5/26/2015. Chapter 10 Structures of Solids and Liquids. VSEPR Theory. Two Electron Groups. Shapes of Molecules. Two Electron Groups with Double Bonds

Size: px
Start display at page:

Download "5/26/2015. Chapter 10 Structures of Solids and Liquids. VSEPR Theory. Two Electron Groups. Shapes of Molecules. Two Electron Groups with Double Bonds"

Transcription

1 Chapter 10 Structures of Solids and Liquids 10.2 Shapes of Molecules and Ions (VSEPR Theory) VSEPR Theory In the valence-shell electron-pair repulsion theory (VSEPR), the electron groups around a central atom are arranged as far apart from each other as possible have the least amount of repulsion of the negatively charged electrons have a geometry around the central atom that determines the molecular shape 1 2 Shapes of Molecules Two Electron Groups The three-dimensional shape of a molecule is the result of bonded groups and lone pairs of electrons around the central atom is predicted using the VSEPR (valence-shell electron-pair repulsion) theory In BeCl 2 two electron groups are bonded to the central atom Be (exception to the octet rule) repulsion is minimized when the two electron groups are opposite each other at 180 the shape of the BeCl 2 molecule is linear 3 4 Two Electron Groups with Double Bonds Three Electron Groups In CO 2 two electron groups are bonded to C (electrons in a double bond count as one group) minimal repulsion occurs when the two electron groups are opposite each other (180 ) the shape of the CO 2 molecule is linear In BF 3 three electron groups surround the central atom B (B is an exception to the octet rule) minimal repulsion occurs when the three electron groups are at angles of 120 the shape of the BF 3 molecule is trigonal planar 5 6 1

2 Two Electron Groups and a Lone Pair Four Electron Groups In SO 2 three electron groups, two bonded groups and one lone pair, surround the S atom repulsion is minimized with three electron groups at angles of 120, a trigonal planar arrangement. with two O atoms bonded to S and one lone pair of electrons, the shape of the SO 2 molecule is bent (120 ) In a molecule of CH 4 four electron groups are bonded to a C atom repulsion is minimized by placing the four electron groups at angles of 109, a tetrahedral arrangement the shape with four bonded atoms is tetrahedral 7 8 Three Bonding Atoms and One Lone Pair In a molecule of NH 3 four electron groups, three bonding groups, and one lone pair, surround a N atom repulsion is minimized with four electron groups at angles of 109, which is a tetrahedral arrangement of electron groups with three bonded atoms and one lone pair of electrons, the shape is trigonal pyramidal Two Bonding Atoms and Two Lone Pairs In a molecule of H 2 O, four electron groups, two groups bonded to H atoms and two lone pairs, surround the O atom four electron groups minimize repulsion in a tetrahedral arrangement the shape of the H 2 O molecule with two bonded atoms is bent(109 ) 9 10 Shapes with Two or Three Electron Groups Shapes with Four Electron Groups

3 Predicting Molecular Shape (VSEPR Theory) The shape of a molecule of N 2 O (N N O) is 1) linear 2) trigonal planar 3) bent (120 ) State the number of electron groups, lone pairs, bonded atoms, and use VSEPR theory to determine the shape of the following molecules or ions: 1) tetrahedral 2) pyramidal 3) bent Chapter 10 Structures of Solids and Liquids 10.3 Electronegativity and Polarity A. PF 3 B. H 2 S C. CCl 4 D. PO Electronegativity Electronegativity is the relative ability of atoms to attract shared electrons is higher for nonmetals, with fluorine as the highest with a value of 4.0 is lower for metals, with cesium and francium as the lowest with a value of 0.7 increases from left to right going across a period on the periodic table decreases going down a group on the periodic table Some Electronegativity Values for Group A Elements

4 Nonpolar Covalent Bonds Using the periodic table, predict the order of increasing electronegativity for the elements O, K, and C. A nonpolar covalent bond occurs between nonmetal atoms consists of an equal (or almost equal) sharing of electrons has a zero (or close to zero) electronegativity difference of 0.0 to 0.4 Atoms Electronegativity Type of Bond N N = 0.0 Nonpolar covalent Cl Br = 0.2 Nonpolar covalent H Si = 0.3 Nonpolar covalent Polar Covalent Bonds A polar covalent bond occurs between nonmetal atoms consists of atoms that share electrons unequally has an electronegativity difference range of 0.5 to 1.7 Atoms Electronegativity Type of Bond O Cl = 0.5 Polar covalent Cl C = 0.5 Polar covalent O S = 1.0 Polar covalent Comparing Nonpolar and Polar Covalent Bonds Ionic Bonds An ionic bond occurs between metal and nonmetal ions is a result of electron transfer has a large electronegativity difference (1.8 or more) Atoms Electronegativity Type of Bond Cl K = 2.2 Ionic N Na = 2.1 Ionic S Cs = 1.8 Ionic Electronegativity and Bond Types

5 Predicting Bond Types Use electronegativity differences to classify each of the following bonds as nonpolar covalent (NP), polar covalent (P), or ionic (I): A bond between A. K and N B. N and O C. Cl and Cl D. H and Cl Polar Molecules A polar molecule contains polar bonds has a separation of positive and negative charge called a dipole indicated by a dipole arrow has dipoles that do not cancel Nonpolar Molecules A nonpolar molecule may contain identical atoms (nonpolar bonds) may have a symmetrical arrangement of polar bonds that cancel dipoles Determining Molecular Polarity The polarity of a molecule is determined from its electron-dot formula shape polarity of the bonds dipole cancellation Identify each of the following molecules as (P) polar or (NP) nonpolar: A. PBr 3 B. HBr C. Br 2 D. SiBr

Chapter 4 Compounds and Their Bonds

Chapter 4 Compounds and Their Bonds Chapter 4 Compounds and Their Bonds 4.7 Shapes and Polarity of Molecules Copyright 2007 by Pearson Education, Inc. Publishing as Benjamin Cummings 1 VSEPR In the valence-shell electron-pair repulsion theory

More information

Covalent Bonds. Diatomic Elements. These elements share electrons to form diatomic, covalent molecules. Carbon forms 4 covalent bonds

Covalent Bonds. Diatomic Elements. These elements share electrons to form diatomic, covalent molecules. Carbon forms 4 covalent bonds Chapter 4 Compounds and Their Bonds 4.5 Covalent Compounds Covalent Bonds Covalent bonds form When atoms share electrons to complete octets. Between two nonmetal atoms. Between nonmetal atoms from Groups

More information

Chapter 4 Compounds and Their Bonds. Covalent Bonds. Learning Check. Solution

Chapter 4 Compounds and Their Bonds. Covalent Bonds. Learning Check. Solution Chapter 4 Compounds and Their Bonds Covalent Bonds 4.5 Covalent Bonds 4.6 Naming and Writing Formulas of Covalent Compounds 4.7 Bond Polarity Covalent bonds form between two nonmetals from Groups 4A, 5A,

More information

CHM 130 Lewis Dot Formulas and Molecular Shapes

CHM 130 Lewis Dot Formulas and Molecular Shapes CHM 130 Lewis Dot Formulas and Molecular Shapes Introduction A chemical bond is an intramolecular (within the molecule) force holding two or more atoms together. Covalent chemical bonds are formed by valence

More information

Chapter 8 Covalent bonding

Chapter 8 Covalent bonding Chapter 8 Covalent bonding A metal and a nonmetal transfer electrons An ionic bond Two metals just mix and don t react An alloy What do two nonmetals do? Neither one will give away an electron So they

More information

Read Sections 4.7, 4.12 and 4.13 before viewing the slide show.

Read Sections 4.7, 4.12 and 4.13 before viewing the slide show. Read Sections 4.7, 4.12 and 4.13 before viewing the slide show. Unit 16 Shapes and Electrical Properties of Molecular Compounds VSEPR Theory (4.12) Electronegativity (4.7) Identification of Compounds as

More information

Lewis Structure Exercise

Lewis Structure Exercise Lewis Structure Exercise A Lewis structure shows how the valence electrons are arranged and indicates the bonding between atoms in a molecule. We represent the elements by their symbols. The shared electron

More information

Chapter 12 Review 1: Covalent Bonds and Molecular Structure

Chapter 12 Review 1: Covalent Bonds and Molecular Structure Chapter 12 Review 1: Covalent Bonds and Molecular Structure 1) How are ionic bonds and covalent bonds different, and what types of elements combine to form each? Ionic bonds result from the transfer of

More information

UNIT 6 - CHEMICAL BONDING

UNIT 6 - CHEMICAL BONDING INTRODUCTION TO CHEMICAL BONDING I. Types of Chemical Bonding A. : mutual electrical attraction between the nuclei and valence e- of different atoms that binds the atoms together B. Why do atoms bond together?

More information

Lewis Structures. Molecular Shape. VSEPR Model (Valence Shell Electron Pair Repulsion Theory)

Lewis Structures. Molecular Shape. VSEPR Model (Valence Shell Electron Pair Repulsion Theory) Lewis Structures Molecular Shape VSEPR Model (Valence Shell Electron Pair Repulsion Theory) PART 1: Ionic Compounds Complete the table of Part 1 by writing: The Lewis dot structures for each metallic and

More information

The Chemical Bond Chapter 9

The Chemical Bond Chapter 9 The Chemical Bond Chapter 9 This is our home as seen from far-out space. Its surface and atmosphere are composed of some free elements as well as ionic and molecular compounds. We look deeper into the

More information

Drawing Lewis Structures

Drawing Lewis Structures Drawing Lewis Structures 1. Add up all of the valence electrons for the atoms involved in bonding 2. Write the symbols for the elements and show connectivity with single bonds (2 electrons shared). a.

More information

Name: Date: Lab Partners: Lab section: Covalent Bonding Part II Molecular Geometry

Name: Date: Lab Partners: Lab section: Covalent Bonding Part II Molecular Geometry Name: Date: Lab Partners: Lab section: Covalent Bonding Part II Molecular Geometry The purpose of this lab is to use molecular models to help you understand the theoretical concepts of covalent bonding

More information

3 Types of Chemical Bonds

3 Types of Chemical Bonds 3 Types of Chemical Bonds 1. Ionic Bonds: refers to the electrostatic forces between oppositely charged particles (usually a metallic and a nonmetallic element). Ex: NaCl ------ Na + and Cl - Because Na

More information

!"#$%&'()(!*+,-./0(1* (

!#$%&'()(!*+,-./0(1* ( (!"#$%&'()(!*+,-./0(1*-.23-.4( ( ( (!"#"$%&'()$*%#+,'(-(.+/&/*+,%&(01"2+34$5( 6%#+,"(!/$75#38+(92+41( CHAPTER 4: molecules Learning Objectives:! Define covalent bonding and difference between it and ionic

More information

Chapter 11. Chemical Bonds: The Formation of Compounds from Atoms

Chapter 11. Chemical Bonds: The Formation of Compounds from Atoms Chapter 11 Chemical Bonds: The Formation of Compounds from Atoms 1 11.1 Periodic Trends in atomic properties 11.1 Periodic Trends in atomic properties design of periodic table is based on observing properties

More information

3D Molecular Geometry

3D Molecular Geometry 3D Molecular Geometry Shades and Behaviours of 3D Molecules In order to understand the shapes the molecules form we must adhere to rules that are based on the repulsion of valence shell electrons! VSEPR

More information

Ionic vs. Covalent Compounds

Ionic vs. Covalent Compounds Ionic vs. Covalent Compounds 7 Electron Dot Diagrams American Chemist, G. N. Lewis (1916), developed a system of representing the valence electrons with dots Electron Dot Structures - Valence electrons

More information

Honors Chemistry - Chemical Bonding Practice Test

Honors Chemistry - Chemical Bonding Practice Test Honors Chemistry - Chemical Bonding Practice Test Mr. Matthew Totaro MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Which of the following pairs

More information

Chapter 7 Chemical Bonding

Chapter 7 Chemical Bonding Chapter 7 Chemical Bonding 7.1 Ionic Bonding Octet rule: In forming compounds atoms lose, gain or share electrons to attain a noble gas configuration with 8 electrons in their outer shell (s 2 p 6 ), except

More information

EXPERIMENT - 1. Molecular Geometry- Lewis Dot structures

EXPERIMENT - 1. Molecular Geometry- Lewis Dot structures EXPERIMENT - 1 Molecular Geometry- Lewis Dot structures INTRODUCTION Although it has recently become possible to image molecules and even atoms using a high-resolution microscope, most of our information

More information

NOTES:&&UNIT&5:& Bonding& & & & & & & & & & & & &

NOTES:&&UNIT&5:& Bonding& & & & & & & & & & & & & Name:&& & Regents&Chemistry:&Mr.&Palermo& & & & NOTES:&&UNIT&5:& Bonding& & & & & & & & & & & & & & & & & & & & www.mrpalermo.com& Name:&& & Key Ideas Compounds&can&be&differentiated&by&their&chemical&and&physical&properties.&(3.1dd)&

More information

Section 8.3 Molecular Structures

Section 8.3 Molecular Structures Section 8.3 Molecular Structures List the basic steps used to draw Lewis structures. Explain why resonance occurs, and identify resonance structures. Identify three exceptions to the octet rule, and name

More information

Section 12.1 Chapter 12 Characteristics of Bonds and Structures Objectives

Section 12.1 Chapter 12 Characteristics of Bonds and Structures Objectives Objectives 1. To learn about ionic and covalent bonds and explain how they are formed - what holds compounds together? 2. To learn about the polar covalent bond are all covalent bonds equal? 3. To understand

More information

CHM 130 Lewis Dot Formulas and Molecular Shapes

CHM 130 Lewis Dot Formulas and Molecular Shapes CHM 10 Lewis Dot Formulas and Molecular Shapes Introduction A chemical bond is an intramolecular (within the molecule) force holding two or more atoms together. Covalent chemical bonds are formed by valence

More information

CHAPTER 12: CHEMICAL BONDING

CHAPTER 12: CHEMICAL BONDING 12.1 THE CHEMICAL BOND CONCEPT CHAPTER 12: CHEMICAL BONDING octet rule: In forming compounds atoms lose, gain or share electrons to attain a noble gas configuration with 8 electrons in their outer shell.

More information

Laboratory 11: Molecular Compounds and Lewis Structures

Laboratory 11: Molecular Compounds and Lewis Structures Introduction Laboratory 11: Molecular Compounds and Lewis Structures Molecular compounds are formed by sharing electrons between non-metal atoms. A useful theory for understanding the formation of molecular

More information

Resonance Structures Resonance structures

Resonance Structures Resonance structures Resonance Structures Resonance structures are two or more electron-dot formulas for the same arrangement of atoms. related by a double-headed arrow ( ). written by changing the location of a double bond

More information

Chapter 9: Molecular Geometry and Hybridization of Atomic Orbitals

Chapter 9: Molecular Geometry and Hybridization of Atomic Orbitals Previous Chapter Table of Contents Next Chapter Chapter 9: Molecular Geometry and Hybridization of Atomic Orbitals Section 9.1: Molecular Geometry and the VSEPR Model Molecular geometry is the three-dimensional

More information

Unit Ionic and Covalent Bonds

Unit Ionic and Covalent Bonds Unit 6 --- Ionic and Covalent Bonds Electron Configuration in Ionic Bonding Ionic Bonds Bonding in Metals Valence Electrons Electrons in the highest occupied energy level of an element s atoms Examples

More information

11 Chemical Bonds: The Formation of Compounds from Atoms. Chapter Outline. Periodic Trends in Atomic Properties. Periodic Trends in Atomic Properties

11 Chemical Bonds: The Formation of Compounds from Atoms. Chapter Outline. Periodic Trends in Atomic Properties. Periodic Trends in Atomic Properties 11 Chemical Bonds The Formation of Compounds from Atoms Chapter Outline 11.1 11.2 Lewis Structures of Atoms 11.3 The Ionic Bond Transfer of Electrons from One Atom to Another 11.4 Predicting Formulas of

More information

Chemistry 132.E2. Structure and Shape of Molecules

Chemistry 132.E2. Structure and Shape of Molecules Chemistry 132.E2. Structure and Shape of Molecules Objectives To learn how to draw Lewis structures of molecules and ions. To use VSEPR to predict the shapes of molecules. To determine whether equivalent

More information

Lewis Structures & the VSEPR Model

Lewis Structures & the VSEPR Model Lewis Structures & the VSEPR Model A Directed Learning Activity for Hartnell College Chemistry 1 Funded by the Title V STEM Grant #P031S090007 through Hartnell College For information contact lyee@hartnell.edu

More information

Chapter 12 Chemical Bonding

Chapter 12 Chemical Bonding Chapter 12 Chemical Bonding Chapter 12 Review p.373 - Key Terms bond (12.1) bond energy (12.1) ionic bonding (12.1) ionic compound (12.1) covalent bonding (12.1) polar covalent bond (12.1) electronegativity

More information

EXPERIMENT 9 Dot Structures and Geometries of Molecules

EXPERIMENT 9 Dot Structures and Geometries of Molecules EXPERIMENT 9 Dot Structures and Geometries of Molecules INTRODUCTION Lewis dot structures are our first tier in drawing molecules and representing bonds between the atoms. The method was first published

More information

N H H. For example, consider ammonia, NH 3, which has the Lewis structure: The nitrogen atom has four pairs of valence electrons, 3 bonding pairs

N H H. For example, consider ammonia, NH 3, which has the Lewis structure: The nitrogen atom has four pairs of valence electrons, 3 bonding pairs Objectives: The objectives of this laboratory experience are to: Write Lewis structure representations of the bonding and valence electrons in molecules. Use the VSEPR model to predict the molecular geometries

More information

Chapter 6: Chemical Bonding

Chapter 6: Chemical Bonding Chapter 6: Chemical Bonding I. Introduction to Chemical Bonding A. A Chemical Bond is a mutual electrical attraction between the nuclei and valence electrons of different atoms that binds the atoms together.

More information

11 Chemical Bonds: The Formation of Compounds from Atoms

11 Chemical Bonds: The Formation of Compounds from Atoms 11 Chemical Bonds: The Formation of Compounds from Atoms Atoms in Vitamin C (ascorbic acid) bond in a specific orientation which defines the shape of the molecule. The molecules pack in a crystal, photographed

More information

Both molecules have the same polarity. Circle the word that describes the polarity of these molecules. polar non-polar Justify your choice.

Both molecules have the same polarity. Circle the word that describes the polarity of these molecules. polar non-polar Justify your choice. QUESTION (2015:1) (c) BeCl2 and BF3 are unusual molecules because there are not enough electrons for the central atoms, Be and B, to have a full valence shell. Their Lewis structures are shown below. Both

More information

Unit 8. Covalent Bonding

Unit 8. Covalent Bonding Unit 8 Covalent Bonding The Ionic Bond When sodium and chlorine atoms combine, the sodium atoms give their electrons to chlorine. Both ions now have stable noble gas electron configurations and the oppositely

More information

Laboratory 20: Review of Lewis Dot Structures

Laboratory 20: Review of Lewis Dot Structures Introduction The purpose of the laboratory exercise is to review Lewis dot structures and expand on topics discussed in class. Additional topics covered are the general shapes and bond angles of different

More information

Molecular Geometry and Chemical Bonding Theory

Molecular Geometry and Chemical Bonding Theory Chapter 10 Molecular Geometry and Chemical Bonding Theory Concept Check 10.1 An atom in a molecule is surrounded by four pairs of electrons, one lone pair and three bonding pairs. Describe how the four

More information

Illustrating Bonds - Lewis Dot Structures

Illustrating Bonds - Lewis Dot Structures Illustrating Bonds - Lewis Dot Structures Lewis Dot structures are also known as electron dot diagrams These diagrams illustrate valence electrons and subsequent bonding A line shows each shared electron

More information

5. Which of the following is the correct Lewis structure for SOCl 2

5. Which of the following is the correct Lewis structure for SOCl 2 Unit C Practice Problems Chapter 8 1. Draw the lewis structures for the following molecules: a. BeF 2 b. SO 3 c. CNS 1- d. NO 2. The correct Lewis symbol for ground state carbon is a) b) c) d) e) 3. Which

More information

CHEMICAL BONDS & VALENCE ELECTRONS

CHEMICAL BONDS & VALENCE ELECTRONS Chemical Bonding Name Period: Date: CHEMICAL BONDS & VALENCE ELECTRONS 1) = an interaction between atoms that holds them together by reducing the potential energy of their electrons 2) = a shorthand representation

More information

Electron Configurations Ionic & Covalent Bonds Review

Electron Configurations Ionic & Covalent Bonds Review Electron Configurations Ionic & Covalent Bonds Review VSEPR Bonding & Molecular Shapes When a nonmetal and a metal form a compound: Valence electrons of the metal are lost and the nonmetal gains these

More information

Chapter 11. Chemical Bonds: The Formation of Compounds from Atoms

Chapter 11. Chemical Bonds: The Formation of Compounds from Atoms Chapter 11 Chemical Bonds: The Formation of Compounds from Atoms The atoms in vitamin C (ascorbic acid) bond together in a very specific orientation to form the shape of the molecule. The molecules collect

More information

Chemical Bonding UNIT 4. Chapters 15 & 16

Chemical Bonding UNIT 4. Chapters 15 & 16 Chemical Bonding UNIT 4 Chapters 15 & 16 Ionic Bonding The bond in ionic compounds (two ions) Held together tightly High melting points Compounds are formed from chemically bound atoms or ions Substances

More information

Chemical Bonds stable octet

Chemical Bonds stable octet Chemical Bonds Elements form bonds to be in a lower energy state 1. Ionic Bonds transfer of electrons, between metal and nonmetal 2. Covalent Bonds sharing of electrons, between two nonmetals 3. Metallic

More information

ch9 and 10 practice test

ch9 and 10 practice test 1. Which of the following covalent bonds is the most polar (highest percent ionic character)? A. Al I B. Si I C. Al Cl D. Si Cl E. Si P 2. What is the hybridization of the central atom in ClO 3? A. sp

More information

Chapter 1. Covalent Bonding and Shape of Molecules

Chapter 1. Covalent Bonding and Shape of Molecules Learning objectives: hapter 1. ovalent Bonding and Shape of Molecules 1. Write the ground-state electron configuration. 2. Draw Lewis structure. 3. Use electronegativity to predict polarized and non-polarized

More information

Molecular Geometry. Bond length: the distance between two atoms held together by a chemical bond

Molecular Geometry. Bond length: the distance between two atoms held together by a chemical bond Molecular Geometry Bond length: the distance between two atoms held together by a chemical bond Bond length decreases as the number of bonds between two atoms increases. Single bond is the longest. Triple

More information

7.1 The Covalent Bond. 7.2 Strengths of Covalent Bonds

7.1 The Covalent Bond. 7.2 Strengths of Covalent Bonds Chapter 7: Covalent Bonds and Molecular Structure (7.1-7.7, 7.9, 7.11, 7.12) Chapter Goals: Be Able to: Predict which compounds are ionic and which are molecular. Use the periodic table to predict which

More information

The Covalent Bond Model

The Covalent Bond Model 1 Chapter 5 Chemical Bonding: The Covalent Bond Model Atoms with similar ionization energy and electronegativity DO NOT form ionic bonds. There is NO electron transfer! Electron pairs are shared to form

More information

Aufbau principle Electron affinity Electron orbitals (s, p, d, and f) Electron configuration Electron-dot structure Hund s rule Ion Polyatomic Ion

Aufbau principle Electron affinity Electron orbitals (s, p, d, and f) Electron configuration Electron-dot structure Hund s rule Ion Polyatomic Ion Aufbau principle states that each electron occupies the lowest energy orbital available. Electron affinity energy released when an electron is added to an atom to form an ion. Electron orbitals the different

More information

Lab Activity: Molecular Model Building

Lab Activity: Molecular Model Building Lab Activity: Molecular Model Building Part I The first set of molecules we will examine contain only two atoms. For each of the following, draw the Lewis structure, identify the molecular shape and the

More information

Chapter 10. (1) Lewis Theory of Bonding. (2) Lewis Symbols: . :O:.

Chapter 10. (1) Lewis Theory of Bonding. (2) Lewis Symbols: . :O:. Chapter 10 (1) Lewis Theory of Bonding * Bonds between atoms form due to interactions between valence electrons (VE). (i) Ionic Bonds: Form due to a transfer of VE s. (ii) Covalent Bonds: Form due to sharing

More information

Chapter 12: Chemical Bonding. Octet Rule

Chapter 12: Chemical Bonding. Octet Rule Chapter 12: Chemical Bonding Recall that an atom has core and valence electrons. Core electrons are found close to the nucleus. Valence electrons are found in the most distant s and p energy subshells.

More information

Chem 11 Practice Questions for Ch. 8

Chem 11 Practice Questions for Ch. 8 Chem 11 Practice Questions for Ch. 8 1. Atoms having equal or nearly equal electronegativities are expected to form A) no bonds B) polar covalent bonds C) nonpolar covalent bonds D) ionic bonds E) covalent

More information

length bond strength bond Triple Covalent Bond Each atom shares pairs ( ) of electrons

length bond strength bond Triple Covalent Bond Each atom shares pairs ( ) of electrons CP NT Ch 8 & 9 Covalent Compounds Why do atoms bond? Atoms want to achieve a noble gas configuration ( ) For bonds there is a of electrons to get an octet of electrons For covalent bonds there is a of

More information

CHEMISTRY BONDING REVIEW

CHEMISTRY BONDING REVIEW Answer the following questions. CHEMISTRY BONDING REVIEW 1. What are the three kinds of bonds which can form between atoms? The three types of Bonds are Covalent, Ionic and Metallic. Name Date Block 2.

More information

Honors Unit 7 Notes Bonding & Molecular Geometry (Chapter 7 in Masterton & Hurley textbook)

Honors Unit 7 Notes Bonding & Molecular Geometry (Chapter 7 in Masterton & Hurley textbook) Name: Honors Unit 7 Notes Bonding & Molecular Geometry (Chapter 7 in Masterton & Hurley textbook) Objectives: 1. Students will form an understanding of the conceptual difference between covalent and ionic

More information

Chapter 8. Chemical Bonding. Introduction. Molecular and Ionic Compounds. Chapter 8 Topics. Ionic and Covalent. Ionic and Covalent

Chapter 8. Chemical Bonding. Introduction. Molecular and Ionic Compounds. Chapter 8 Topics. Ionic and Covalent. Ionic and Covalent Introduction Chapter 8 Chemical Bonding How and why to atoms come together (bond) to form compounds? Why do different compounds have such different properties? What do molecules look like in 3 dimensions?

More information

VSEPR geometry. Molecular polarity

VSEPR geometry. Molecular polarity Chemistry 101 11-MLECULAR GEMETRY In this experiment, you will build models of molecules using a model kit. These models will then be used as a guide to draw a three-dimensional representation of the molecule.

More information

Shape of Molecules and their Interactions. Chapter 3

Shape of Molecules and their Interactions. Chapter 3 1 Shape of Molecules and their Interactions Chapter 3 Lewis Structures 2 Predicts what molecules look like in three dimension. The 3-Dimensional structure determines the physical properties such as B.P.,

More information

Lewis Dot Structure Answer Key

Lewis Dot Structure Answer Key Lewis Dot Structure Answer Key 1) Nitrogen is the central atom in each of the following species: N2 N2 - N2 + Nitrogen can also form electron deficient compounds with a single unpaired electron on the

More information

Chapter 6, Section 6.1 Introduction to Chemical Bonding. Objectives. ii) Explain why most atoms form chemical bonds.

Chapter 6, Section 6.1 Introduction to Chemical Bonding. Objectives. ii) Explain why most atoms form chemical bonds. Chapter 6, Section 6.1 Introduction to Chemical Bonding i) Define chemical bond. Objectives ii) Explain why most atoms form chemical bonds. iii) Describe ionic and covalent bonding. iv) Explain why most

More information

Homework 07 - VSEPR & VB

Homework 07 - VSEPR & VB HW07 - VSEPR & VB This is a preview of the draft version of the quiz Started: Aug 8 at 4:51pm Quiz Instructions Homework 07 - VSEPR & VB Question 1 Consider the structural formula of phenol. The active

More information

Chapter 5. The covalent bond model

Chapter 5. The covalent bond model Chapter 5 The covalent bond model What s a comin up? Covalent bond model Lewis structures for molecular compounds Multiple bonds Coordinate covalent bonds Guidelines for drawing correct Lewis structures

More information

1. A chemical bond represents a force that holds groups of two or more atoms together and makes them function as a unit.

1. A chemical bond represents a force that holds groups of two or more atoms together and makes them function as a unit. Chapter 12 Chemical Bonding 1. A chemical bond represents a force that holds groups of two or more atoms together and makes them function as a unit. 2. An ionic compound results when a metallic element

More information

Honors Chemistry Review Sheet: Chemical Bonding

Honors Chemistry Review Sheet: Chemical Bonding Name: Section: Honors Chemistry Review Sheet: Chemical Bonding After studying chapters 12.1, 13, and 14.1, you should be able to: Explain why most atoms form chemical bonds. Differentiate among properties

More information

Lab Manual Supplement

Lab Manual Supplement Objectives 1. Learn about the structures of covalent compounds and polyatomic ions. 2. Draw Lewis structures based on valence electrons and the octet rule. 3. Construct 3-dimensional models of molecules

More information

Chemistry 3012 Foundational Chemistry Laboratory Manual

Chemistry 3012 Foundational Chemistry Laboratory Manual Chemistry 3012 Foundational Chemistry Laboratory Manual Table of Contents Page Experiment 1. Experiment 2. Experiment 3. Experiment 4. Experiment 5. Experiment 6. Experiment 7. Experiment 8. Determining

More information

CHAPTER 9 BASIC CONCEPTS OF CHEMICAL BONDING

CHAPTER 9 BASIC CONCEPTS OF CHEMICAL BONDING Chapter 9 Chemical Bonding Page 1 CHAPTER 9 BASIC CONCEPTS O CHEMICAL BONDING 91. How many valence electrons are expected for an element that is in group five of the periodic table? (a) three (b) five

More information

: : Solutions to Additional Bonding Problems

: : Solutions to Additional Bonding Problems Solutions to Additional Bonding Problems 1 1. For the following examples, the valence electron count is placed in parentheses after the empirical formula and only the resonance structures that satisfy

More information

Chem C1403 Lecture 6. Lewis structures and the geometry of molecules with a central atom.

Chem C1403 Lecture 6. Lewis structures and the geometry of molecules with a central atom. Chem C1403 Lecture 6. Lewis structures and the geometry of molecules with a central atom. (1) Covalent bonding: sharing of electron pairs by atoms (2) Rules for writing valid Lewis structures (3) Multiple

More information

CHEM 101 Fall 10 Make-Up Exam (a)

CHEM 101 Fall 10 Make-Up Exam (a) CHEM 101 Fall 10 Make-Up Exam (a) On the answer sheet (scantron) write your name, student ID number, and recitation section number. Choose the best (most correct) answer for each question and enter it

More information

Chapter 9 Molecular Geometry and Bonding Theories

Chapter 9 Molecular Geometry and Bonding Theories Chapter 9 Molecular Geometry and Bonding Theories 1. or a molecule with the formula AB 2 the molecular shape is. (a). linear or trigonal planar (b). linear or bent (c). linear or T-shaped (d). T-shaped

More information

Unit 5 Bonding Chemistry 1

Unit 5 Bonding Chemistry 1 Name: Date: Types of Chemical Bonds 1. Define a chemical bond. Unit 5 Bonding Chemistry 1 2. Why are the valence electrons of an atom the only electrons likely to be involved in bonding to other atoms?

More information

Chapter 7. Chemical Bond Concept

Chapter 7. Chemical Bond Concept Chapter 7 Covalent Bonds & Molecular Structure Chemical Bond Concept Recall that an atom has core and valence electrons. Core electrons are found close to the nucleus. Valence electrons are found in the

More information

MOLECULAR COMPOUNDS FORMATION. Distance. Potential Energy BOND LENGTH. BOND ENERGY bond and. form neutral PROPERTIES. Page 1 of 9

MOLECULAR COMPOUNDS FORMATION. Distance. Potential Energy BOND LENGTH. BOND ENERGY bond and. form neutral PROPERTIES. Page 1 of 9 CHEMICAL BONDS Covalent Bonding MOLECULAR COMPOUNDS neutral group of atoms that are held together by covalent bonds chemical compound whose simplest units are molecules indicates the relative numbers of

More information

Name: Class: Date: 14. a 15. d 16. c 17. d 18. b 19. a 20. a 21. c 22. b 23. c 24. a 25. d

Name: Class: Date: 14. a 15. d 16. c 17. d 18. b 19. a 20. a 21. c 22. b 23. c 24. a 25. d Assessment A Teacher Notes and Answers 6 Chemical Bonding TEST A 1. c 2. b 3. c 4. c 5. a 6. d 7. c 8. b 9. c 10. b 11. b 12. c 13. a 14. a 15. d 16. c 17. d 18. b 19. a 20. a 21. c 22. b 23. c 24. a 25.

More information

CH 222 Chapter Seven Concept Guide

CH 222 Chapter Seven Concept Guide CH 222 Chapter Seven Concept Guide 1. Lewis Structures Draw the Lewis Dot Structure for cyanide ion, CN -. 1 C at 4 electrons = 4 electrons 1 N at 5 electrons = 5 electrons -1 charge = + 1 electron Total

More information

Oxidation Numbers: Rules

Oxidation Numbers: Rules Oxidation Numbers: Rules 1) The oxidation number of the atoms in any free, uncombined element, is zero 2) The sum of the oxidation numbers of all atoms in a compound is zero 3) The sum of the oxidation

More information

Background: Electron Dot Formula Basics

Background: Electron Dot Formula Basics Background: Electron Dot Formula Basics 1. What do the dots in an electron dot formula represent? 2. Describe the pattern of electron dot formulas as you move from left to right in a period of the Periodic

More information

Nonmetal C N O Ne Si P S Ar Formula of Compound. No compound. SiF 4 PF 3 SF 2

Nonmetal C N O Ne Si P S Ar Formula of Compound. No compound. SiF 4 PF 3 SF 2 Nonmetal C N O Ne Si P S Ar Formula of Compound CF 4 NF 3 OF 2 No compound SiF 4 PF 3 SF 2 No compound Some binary compounds that form between fluorine and various nonmetals are listed in the table above.

More information

2. Atoms with very similar electronegativity values are expected to form

2. Atoms with very similar electronegativity values are expected to form AP hemistry Practice Test #6 hapter 8 and 9 1. Which of the following statements is incorrect? a. Ionic bonding results from the transfer of electrons from one atom to another. b. Dipole moments result

More information

Lab 1: Chapter 3 and 5 Review

Lab 1: Chapter 3 and 5 Review Lab 1: Chapter 3 and 5 Review Objective: The objective of this experiment is to Review electron arrangement and bond arrangement and to be able to recall this information when learning about the structure

More information

CHEM 2323 Unit 1 General Chemistry Review

CHEM 2323 Unit 1 General Chemistry Review EM 2323 Unit 1 General hemistry Review I. Atoms A. The Structure of the Atom B. Electron onfigurations. Lewis Dot Structures II. Bonding A. Electronegativity B. Ionic Bonds. ovalent Bonds D. Bond Polarity

More information

CHEM 120 Chapter 5. Sample Questions

CHEM 120 Chapter 5. Sample Questions CHEM 120 Chapter 5. Sample Questions Date: 1. Which of the following statements contrasting covalent bonds and ionic bonds is correct? A) Covalent bonds usually involve two nonmetals and ionic bonds usually

More information

Molecular Geometry and Chemical Bonding Theory

Molecular Geometry and Chemical Bonding Theory Molecular Geometry and Chemical Bonding Theory The Valence -Shell Electron -Pair Repulsion (VSEPR) Model predicts the shapes of the molecules and ions by assuming that the valence shell electron pairs

More information

Chemical Bonding and Molecular Structure (Chapter 10)

Chemical Bonding and Molecular Structure (Chapter 10) Chemical Bonding and Molecular Structure (Chapter 10) Molecular Structure 1. General Summary -- Structure and Bonding Concepts Electronic Configuration of Atoms Octet Rule Lewis Electron Dot ormula of

More information

Vocabulary: VSEPR. 3 domains on central atom. 2 domains on central atom. 3 domains on central atom NOTE: Valence Shell Electron Pair Repulsion Theory

Vocabulary: VSEPR. 3 domains on central atom. 2 domains on central atom. 3 domains on central atom NOTE: Valence Shell Electron Pair Repulsion Theory Vocabulary: VSEPR Valence Shell Electron Pair Repulsion Theory domain = any electron pair, or any double or triple bond is considered one domain. lone pair = non-bonding pair = unshared pair = any electron

More information

PART 3 Chemical Bonds, Valence Bond Method, and Molecular Shapes. Reference: Chapter 9 10 in textbook

PART 3 Chemical Bonds, Valence Bond Method, and Molecular Shapes. Reference: Chapter 9 10 in textbook PART 3 Chemical Bonds, Valence Bond Method, and Molecular Shapes Reference: Chapter 9 10 in textbook 1 Valence Electron Valence Electrons Define: the outer shell electrons Important for determination of

More information

CHAPTER 10: CHEMICAL BONDING

CHAPTER 10: CHEMICAL BONDING CHAPTER 10: CHEMICAL BONDING Problems: 1-10, 13-48, 49(skip c), 50(b,c), 51, 52(a,d), 55-58, 61-64, 65(a-c), 66(c,d), 67-68, 69(b-d), 71, 75-80, 83-89, 90(skip b), 91(b,d), 92(c,d), 95-96, 98-99, 101 10.1

More information

Chapter 9-10 practice test

Chapter 9-10 practice test Class: Date: Chapter 9-10 practice test Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which one of the following is most likely to be an ionic compound?

More information

CHEMISTRY NOTES: Structures, Shapes, Polarity and IMF s

CHEMISTRY NOTES: Structures, Shapes, Polarity and IMF s CHEMISTRY NOTES: Structures, Shapes, Polarity and IMF s DRAWING LEWIS STRUCTURES: RULES 1) Draw the skeleton structure for the molecule. The central atom will generally be the least electronegative element

More information

Covalent Bonding Nomenclature Lewis structure Resonance VSEPR theory Molecular Polarity. Edward Wen, PhD

Covalent Bonding Nomenclature Lewis structure Resonance VSEPR theory Molecular Polarity. Edward Wen, PhD Covalent Bonding Nomenclature Lewis structure Resonance VSEPR theory Molecular Polarity Edward Wen, PhD Binary Covalent Compounds: Two Nonmetals (such as CO 2 ) 1. Name first element in formula first use

More information

2. What is the difference between a polar bond and a nonpolar bond? (p. 162)

2. What is the difference between a polar bond and a nonpolar bond? (p. 162) Chemistry CP Name: Review Sheet Bonding (Chapter 6) After studying chapter 6, you should be able to: Infer the number of valence electrons in an atom of a main-group element, and then construct its Lewis

More information

Unit 5: Bonding Properties

Unit 5: Bonding Properties 1. State whether the following compounds have ionic or covalent bonding. LiF CF 4 CaO NH 3 PCl 3 CuCl 2 Ionic Covalent Ionic Covalent Covalent Ionic 2. Write the formulas of the following compounds. a.

More information