

Coimisiún na Scrúduithe Stáit State Examinations Commission Coimisiún na Scrúduithe Stáit State Examinations Commission LEAVING CERTIFICATE EXAMINATION, 2007 CHEMISTRY - ORDINARY LEVEL TUESDAY, 19 JUNE AFTERNOON 2.00 TO 5.00 400 MARKS Answer eight questions in

More information

Chapter 13 - LIQUIDS AND SOLIDS

Chapter 13 - LIQUIDS AND SOLIDS Chapter 13 - LIQUIDS AND SOLIDS Problems to try at end of chapter: Answers in Appendix I: 1,3,5,7b,9b,15,17,23,25,29,31,33,45,49,51,53,61 13.1 Properties of Liquids 1. Liquids take the shape of their container,

More information

CHEM 110 A Chemistry I

CHEM 110 A Chemistry I Columbia College Online Campus P a g e 1 CHEM 110 A Chemistry I Early Fall Session (15-51) Monday, August 17 Saturday, October 10, 2015 Course Description Fundamental course in the principles of chemistry.

More information

18 Q0 a speed of 45.0 m/s away from a moving car. If the car is 8 Q0 moving towards the ambulance with a speed of 15.0 m/s, what Q0 frequency does a

18 Q0 a speed of 45.0 m/s away from a moving car. If the car is 8 Q0 moving towards the ambulance with a speed of 15.0 m/s, what Q0 frequency does a First Major T-042 1 A transverse sinusoidal wave is traveling on a string with a 17 speed of 300 m/s. If the wave has a frequency of 100 Hz, what 9 is the phase difference between two particles on the

More information

Sketch the model representation of the first step in the dissociation of water. H 2. O (l) H + (aq) + OH- (aq) + H 2. OH - (aq) + H 3 O+ (aq)

Sketch the model representation of the first step in the dissociation of water. H 2. O (l) H + (aq) + OH- (aq) + H 2. OH - (aq) + H 3 O+ (aq) Lesson Objectives Students will: Create a physical representation of the autoionization of water using the water kit. Describe and produce a physical representation of the dissociation of a strong acid

More information

Enrollment Services: Rev 12/11/2012 1

Enrollment Services: Rev 12/11/2012 1 Enrollment Services: Rev 12/11/2012 1 Purpose of This Guide Page 3 CSULB Major Specific Requirements Page 4 Using ASSIST to Determine Course Equivalencies Between CSULB and California Community Colleges

More information

Energy Matters Heat. Changes of State

Energy Matters Heat. Changes of State Energy Matters Heat Changes of State Fusion If we supply heat to a lid, such as a piece of copper, the energy supplied is given to the molecules. These start to vibrate more rapidly and with larger vibrations

More information

Chapter 10 Liquids & Solids

Chapter 10 Liquids & Solids 1 Chapter 10 Liquids & Solids * 10.1 Polar Covalent Bonds & Dipole Moments - van der Waals constant for water (a = 5.28 L 2 atm/mol 2 ) vs O 2 (a = 1.36 L 2 atm/mol 2 ) -- water is polar (draw diagram)

More information

Chapter 10 Temperature and Heat

Chapter 10 Temperature and Heat Chapter 10 Temperature and Heat What are temperature and heat? Are they the same? What causes heat? What Is Temperature? How do we measure temperature? What are we actually measuring? Temperature and Its

More information

Type: Single Date: Homework: READ 12.8, Do CONCEPT Q. # (14) Do PROBLEMS (40, 52, 81) Ch. 12

Type: Single Date: Homework: READ 12.8, Do CONCEPT Q. # (14) Do PROBLEMS (40, 52, 81) Ch. 12 Type: Single Date: Objective: Latent Heat Homework: READ 12.8, Do CONCEPT Q. # (14) Do PROBLEMS (40, 52, 81) Ch. 12 AP Physics B Date: Mr. Mirro Heat and Phase Change When bodies are heated or cooled their

More information

Chapter 7 : Simple Mixtures

Chapter 7 : Simple Mixtures Chapter 7 : Simple Mixtures Using the concept of chemical potential to describe the physical properties of a mixture. Outline 1)Partial Molar Quantities 2)Thermodynamics of Mixing 3)Chemical Potentials

More information

DET: Mechanical Engineering Thermofluids (Higher)

DET: Mechanical Engineering Thermofluids (Higher) DET: Mechanical Engineering Thermofluids (Higher) 6485 Spring 000 HIGHER STILL DET: Mechanical Engineering Thermofluids Higher Support Materials *+,-./ CONTENTS Section : Thermofluids (Higher) Student

More information

Chapter 6. Solution, Acids and Bases

Chapter 6. Solution, Acids and Bases Chapter 6 Solution, Acids and Bases Mixtures Two or more substances Heterogeneous- different from place to place Types of heterogeneous mixtures Suspensions- Large particles that eventually settle out

More information

4. Acid Base Chemistry

4. Acid Base Chemistry 4. Acid Base Chemistry 4.1. Terminology: 4.1.1. Bronsted / Lowry Acid: "An acid is a substance which can donate a hydrogen ion (H+) or a proton, while a base is a substance that accepts a proton. B + HA

More information

Hydrogen Storage in Ammonia and Aminoborane Complexes

Hydrogen Storage in Ammonia and Aminoborane Complexes ydrogen Storage in Ammonia and Aminoborane Complexes Ali Raissi Florida Solar Energy Center University of Central Florida ydrogen Program Annual Review Session: ydrogen Storage Carbon & Other Berkeley,

More information

The Second Law of Thermodynamics

The Second Law of Thermodynamics Objectives MAE 320 - Chapter 6 The Second Law of Thermodynamics The content and the pictures are from the text book: Çengel, Y. A. and Boles, M. A., Thermodynamics: An Engineering Approach, McGraw-Hill,

More information

Chemistry Final Study Guide

Chemistry Final Study Guide Name: Class: Date: Chemistry Final Study Guide Multiple Choice Identify the choice that best completes the statement or answers the question. 1. The electrons involved in the formation of a covalent bond

More information

Laboratory Math II: Solutions and Dilutions

Laboratory Math II: Solutions and Dilutions Slide 1 Laboratory Math II: Solutions and Dilutions Philip Ryan, PhD Post-Doctoral Fellow National Cancer Institute, NIH Welcome to the National Institutes of Health, Office of Intramural Training & Education

More information

Chapter 2 Polar Covalent Bonds: Acids and Bases

Chapter 2 Polar Covalent Bonds: Acids and Bases John E. McMurry www.cengage.com/chemistry/mcmurry Chapter 2 Polar Covalent Bonds: Acids and Bases Modified by Dr. Daniela R. Radu Why This Chapter? Description of basic ways chemists account for chemical

More information

Chapter 10: Temperature and Heat

Chapter 10: Temperature and Heat Chapter 10: Temperature and Heat 1. The temperature of a substance is A. proportional to the average kinetic energy of the molecules in a substance. B. equal to the kinetic energy of the fastest moving

More information

LESSON PLAN 1. Fire Science. Key Terms and Concepts. ash chemical reaction combustion Consumer Product Safety Commission endothermic exothermic

LESSON PLAN 1. Fire Science. Key Terms and Concepts. ash chemical reaction combustion Consumer Product Safety Commission endothermic exothermic LESSON PLAN 1 Fire Prevention Fire and Fire Prevention Combustion occurs when the three elements of the fire triangle heat, fuel and oxygen are present. Understanding this basic chemical reaction can help

More information

Optimising Glass Melting Processes with Energy & Mass Balance Calculations

Optimising Glass Melting Processes with Energy & Mass Balance Calculations Optimising Glass Melting Processes with Energy & Mass Balance Calculations Hans Mahrenholtz, Linde AG, Andre Ommer, OGIS GmbH, Germany Introduction Glass manufacturers are constantly under pressure to

More information

(b) As the mass of the Sn electrode decreases, where does the mass go?

(b) As the mass of the Sn electrode decreases, where does the mass go? A student is given a standard galvanic cell, represented above, that has a Cu electrode and a Sn electrode. As current flows through the cell, the student determines that the Cu electrode increases in

More information

Stoichiometry CHAPTER 12

Stoichiometry CHAPTER 12 CHAPTER 1 Stoichiometry What You ll Learn You will write mole ratios from balanced chemical equations. You will calculate the number of moles and the mass of a reactant or product when given the number

More information

Temperature. Temperature

Temperature. Temperature Chapter 8 Temperature Temperature a number that corresponds to the warmth or coldness of an object measured by a thermometer is a per-particle property no upper limit definite limit on lower end Temperature

More information

1. When the following equation is balanced, the coefficient of Al is. Al (s) + H 2 O (l)? Al(OH) 3 (s) + H 2 (g)

1. When the following equation is balanced, the coefficient of Al is. Al (s) + H 2 O (l)? Al(OH) 3 (s) + H 2 (g) 1. When the following equation is balanced, the coefficient of Al is. Al (s) + H 2 O (l)? Al(OH) (s) + H 2 (g) A) 1 B) 2 C) 4 D) 5 E) Al (s) + H 2 O (l)? Al(OH) (s) + H 2 (g) Al (s) + H 2 O (l)? Al(OH)

More information

Understanding ph management and plant nutrition Part 5: Choosing the best fertilizer

Understanding ph management and plant nutrition Part 5: Choosing the best fertilizer Understanding ph management and plant nutrition Part 5: Choosing the best fertilizer Bill Argo, Ph.D. Blackmore Company, Tel: 800-874-8660, Int l 734-483-8661, E-mail: bargo@blackmoreco.com Originally

More information

Just another. Fuel Cell Formulary. by Dr. Alexander Kabza

Just another. Fuel Cell Formulary. by Dr. Alexander Kabza Just another by Dr. Alexander Kabza This version is from July 16, 2015 and optimized for Smartphones. Latest version see www.kabza.de. Don t hesitate to send me any comments or failures or ideas by email!

More information

Analyzing & Testing. Adiabatic & Reaction Calorimetry. Advanced Solution For Chemical Process Safety, Energetic Material, and Battery Development

Analyzing & Testing. Adiabatic & Reaction Calorimetry. Advanced Solution For Chemical Process Safety, Energetic Material, and Battery Development Analyzing & Testing Adiabatic & Reaction Calorimetry Advanced Solution For Chemical Process Safety, Energetic Material, and Battery Development Best-in-Class Adiabatic Calorimetry Adiabatic Calorimetry

More information

TOPIC-1: CHEMICAL EQUILIBRIUM A MATTER OF BALANCE

TOPIC-1: CHEMICAL EQUILIBRIUM A MATTER OF BALANCE Chemistry 534 CHAPTER 6 Chemical Equilibrium The subject of any investigation is called a system. When the study involves experimentation, the system is said to be real. When the study involves ideas,

More information

Letter to the Student... 5 Test-Taking Checklist... 6 Next Generation Sunshine State Standards Correlation Chart... 7

Letter to the Student... 5 Test-Taking Checklist... 6 Next Generation Sunshine State Standards Correlation Chart... 7 Table of Contents Letter to the Student..................................... 5 Test-Taking Checklist.................................... 6 Next Generation Sunshine State Standards Correlation Chart...

More information

Forensic Science Standards and Benchmarks

Forensic Science Standards and Benchmarks Forensic Science Standards and Standard 1: Understands and applies principles of scientific inquiry Power : Identifies questions and concepts that guide science investigations Uses technology and mathematics

More information

Acid-Base (Proton-Transfer) Reactions

Acid-Base (Proton-Transfer) Reactions Acid-Base (Proton-Transfer) Reactions Chapter 17 An example of equilibrium: Acid base chemistry What are acids and bases? Every day descriptions Chemical description of acidic and basic solutions by Arrhenius

More information

Photo by Dean Tersigni

Photo by Dean Tersigni Chapter 7 Energy and Chemical Reactions nergy it makes things happen. To get an idea of the role energy plays in our lives, let s spend some time with John, a college student in one of the coastal towns

More information

ARIZONA Science Standards High School Chemistry: Matter and Change 2005

ARIZONA Science Standards High School Chemistry: Matter and Change 2005 ARIZONA Science Standards High School Chemistry: Matter and Change 2005 OBJECTIVES Strand 1: Inquiry Process Concept 1: Observations, Questions, and Hypotheses Formulate predictions, questions, or hypotheses

More information

AMMONIA AND UREA PRODUCTION

AMMONIA AND UREA PRODUCTION AMMONIA AND UREA PRODUCTION Urea (NH 2 CONH 2 ) is of great importance to the agriculture industry as a nitrogen-rich fertiliser. In Kapuni, Petrochem manufacture ammonia and then convert the majority

More information

Hydrogen Production by Nuclear Heat

Hydrogen Production by Nuclear Heat Hydrogen Production by Nuclear Heat Leanne M. Crosbie January 6, 2003 THE ENERGY CARRIER OF THE FUTURE Research and development is constantly underway to create the next generation energy technology. It

More information

Calculation of Combustion, Explosion and Detonation Characteristics of Energetic Materials

Calculation of Combustion, Explosion and Detonation Characteristics of Energetic Materials Calculation of Combustion, Explosion and Detonation Characteristics... 97 Central European Journal of Energetic Materials, 2010, 7(2), 97-113 ISSN 1733-7178 Calculation of Combustion, Explosion and Detonation

More information

Thermische Speicherung von Solarenergie

Thermische Speicherung von Solarenergie Thermische Speicherung von Solarenergie Dr. Thomas Bauer Institut für Technische Thermodynamik Stuttgart, Köln 15. Kölner Sonnenkolloquium, 12.6.2012 www.dlr.de/tt Slide 2 > 15. Kölner Sonnenkolloquium

More information

INTERMOLECULAR FORCES

INTERMOLECULAR FORCES INTERMOLECULAR FORCES Intermolecular forces- forces of attraction and repulsion between molecules that hold molecules, ions, and atoms together. Intramolecular - forces of chemical bonds within a molecule

More information

SCIENCE 10 Program of Studies 2005 (Updated 2014)

SCIENCE 10 Program of Studies 2005 (Updated 2014) Updates Minor revisions were made in 2014 and are described in 2014 Summary of Updates. SCIENCE 10 Program of Studies 2005 (Updated 2014) PROGRAM RATIONALE AND PHILOSOPHY Students graduating from Alberta

More information

Energy & Conservation of Energy. Energy & Radiation, Part I. Monday AM, Explain: Energy. Thomas Birner, ATS, CSU

Energy & Conservation of Energy. Energy & Radiation, Part I. Monday AM, Explain: Energy. Thomas Birner, ATS, CSU Monday AM, Explain: Energy MONDAY: energy in and energy out on a global scale Energy & Conservation of Energy Energy & Radiation, Part I Energy concepts: What is energy? Conservation of energy: Can energy

More information

New and improved slagging and corrosion control techniques for biomass firing. Martti Aho IV Liekkipäivä 23.01.2008

New and improved slagging and corrosion control techniques for biomass firing. Martti Aho IV Liekkipäivä 23.01.2008 New and improved slagging and corrosion control techniques for biomass firing IV Liekkipäivä 23.01.2008 Organisation of the research project t Research organisations:vtt (Co ordinaator) Åbo Akademi University

More information

Mass of thoroughly dried filter paper. Mass of filter paper + precipitate after third drying. Mass of filter paper + precipitate after second drying

Mass of thoroughly dried filter paper. Mass of filter paper + precipitate after third drying. Mass of filter paper + precipitate after second drying Mass of KI tablet Mass of thoroughly dried filter paper Mass of filter paper + precipitate after first drying Mass of filter paper + precipitate after second drying Mass of filter paper + precipitate after

More information

ATOMS AND BONDS. Bonds

ATOMS AND BONDS. Bonds ATOMS AND BONDS Atoms of elements are the simplest units of organization in the natural world. Atoms consist of protons (positive charge), neutrons (neutral charge) and electrons (negative charge). The

More information

Steady Heat Conduction

Steady Heat Conduction Steady Heat Conduction In thermodynamics, we considered the amount of heat transfer as a system undergoes a process from one equilibrium state to another. hermodynamics gives no indication of how long

More information

ORGANIC LABORATORY TECHNIQUES 10 10.1. NEVER distill the distillation flask to dryness as there is a risk of explosion and fire.

ORGANIC LABORATORY TECHNIQUES 10 10.1. NEVER distill the distillation flask to dryness as there is a risk of explosion and fire. ORGANIC LABORATORY TECHNIQUES 10 10.1 DISTILLATION NEVER distill the distillation flask to dryness as there is a risk of explosion and fire. The most common methods of distillation are simple distillation

More information

molecular aggregates would then be present in the water: e.g., linear chains containing

molecular aggregates would then be present in the water: e.g., linear chains containing VISCOSITY MEASUREMENTS OF ALCOHOL-WATER MIXTURES AND THE STRUCTURE OF WATER BY M. AGENO AND C. FRONTALI PHYSICS LABORATORY, ISTITUTO SUPERIORE DI SANITA, ROME, ITALY Communicated by Emilio Segr', February

More information

Syllabus: CH301 Principles of Chemistry I (51140)

Syllabus: CH301 Principles of Chemistry I (51140) Syllabus: CH301 Principles of Chemistry I (51140) Hello and welcome to The University of Texas at Austin! CH301 is the first of a two-semester sequence designed to prepare you for study in math or science-related

More information

Chemistry 201. Practical aspects of buffers. NC State University. Lecture 15

Chemistry 201. Practical aspects of buffers. NC State University. Lecture 15 Chemistry 201 Lecture 15 Practical aspects of buffers NC State University The everyday ph scale To review what ph means in practice, we consider the ph of everyday substances that we know from experience.

More information