Energy Storage (Battery) Systems

Size: px
Start display at page:

Download "Energy Storage (Battery) Systems"

Transcription

1 Energy Storage (Battery) Systems Overview of performance metrics Introduction to Li Ion battery cell technology Electrochemistry Fabrication Battery cell electrical circuit model Battery systems: construction and modeling Battery management system (BMS) Functions and circuit implementation Cell balancing Simulation examples 1

2 Battery System in the Electrified Drivetrain Conventional Battery System Electric drive vehicle example n cells (+protection) in series Battery Management System (BMS) + V bat DC bus DC-DC converter + V DC Electric drive propulsion components Control bus Vehicle controller Many battery cells connected in parallel and in series Singe high voltage DC DC converter regulates bus voltage BMS provides protection, battery health monitoring, charge balancing among series cells, and communicates information to vehicle controller 2

3 Battery Performance Metrics Energy Available energy storage between charging cycles A*hr rating Specific energy, Wh/kg, energy density Wh/L Power Instantaneous power available C rating: peak discharge current Specific power, W/kg, W/L Cost Initial investment Total energy cost over life of battery Safety Hazardous chemical content Outgassing Risk of fire from damage or heating Lifetime Number of charge / discharge cycles to 80% capacity Dependence on % discharge and peak currents 3

4 Specific Energy vs. Specific Power Trade Offs 4

5 Energy Density and Specific Energy Gravimetric energy density (specific energy) Volumetric energy density For comparison, energy density and specific energy of gasoline are orders of magnitude higher: 9700 Wh/L, Wh/kg 5

6 Battery cycle life comparison 6

7 Comparison of Battery Technologies Many competing technologies, no clear winners 7

8 Introduction to cell electrochemistry Oxidation reduction Oxidation is loss (OIL) of a valance electron; reducing agents have surplus of valenceshell electrons, which they donate in a redox reaction, becoming oxidized Reduction is gain (RIG) of a valence electron; oxidizing agents have a deficit of valence shell electrons and accept electrons in a redox reaction, becoming reduced Reference: 8

9 Redox based battery cell Electrolyte (ionic conductor) Cations (positive) Anions (negative) + _ half cell Positive electrode, cathode separator half cell Negative electrode, anode 9

10 Current flow charge discharge Redox based battery cell Electrolyte (ionic conductor) Cations (positive) Anions (negative) + _ half cell Positive electrode, cathode CATHODE during discharge accepts electrons ; is reduced During charge gives up electrons; is oxidized separator half cell Negative electrode, anode ANODE during discharge; gives up electrons to external circuit; is oxidized; During charge accepts electrons; is reduced OIL = oxidation is loss of electrons RIG = reduction is gain of electrons 10

11 Strengths of Oxidizing and Reducing Agents The values in the table are reduction potentials, Lithium is the strongest reducing agent The strongest oxidizing agent is Fluorine The highest potentially possible cell voltage (3.04V V = 5.91V) would combine the top and the bottom reaction; but no known electrolyte can withstand that voltage without decomposing 11

12 Example of a standard redox based battery cell Lead Acid battery cell Lead dioxide PbO 2 Porous lead Pb ev Sulfuric acid ev H 2 SO 4 + H 2 O Open circuit cell voltage (Nernst equation): 1.685V V + Vt ln((electrolyte concentration)/1 mol) Vt = thermal voltage = kt/q = 26 mv at room temperature SOC directly determined by acid concentration (6 mol at 100%, 2 mol at 0%) Energy density: Wh/kg, Wh/l Cost: $( )/Wh 12

13 Nickel Metal Hydride: NiMH Metal alloy MH Nickel oxyhydroxide NiOOH + MH + OH > M + H 2 O + e 0.83 ev Potassium hydroxide KOH + H 2 O NiOOH + H 2 O + e > Ni(OH) 2 + OH 0.52 ev Open circuit cell voltage: 0.83V V + V t ln(electr.conc/1 mol) 1.4 V SOC directly determined by electrolyte concentration (6 mol at 100%) Energy density: 70 Wh/kg, 170 Wh/l Cost: $(0.5 1)/Wh Not a standard redox based cell Metallic alloy ( hydrate ) has the ability to absorb hydrogen Electrolyte transports hydrogen between the electrodes but does not participate in the reactions 13

14 Example: 2004 Prius battery 19.6mm(W) 106mm(H) 285mm(L) NiMH Module 6 cell (7.2 V) NiMH modules, 6.5 Ah at C/2 46 Wh/kg 1.3 kw/kg Battery pack 28 modules V DC = 202 V E bat = 1.3 kwh Pack weight: 30 kg SOC min = 35% SOC max = 75% $3K retail replacement cost 14

15 Lithium Ion Chemistry A. Pesaran (NREL), Battery Choices for Different Plug in HEV Configurations, Plug in HEV Forum, July 12,

16 Li ion chemistry cells Not standard redox based cells Intercalation = insertion of Li ions into electrode crystalline lattice 16

17 Li ion advantages and disadvantages Advantages Higher energy density, Wh/kg, Wh/l High power density, can be optimized for energy or power Higher voltage, approx. 3.2 V to 3.8 V Low self discharge rate, retain charge for months No liquid electrolyte Relatively long cycle life (1,000 3,000 deep cycles) Disadvantages More complex to manufacture, more expensive (0.5 1 $/Wh) Safety concerns: require circuitry to protect against overcharging or over discharging 17

18 Cell Equivalent Circuit Models Objective: Dynamic circuit model capable of predicting cell voltage in response to charge/discharge current, temperature Further key techniques discussed in [Plett 2004 Part 2] and [Plett 2004 Part 3] Model parameters found using least square estimation or Kalman filter techniques based on experimental test data Run time estimation of state of charge (SOC) Reference: [Plett ] G. Plett, Extended Kalman Filtering for Battery Management Systems of LiPB Based HEV Battery Packs Part 2: Modeling and Identification, Journal of Power Sources, Vol. 134, No. 2, August 2004, pp

19 Pulsed current tests [Plett ] 19

20 Model A State of Charge (SOC), Open Circuit Voltage 20

Inside the Nickel Metal Hydride Battery

Inside the Nickel Metal Hydride Battery Inside the Nickel Metal Hydride Battery John J.C. Kopera Cobasys 5 June 004 Inside the NiMH Battery Introduction The Nickel Metal Hydride (NiMH) battery has become pervasive in today s technology climate,

More information

Practical Examples of Galvanic Cells

Practical Examples of Galvanic Cells 56 Practical Examples of Galvanic Cells There are many practical examples of galvanic cells in use in our everyday lives. We are familiar with batteries of all types. One of the most common is the lead-acid

More information

Electric Battery Actual and future Battery Technology Trends

Electric Battery Actual and future Battery Technology Trends Electric Battery Actual and future Battery Technology Trends Peter Birke Senior Technical Expert Battery Systems Business Unit Hybrid Electric Vehicles Continental AG Co-authors: Michael Keller, Michael

More information

Advanced Secondary Batteries And Their Applications for Hybrid and Electric Vehicles Su-Chee Simon Wang

Advanced Secondary Batteries And Their Applications for Hybrid and Electric Vehicles Su-Chee Simon Wang Advanced Secondary Batteries And Their Applications for Hybrid and Electric Vehicles Su-Chee Simon Wang IEEE (Dec. 5, 2011) 1 Outline Introduction to batteries Equilibrium and kinetics Various secondary

More information

1332 CHAPTER 18 Sample Questions

1332 CHAPTER 18 Sample Questions 1332 CHAPTER 18 Sample Questions Couple E 0 Couple E 0 Br 2 (l) + 2e 2Br (aq) +1.06 V AuCl 4 + 3e Au + 4Cl +1.00 V Ag + + e Ag +0.80 V Hg 2+ 2 + 2e 2 Hg +0.79 V Fe 3+ (aq) + e Fe 2+ (aq) +0.77 V Cu 2+

More information

Chem 1721 Brief Notes: Chapter 19

Chem 1721 Brief Notes: Chapter 19 Chem 1721 Brief Notes: Chapter 19 Chapter 19: Electrochemistry Consider the same redox reaction set up 2 different ways: Cu metal in a solution of AgNO 3 Cu Cu salt bridge electrically conducting wire

More information

A Comparison of Lead Acid to Lithium-ion in Stationary Storage Applications

A Comparison of Lead Acid to Lithium-ion in Stationary Storage Applications A Comparison of Lead Acid to Lithium-ion in Stationary Storage Applications Published by AllCell Technologies LLC March 2012 Contributors: Greg Albright Jake Edie Said Al-Hallaj Table of Contents 1. Introduction

More information

Electrochemistry. Chapter 18 Electrochemistry and Its Applications. Redox Reactions. Redox Reactions. Redox Reactions

Electrochemistry. Chapter 18 Electrochemistry and Its Applications. Redox Reactions. Redox Reactions. Redox Reactions John W. Moore Conrad L. Stanitski Peter C. Jurs http://academic.cengage.com/chemistry/moore Chapter 18 Electrochemistry and Its Applications Stephen C. Foster Mississippi State University Electrochemistry

More information

Electrochemistry - ANSWERS

Electrochemistry - ANSWERS Electrochemistry - ANSWERS 1. Using a table of standard electrode potentials, predict if the following reactions will occur spontaneously as written. a) Al 3+ + Ni Ni 2+ + Al Al 3+ + 3e - Al E = -1.68

More information

o Electrons are written in half reactions but not in net ionic equations. Why? Well, let s see.

o Electrons are written in half reactions but not in net ionic equations. Why? Well, let s see. REDOX REACTION EQUATIONS AND APPLICATIONS Overview of Redox Reactions: o Change in Oxidation State: Loses Electrons = Oxidized (Oxidation number increases) Gains Electrons = Reduced (Oxidation Number Reduced)

More information

Performance Testing of Lithium-ion Batteries of Various Chemistries for EV and PHEV Applications

Performance Testing of Lithium-ion Batteries of Various Chemistries for EV and PHEV Applications Performance Testing of Lithium-ion Batteries of Various Chemistries for EV and PHEV Applications Andrew Burke University of California-Davis Institute of Transportation Studies 2009 ZEV Symposium Sacramento,

More information

Lithium Iron Phosphate High Current Rechargeable Lithium Ion Batteries

Lithium Iron Phosphate High Current Rechargeable Lithium Ion Batteries 1 of 5 8/21/2006 2:37 PM Lithium Iron Phosphate High Current Rechargeable Lithium Ion Batteries Lithium Iron phosphate batteries are safer than Lithium-ion cells, and are available in 10 and 20 AH packs

More information

Considerations for the Utilization of NiMH Battery Technology in Stationary Applications.

Considerations for the Utilization of NiMH Battery Technology in Stationary Applications. Considerations for the Utilization of NiMH Battery Technology in Stationary Applications. John J.C. Kopera Director Stationary Solutions Engineering Cobasys Orion, MI ABSTRACT The market demand for higher

More information

IAA Commercial Vehicles Battery Technology. September 29 th, 2010

IAA Commercial Vehicles Battery Technology. September 29 th, 2010 IAA Commercial Vehicles Battery Technology September 29 th, 2010 Table of contents Introduction of SB LiMotive Li-Ion cells Automotive Li-Ion batteries Conclusion Page 2 Introduction of SB LiMotive JV

More information

Supercapacitors in Micro- and Mild Hybrids with Lithium Titanate Oxide Batteries: Vehicle Simulations and Laboratory Tests

Supercapacitors in Micro- and Mild Hybrids with Lithium Titanate Oxide Batteries: Vehicle Simulations and Laboratory Tests Research Report UCD-ITS-RR-15-20 Supercapacitors in Micro- and Mild Hybrids with Lithium Titanate Oxide Batteries: Vehicle Simulations and Laboratory Tests December 2015 Andrew Burke Jingyuan Zhao Institute

More information

Nickel Metal Hydride (NiMH) Handbook and Application Manual

Nickel Metal Hydride (NiMH) Handbook and Application Manual (NiMH) The number of portable battery operated electronic devices has grown tremendously. Consumers can be confused as to which battery to buy for these devices. This handbook will provide a better understanding

More information

Galvanic Cells. SCH4U7 Ms. Lorenowicz. Tuesday, December 6, 2011

Galvanic Cells. SCH4U7 Ms. Lorenowicz. Tuesday, December 6, 2011 Galvanic Cells SCH4U7 Ms. Lorenowicz 1 Electrochemistry Concepts 1.Redox reactions involve the transfer of electrons from one reactant to another 2.Electric current is a flow of electrons in a circuit

More information

MAKING LITHIUM-ION SAFE THROUGH THERMAL MANAGEMENT

MAKING LITHIUM-ION SAFE THROUGH THERMAL MANAGEMENT MAKING LITHIUM-ION SAFE THROUGH THERMAL MANAGEMENT Greg Albright, Director of Product Development Said Al-Hallaj, CEO AllCell Technologies, Chicago, IL Abstract Lithium-ion batteries have revolutionized

More information

An Approach for Designing Thermal Management Systems for EV and HEV Battery Packs

An Approach for Designing Thermal Management Systems for EV and HEV Battery Packs An Approach for Designing Thermal Management Systems for EV and HEV Battery Packs 4th Vehicle Thermal Management Systems Conference London, UK May 24-27, 1999 Ahmad A. Pesaran, Ph.D. Steven D. Burch Matthew

More information

AP Chemistry CHAPTER 20- Electrochemistry 20.1 Oxidation States

AP Chemistry CHAPTER 20- Electrochemistry 20.1 Oxidation States AP Chemistry CHAPTER 20- Electrochemistry 20.1 Oxidation States Chemical reactions in which the oxidation state of a substance changes are called oxidation-reduction reactions (redox reactions). Oxidation

More information

High Energy Rechargeable Li-S Cells for EV Application. Status, Challenges and Solutions

High Energy Rechargeable Li-S Cells for EV Application. Status, Challenges and Solutions High Energy Rechargeable Li-S Cells for EV Application. Status, Challenges and Solutions Yuriy Mikhaylik, Igor Kovalev, Riley Schock, Karthikeyan Kumaresan, Jason Xu and John Affinito Sion Power Corporation

More information

Name Electrochemical Cells Practice Exam Date:

Name Electrochemical Cells Practice Exam Date: Name Electrochemical Cells Practice Exam Date: 1. Which energy change occurs in an operating voltaic cell? 1) chemical to electrical 2) electrical to chemical 3) chemical to nuclear 4) nuclear to chemical

More information

ELECTROCHEMICAL CELLS

ELECTROCHEMICAL CELLS 1 ELECTROCHEMICAL CELLS Allessandra Volta (1745-1827) invented the electric cell in 1800 A single cell is also called a voltaic cell, galvanic cell or electrochemical cell. Volta joined several cells together

More information

Question Bank Electrolysis

Question Bank Electrolysis Question Bank Electrolysis 1. (a) What do you understand by the terms (i) electrolytes (ii) non-electrolytes? (b) Arrange electrolytes and non-electrolytes from the following substances (i) sugar solution

More information

Ni-MH Rechargeable Batteries

Ni-MH Rechargeable Batteries Table of Contents Ni-MH Rechargeable Batteries 1 Introduction 2 General Characteristics 3 Composition and Chemistry 3.1 Active Components: Positive and Negative Electrodes 3.2 Electrolyte 3.3 Cell Reactions

More information

鋰 電 池 技 術 及 產 業 發 展 趨 勢

鋰 電 池 技 術 及 產 業 發 展 趨 勢 鋰 電 池 技 術 及 產 業 發 展 趨 勢 潘 金 平 E-mail: jppan@itri.org.tw Tel: 035-915148 工 業 技 術 研 究 院 材 料 與 化 工 研 究 所 2011/3/22 鋰 電 池 電 動 車 生 產 狀 況 EV Benefits: Cost saving (fuel and maintenance) Reduce/eliminate CO2

More information

Second International Renewable Energy Storage Conference 19.-21. November 2007 Bonn/Germany. Overview on current status of lithium-ion batteries

Second International Renewable Energy Storage Conference 19.-21. November 2007 Bonn/Germany. Overview on current status of lithium-ion batteries Second International Renewable Energy Storage Conference 19.-21. November 2007 Bonn/Germany Overview on current status of lithium-ion batteries Andreas Jossen, Margret Wohlfahrt-Mehrens Zentrum für Sonnenenergie-

More information

LEAD-ACID STORAGE CELL

LEAD-ACID STORAGE CELL 3.14 MATERIALS LABORATORY MODULE BETA 1 NOVEMBER 13 17, 26 GEETHA P. BERERA LEAD-ACID STORAGE CELL OBJECTIVES: Understand the relationship between Gibbs Free Energy and Electrochemical Cell Potential.

More information

Ch 20 Electrochemistry: the study of the relationships between electricity and chemical reactions.

Ch 20 Electrochemistry: the study of the relationships between electricity and chemical reactions. Ch 20 Electrochemistry: the study of the relationships between electricity and chemical reactions. In electrochemical reactions, electrons are transferred from one species to another. Learning goals and

More information

K + Cl - Metal M. Zinc 1.0 M M(NO

K + Cl - Metal M. Zinc 1.0 M M(NO Redox and Electrochemistry This section should be fresh in your minds because we just did this section in the text. Closely related to electrochemistry is redox chemistry. Count on at least one question

More information

Automotive Lithium-ion Batteries

Automotive Lithium-ion Batteries Automotive Lithium-ion Batteries 330 Automotive Lithium-ion Batteries Akihiko Maruyama Ryuji Kono Yutaka Sato Takenori Ishizu Mitsuru Koseki Yasushi Muranaka, Dr. Eng. OVERVIEW: A new of high-power lithium-ion

More information

CELL POTENTIAL, E. Terms Used for Galvanic Cells. Uses of E o Values CELL POTENTIAL, E. Galvanic Cell. Organize halfreactions

CELL POTENTIAL, E. Terms Used for Galvanic Cells. Uses of E o Values CELL POTENTIAL, E. Galvanic Cell. Organize halfreactions Electrons move from anode to cathode in the wire. Anions & cations move thru the salt bridge. Terms Used for Galvanic Cells Galvanic Cell We can calculate the potential of a Galvanic cell using one of

More information

Galvanic Cells and the Nernst Equation

Galvanic Cells and the Nernst Equation Exercise 7 Page 1 Illinois Central College CHEMISTRY 132 Laboratory Section: Galvanic Cells and the Nernst Equation Name: Equipment Voltage probe wires 0.1 M solutions of Pb(NO 3, Fe(NO 3 ) 3, and KNO

More information

Storage technologies/research, from physics and chemistry to engineering

Storage technologies/research, from physics and chemistry to engineering Storage technologies/research, from physics and chemistry to engineering Professor Nigel Brandon OBE FREng Director, Sustainable Gas Institute Director Energy Storage Research Network Co-Director, ENERGY

More information

TRANSPORT OF DANGEROUS GOODS

TRANSPORT OF DANGEROUS GOODS Recommendations on the TRANSPORT OF DANGEROUS GOODS Manual of Tests and Criteria Fifth revised edition Amendment 1 UNITED NATIONS SECTION 38 38.3 Amend to read as follows: "38.3 Lithium metal and lithium

More information

Managing A123 Cells with FMA Cell Balancing Technologies

Managing A123 Cells with FMA Cell Balancing Technologies Managing A123 Cells with FMA Cell Balancing Technologies By FMA Staff Latest revision: March 23, 2007 Document provided by FMA, Inc. 5716A Industry Lane Frederick, MD 21704 U.S.A. Phone: (800) 343-2934

More information

UN Manual of Tests and Criteria, Sub-section 38.3, Amendments to the 5 th edition, effective 2014 January 1 st

UN Manual of Tests and Criteria, Sub-section 38.3, Amendments to the 5 th edition, effective 2014 January 1 st 1 UN Manual of Tests and Criteria, Sub-section 38.3, Amendments to the 5 th edition, effective 2014 January 1 st 38.3 Lithium metal and lithium ion batteries 38.3.1 Purpose This section presents the procedures

More information

Baterías de flujo: conceptos y aplicación futura. Catalonia Institute for Energy Research

Baterías de flujo: conceptos y aplicación futura. Catalonia Institute for Energy Research Baterías de flujo: conceptos y aplicación futura Cristina Flox Catalonia Institute for Energy Research 26 de Mayo del 2016, Barcelona ÍNDICE 1. DEFINICIÓN: Conceptos y arquitectura 2. VENTAJAS 3. APLICACIÓN

More information

DESIGN AND SIMULATION OF LITHIUM- ION BATTERY THERMAL MANAGEMENT SYSTEM FOR MILD HYBRID VEHICLE APPLICATION

DESIGN AND SIMULATION OF LITHIUM- ION BATTERY THERMAL MANAGEMENT SYSTEM FOR MILD HYBRID VEHICLE APPLICATION DESIGN AND SIMULATION OF LITHIUM- ION BATTERY THERMAL MANAGEMENT SYSTEM FOR MILD HYBRID VEHICLE APPLICATION Ahmed Imtiaz Uddin, Jerry Ku, Wayne State University Outline Introduction Model development Modeling

More information

Bi-directional FlipFET TM MOSFETs for Cell Phone Battery Protection Circuits

Bi-directional FlipFET TM MOSFETs for Cell Phone Battery Protection Circuits Bi-directional FlipFET TM MOSFETs for Cell Phone Battery Protection Circuits As presented at PCIM 2001 Authors: *Mark Pavier, *Hazel Schofield, *Tim Sammon, **Aram Arzumanyan, **Ritu Sodhi, **Dan Kinzer

More information

2. Write the chemical formula(s) of the product(s) and balance the following spontaneous reactions.

2. Write the chemical formula(s) of the product(s) and balance the following spontaneous reactions. 1. Using the Activity Series on the Useful Information pages of the exam write the chemical formula(s) of the product(s) and balance the following reactions. Identify all products phases as either (g)as,

More information

Chemistry 122 Mines, Spring 2014

Chemistry 122 Mines, Spring 2014 Chemistry 122 Mines, Spring 2014 Answer Key, Problem Set 9 1. 18.44(c) (Also indicate the sign on each electrode, and show the flow of ions in the salt bridge.); 2. 18.46 (do this for all cells in 18.44

More information

Chapter 13: Electrochemistry. Electrochemistry. The study of the interchange of chemical and electrical energy.

Chapter 13: Electrochemistry. Electrochemistry. The study of the interchange of chemical and electrical energy. Chapter 13: Electrochemistry Redox Reactions Galvanic Cells Cell Potentials Cell Potentials and Equilbrium Batteries Electrolysis Electrolysis and Stoichiometry Corrosion Prevention Electrochemistry The

More information

Chapter 2 Electric Vehicle Battery Technologies

Chapter 2 Electric Vehicle Battery Technologies Chapter 2 Electric Vehicle Battery Technologies Kwo Young, Caisheng Wang, Le Yi Wang, and Kai Strunz 2.1 Introduction As discussed in the previous chapter, electrification is the most viable way to achieve

More information

Figure 1. A voltaic cell Cu,Cu 2+ Ag +, Ag. gas is, by convention, assigned a reduction potential of 0.00 V.

Figure 1. A voltaic cell Cu,Cu 2+ Ag +, Ag. gas is, by convention, assigned a reduction potential of 0.00 V. Voltaic Cells Introduction In this lab you will first prepare a set of simple standard half-cells and then measure the voltage between the half-cells with a voltmeter. From this data you will be able to

More information

Electrochemistry Voltaic Cells

Electrochemistry Voltaic Cells Electrochemistry Voltaic Cells Many chemical reactions can be classified as oxidation-reduction or redox reactions. In these reactions one species loses electrons or is oxidized while another species gains

More information

SAFETY PERFORMANCE OF A LARGE FORMAT, PHOSPHATE BASED LITHIUM-ION BATTERY

SAFETY PERFORMANCE OF A LARGE FORMAT, PHOSPHATE BASED LITHIUM-ION BATTERY SAFETY PERFORMANCE OF A LARGE FORMAT, PHOSPHATE BASED LITHIUM-ION BATTERY John Nguyen Business Development Manager Valence Technology Austin, TX ABSTRACT The use of lithium-ion batteries in many of today

More information

Battery Cell Balancing: What to Balance and How

Battery Cell Balancing: What to Balance and How Battery Cell Balancing: What to Balance and How Yevgen Barsukov, Texas Instruments ABSTRACT Different algorithms of cell balancing are often discussed when multiple serial cells are used in a battery pack

More information

2006 Honda Civic-8725 Hybrid Battery Test Results

2006 Honda Civic-8725 Hybrid Battery Test Results 2006 Honda Civic-8725 Hybrid Battery Test Results HEVAMERICA U.S. DEPARTMENT OF ENERGY ADVANCED VEHICLE TESTING ACTIVITY Hybrid System Specifications Battery Specifications Manufacturer: Panasonic Battery

More information

How To Understand The Chemistry Of A Lithium Ion Battery

How To Understand The Chemistry Of A Lithium Ion Battery SuperLIB DELIVERABLE Cell Specification with Cell Data Deliverable number: D4.1 Due date: 31.01.2012 Nature 1 : R Dissemination Level 1 : CO Work Package: WP4 Lead Beneficiary: European Batteries OY Contributing

More information

The Electrical Control of Chemical Reactions E3-1

The Electrical Control of Chemical Reactions E3-1 Experiment 3 The Electrical Control of Chemical Reactions E3-1 E3-2 The Task In this experiment you will explore the processes of oxidation and reduction, in which electrons flow between materials, and

More information

Introduction to electrolysis - electrolytes and non-electrolytes

Introduction to electrolysis - electrolytes and non-electrolytes Introduction to electrolysis - electrolytes and non-electrolytes Electrolysis is the process of electrically inducing chemical changes in a conducting melt or solution e.g. splitting an ionic compound

More information

EDEXCEL INTERNATIONAL GCSE CHEMISTRY EDEXCEL CERTIFICATE IN CHEMISTRY ANSWERS SECTION C

EDEXCEL INTERNATIONAL GCSE CHEMISTRY EDEXCEL CERTIFICATE IN CHEMISTRY ANSWERS SECTION C EDEXCEL INTERNATIONAL GCSE CHEMISTRY EDEXCEL CERTIFICATE IN CHEMISTRY ANSWERS SECTION C Chapter 16 1. Burn sulfur in air to give sulfur dioxide. S(s) + O 2 (g) ----> SO 2 (g) Pass this with more air over

More information

Chapter 6 Assessment. Name: Class: Date: ID: A. Multiple Choice Identify the choice that best completes the statement or answers the question.

Chapter 6 Assessment. Name: Class: Date: ID: A. Multiple Choice Identify the choice that best completes the statement or answers the question. Name: Class: Date: ID: A Chapter 6 Assessment Multiple Choice Identify the choice that best completes the statement or answers the question. 1. When an atom loses an electron, it forms a(n) a. anion. c.

More information

Doctoral School on Engineering Sciences Università Politecnica delle Marche

Doctoral School on Engineering Sciences Università Politecnica delle Marche Doctoral School on Engineering Sciences Università Politecnica delle Marche Extended summary Knowledge-based approaches to support the design and development of the electrochemical storage Scuola di Dottorato

More information

lithium iron phosphate

lithium iron phosphate S a y G o o d b y e t o o l d b at t e r y t e c h n o l o g y. Say hello to the Hipower LiFePo4 battery. Presents the latest power solution...hipower LiFePo4 Through exciting innovation and research,

More information

Control of High Efficiency PEM Fuel Cells for Long Life, Low Power Applications Part I

Control of High Efficiency PEM Fuel Cells for Long Life, Low Power Applications Part I Control of High Efficiency PEM Fuel Cells for Long Life, Low Power Applications Part I Jekanthan Thangavelautham Postdoctoral Associate Field and Space Robotics Laboratory Motivation Conventional Power

More information

Modeling of Electric Vehicles (EVs) for EV Grid Integration Study

Modeling of Electric Vehicles (EVs) for EV Grid Integration Study Modeling of Electric Vehicles (EVs) for EV Grid Integration Study Qiuwei Wu, Arne H. Nielsen, Jacob Østergaard, Seung Tae Cha, Francesco Marra and Peter B. Andersen Center for Electric Technology, Technical

More information

How Much Lithium does a LiIon EV battery really need?

How Much Lithium does a LiIon EV battery really need? How Much Lithium does a LiIon EV battery really need? by William Tahil Research Director Meridian International Research France Tel: +33 2 32 42 95 49 Fax: +33 2 32 41 39 98 www.meridian-int-res.com 5

More information

Carbon Dioxide Membrane Separation for Carbon Capture using Direct FuelCell Systems

Carbon Dioxide Membrane Separation for Carbon Capture using Direct FuelCell Systems Carbon Dioxide Membrane Separation for Carbon Capture using Direct FuelCell Systems DFC Technology Used as Electrochemical Membrane for CO 2 Purification and Capture during Power Generation FCE s Direct

More information

The Future of Battery Technologies Part I

The Future of Battery Technologies Part I Dr. Annika Ahlberg Tidblad This paper is the first in our ongoing series about batteries. This installment provides an overview of battery technologies. In future installments, we will spotlight lithium

More information

12. REDOX EQUILIBRIA

12. REDOX EQUILIBRIA 12. REDOX EQUILIBRIA The electrochemical series (reference table) 12.1. Redox reactions 12.2. Standard electrode potentials 12.3. Calculations involving electrochemical cells 12.4. Using Eʅ values to predict

More information

Overview of Lithium Battery. Safety

Overview of Lithium Battery. Safety Overview of Lithium Battery Safety Overview of Lithium Battery Presented by Matthew Larkin Safety Consultant, Battery Certification Services, Presentation by Matthew Larkin Consultant, TÜV SÜD Battery

More information

BATTERY MANAGEMENT THE HEART OF EFFICIENT BATTERIES BATTERY TECHNOLOGIES FOR ELECTRO 28 TH NOVEMBER 2013 MOBILITY AND SMART GRID PURPOSES

BATTERY MANAGEMENT THE HEART OF EFFICIENT BATTERIES BATTERY TECHNOLOGIES FOR ELECTRO 28 TH NOVEMBER 2013 MOBILITY AND SMART GRID PURPOSES BATTERY MANAGEMENT THE HEART OF EFFICIENT BATTERIES BATTERY TECHNOLOGIES FOR ELECTRO MOBILITY AND SMART GRID PURPOSES 28 TH NOVEMBER 2013 Presentation Agenda 1. Introduction to LiTHIUM BALANCE 2. Battery

More information

Galvanic cell and Nernst equation

Galvanic cell and Nernst equation Galvanic cell and Nernst equation Galvanic cell Some times called Voltaic cell Spontaneous reaction redox reaction is used to provide a voltage and an electron flow through some electrical circuit When

More information

Building Battery Arrays with Lithium-Ion Cells

Building Battery Arrays with Lithium-Ion Cells Building Battery Arrays with Lithium-Ion Cells About the Sponsor Micro Power Electronics Design and manufacture of lithium battery packs, chargers and power supplies for mission-critical applications OEM

More information

CHAPTER 13: Electrochemistry and Cell Voltage

CHAPTER 13: Electrochemistry and Cell Voltage CHAPTER 13: Electrochemistry and Cell Voltage In this chapter: More about redox reactions Cells, standard states, voltages, half-cell potentials Relationship between G and voltage and electrical work Equilibrium

More information

Preliminary Concepts. Preliminary Concepts. Class 8.3 Oxidation/Reduction Reactions and Electrochemistry I. Friday, October 15 Chem 462 T.

Preliminary Concepts. Preliminary Concepts. Class 8.3 Oxidation/Reduction Reactions and Electrochemistry I. Friday, October 15 Chem 462 T. Class 8.3 Oxidation/Reduction Reactions and Electrochemistry I Friday, October 15 Chem 462 T. Hughbanks Preliminary Concepts Electrochemistry: the electrical generation of, or electrical exploitation of

More information

Redox and Electrochemistry

Redox and Electrochemistry Name: Thursday, May 08, 2008 Redox and Electrochemistry 1. A diagram of a chemical cell and an equation are shown below. When the switch is closed, electrons will flow from 1. the Pb(s) to the Cu(s) 2+

More information

Lithium-Ion Battery Safety Study Using Multi-Physics Internal Short-Circuit Model

Lithium-Ion Battery Safety Study Using Multi-Physics Internal Short-Circuit Model Lithium-Ion Battery Safety Study Using Multi-Physics Internal Short-Circuit Model The 5th Intl. Symposium on Large Lithium-Ion Battery Technology and Application in Conjunction with AABC09 June 9-10, 2009,

More information

Determining Equivalent Weight by Copper Electrolysis

Determining Equivalent Weight by Copper Electrolysis Purpose The purpose of this experiment is to determine the equivalent mass of copper based on change in the mass of a copper electrode and the volume of hydrogen gas generated during an electrolysis reaction.

More information

LITHIUM-ION ENERGY MODULES HEM & HPM SERIES

LITHIUM-ION ENERGY MODULES HEM & HPM SERIES High Efficiency by leading edge Lithium-Ion technology Maximum energy density by compact design Easy installation by central connector Highest power output by integrated energy management system Long lifetime

More information

Efficiency Comparison

Efficiency Comparison 7.6 The Sodium Nickel Chloride Zebra Battery Introduction The ZEBRA Battery (Zero Emissions Batteries Research Activity) is a Sodium Nickel Chloride battery, manufactured in limited volume in Switzerland

More information

State of Solid-State Batteries

State of Solid-State Batteries State of Solid-State Batteries Prof. Kevin S. Jones Department of Materials Science and Engineering University of Florida Acknowledgments Dave Danielson Program Director at ARPA-E Scott Faris, Richard

More information

What are the technical features and performance of the AccuCell system?

What are the technical features and performance of the AccuCell system? What is AccuCell? AccuCell is an alkaline-manganese battery system that allows recharging while preserving the advantages of disposable alkaline cells. The first batteries of this kind were developed in

More information

reduction ore = metal oxides metal oxidation

reduction ore = metal oxides metal oxidation Cathodic Protection and Interferences René Gregoor Madrid, June 18 th and 19 th 2009 1 Cathodic protection and interferences Corrosion Cathodic protection Protection criterion ON potential measurements

More information

Experiment 9 Electrochemistry I Galvanic Cell

Experiment 9 Electrochemistry I Galvanic Cell 9-1 Experiment 9 Electrochemistry I Galvanic Cell Introduction: Chemical reactions involving the transfer of electrons from one reactant to another are called oxidation-reduction reactions or redox reactions.

More information

IMPACT IMPACT. LifeSaver Series. IPT Lithium Polymer. When safety & budgets depend on your battery.

IMPACT IMPACT. LifeSaver Series. IPT Lithium Polymer. When safety & budgets depend on your battery. Impact Power Technologies was founded to design and manufacture the highest quality, safest, most efficient batteries on the market. We have more than 30 years experience with all battery chemistries, from

More information

IMPACT LifeSaver Series IPT Lithium Polymer IMPACT LifeSaver Series Impact Power Technologies, LLC

IMPACT LifeSaver Series IPT Lithium Polymer IMPACT LifeSaver Series Impact Power Technologies, LLC IPT LifeSaver Series IMPACT Power Technologies, LLC LifeSaver Series The batteries that last 24+ hours on a charge for 900+ cycles IMPACT Power Technologies, LLC IPT LifeSaver Series Lithium Polymer Batteries

More information

CHAPTER 21 ELECTROCHEMISTRY

CHAPTER 21 ELECTROCHEMISTRY Chapter 21: Electrochemistry Page 1 CHAPTER 21 ELECTROCHEMISTRY 21-1. Consider an electrochemical cell formed from a Cu(s) electrode submerged in an aqueous Cu(NO 3 ) 2 solution and a Cd(s) electrode submerged

More information

Part I Fundamentals and General Aspects of Electrochemical Energy Storage

Part I Fundamentals and General Aspects of Electrochemical Energy Storage 1 Part I Fundamentals and General Aspects of Electrochemical Energy Storage Handbook of Battery Materials, Second Edition. Edited by Claus Daniel and Jürgen O. Besenhard. 2011 Wiley-VCH Verlag GmbH & Co.

More information

ELECTROCHEMICAL CELLS LAB

ELECTROCHEMICAL CELLS LAB ELECTROCHEMICAL CELLS LAB Purpose: The purpose of this lab is to demonstrate the ability of chemistry to make electric current using oxidation/reduction (REDOX) reactions, and to measure the electric current

More information

A comparative analysis of Lithium Iron Phosphate and Lead-Acid (flooded, gel and AGM) battery technology for marine applications

A comparative analysis of Lithium Iron Phosphate and Lead-Acid (flooded, gel and AGM) battery technology for marine applications Lithium vs. Lead A comparative analysis of Lithium Iron Phosphate and Lead-Acid (flooded, gel and AGM) battery technology for marine applications Bruce Schwab Bruce Schwab Marine Systems Representative

More information

Instructions Answer all questions in the spaces provided. Do all rough work in this book. Cross through any work you do not want to be marked.

Instructions Answer all questions in the spaces provided. Do all rough work in this book. Cross through any work you do not want to be marked. GCSE CHEMISTRY Higher Tier Chemistry 1H H Specimen 2018 Time allowed: 1 hour 45 minutes Materials For this paper you must have: a ruler a calculator the periodic table (enclosed). Instructions Answer all

More information

Addressing the Impact of Temperature Extremes on Large Format Li-Ion Batteries for Vehicle Applications

Addressing the Impact of Temperature Extremes on Large Format Li-Ion Batteries for Vehicle Applications Addressing the Impact of Temperature Extremes on Large Format Li-Ion Batteries for Vehicle Applications Ahmad Pesaran, Ph.D. Shriram Santhanagopalan, Gi-Heon Kim National Renewable Energy Laboratory Golden,

More information

Sony s Energy Storage System. The Sony Lithium Ion Iron Phosphate (LFP) advantage

Sony s Energy Storage System. The Sony Lithium Ion Iron Phosphate (LFP) advantage Sony s Energy Storage System The Sony Lithium Ion Iron Phosphate (LFP) advantage Sony Overview & highlights Sony Corporation Founded May 7, 1946 Headquarters Tokyo, Japan Chairman, CEO and President Kazuo

More information

Chemistry Post-Enrolment Worksheet

Chemistry Post-Enrolment Worksheet Name: Chemistry Post-Enrolment Worksheet The purpose of this worksheet is to get you to recap some of the fundamental concepts that you studied at GCSE and introduce some of the concepts that will be part

More information

- Founded in Dec. 2004 by Dr. Volker Klein and Dipl.-Ing. Gerd Sievert.

- Founded in Dec. 2004 by Dr. Volker Klein and Dipl.-Ing. Gerd Sievert. 1 - Founded in Dec. 2004 by Dr. Volker Klein and Dipl.-Ing. Gerd Sievert. - Roots are Emmerich AG, cell manufacturer of batteries and rechargeable batteries 40 years of batteries experience - Headquarter

More information

Cambridge International Examinations Cambridge International General Certificate of Secondary Education

Cambridge International Examinations Cambridge International General Certificate of Secondary Education Cambridge International Examinations Cambridge International General Certificate of Secondary Education *0123456789* CHEMISTRY 0620/03 Paper 3 Theory (Core) For Examination from 2016 SPECIMEN PAPER 1 hour

More information

Desalination of Sea Water E7-1

Desalination of Sea Water E7-1 Experiment 7 Desalination of Sea Water E7-1 E7-2 The Task The goal of this experiment is to investigate the nature and some properties of sea water. Skills At the end of the laboratory session you should

More information

5.111 Principles of Chemical Science

5.111 Principles of Chemical Science MIT OpenCourseWare http://ocw.mit.edu 5.111 Principles of Chemical Science Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 26.1 5.111 Lecture

More information

High capacity battery packs

High capacity battery packs High capacity battery packs BRENT PERRY Energy storage and battery technologies are developing rapidly. There is a clear trend of integrating batteries in marine electric systems due to the additional

More information

SUBAT. "Sustainable Batteries. Action 8.1.B.1.6 Assessment of Environmental Technologies for Support of Policy Decision.

SUBAT. Sustainable Batteries. Action 8.1.B.1.6 Assessment of Environmental Technologies for Support of Policy Decision. SUBAT "Sustainable Batteries Action 8.1.B.1.6 Assessment of Environmental Technologies for Support of Policy Decision Frederic Vergels SUBAT - EU project n 5249 1 Universities SUBAT January 24 to Mach

More information

The Lithium-Ion Battery. Service Life Parameters

The Lithium-Ion Battery. Service Life Parameters Advanced Rechargeable Batteries The Lithium-Ion Battery Service Life Parameters Geneva May, 2013 JP. Wiaux & C. Chanson RECHARGE aisbl 1 Li-ion battery ageing mechanisms The battery life duration is generally

More information

SANYO ENELOOP, The Ultimate NiMH Rechargeable AA & AAA Batteries.

SANYO ENELOOP, The Ultimate NiMH Rechargeable AA & AAA Batteries. SANYO ENELOOP, The Ultimate NiMH Rechargeable AA & AAA Batteries. All of us have had the misfortune of AA or AAA batteries going DEAD in a device at the most inappropriate time and discovering there are

More information

LEAD CRYSTAL. User Manual. Valve-regulated lead-crystal batteries Energy storage Cells

LEAD CRYSTAL. User Manual. Valve-regulated lead-crystal batteries Energy storage Cells Engineering Production Sales LEAD CRYSTAL Valve-regulated lead-crystal batteries Energy storage Cells User Manual www.axcom-battery-technology.de info@.axcom-battery-technology.de Chapter 1: 1. Introduction

More information

Battery Thermal Management in EVs and HEVs: Issues and Solutions

Battery Thermal Management in EVs and HEVs: Issues and Solutions Battery Thermal Management in EVs and HEVs: Issues and Solutions Ahmad A. Pesaran National Renewable Energy Laboratory 1617 Cole Blvd. Golden, Colorado 80401 Advanced Automotive Battery Conference Las

More information

CLEAN ENERGY COUNCIL INTRODUCTION TO THIS REPORT

CLEAN ENERGY COUNCIL INTRODUCTION TO THIS REPORT CLEAN ENERGY COUNCIL INTRODUCTION TO THIS REPORT Australian consumers are leading the world in installing solar panels, driven by rising electricity prices and a desire to take charge of their power bills.

More information

ENERGY CARRIERS AND CONVERSION SYSTEMS Vol. I - Alkaline Water Electrolysis - Isao Abe

ENERGY CARRIERS AND CONVERSION SYSTEMS Vol. I - Alkaline Water Electrolysis - Isao Abe ALKALINE WATER ELECTROLYSIS Isao Abe Office Tera, Chiba, Japan Keywords: Water electrolysis, alkaline, hydrogen, electrode, diaphragm, high pressure high temperature electrolyser, cell, electrocatalyst

More information