Object Detection - Basics 1

Size: px
Start display at page:

Download "Object Detection - Basics 1"

Transcription

1 Object Detection - Basics 1 Lecture 28 See Sections , , and in Reinhard Klette: Concise Computer Vision Springer-Verlag, London, See last slide for copyright information. 1 / 33

2 Agenda 1 Localization, Classification, Evaluation 2 Descriptors, Classifiers, Learning 3 Performance of Object Detectors 4 Descriptor Example: Histogram of Oriented Gradients 2 / 33

3 Localization, Classification, Evaluation Descriptors, Classifiers, Learning Performance of Object Detectors HoG Localization Localization, classification, and evaluation are three basic steps of an object detection system Object candidates are localized within a rectangular bounding box 3 / 33

4 Localization, Classification, Evaluation Descriptors, Classifiers, Learning Performance of Object Detectors HoG Classification Localized object candidates are mapped by classification either in detected objects or rejected candidates Face detection: one false-positive and two false-negatives (not counting the side-view of a face) 4 / 33

5 Evaluation A true-positive, also called a detection, is a correctly-detected object A false-positive, also called a false detection, occurs if we detect an object where there is none A false-negative denotes a case where we miss an object A true-negative describes the cases where non-object regions are correctly identified as non-object regions (typically not of interest) 5 / 33

6 Localization, Classification, Evaluation Descriptors, Classifiers, Learning Performance of Object Detectors HoG Which one is TP or FP or FN or TN? 6 / 33

7 Agenda 1 Localization, Classification, Evaluation 2 Descriptors, Classifiers, Learning 3 Performance of Object Detectors 4 Descriptor Example: Histogram of Oriented Gradients 7 / 33

8 Descriptors Classification is membership in pairwise-disjoint classes being subsets of R n, where n > 0 is defined by the used descriptors A descriptor x = (x 1,..., x n ) is a point in the n-dimensional descriptor space R n representing measured or calculated property values in a given order Two Examples: n = 128 for SIFT n = 2 on the next page: descriptor space is defined by properties perimeter and area ; e.g. descriptor x 1 = ( , ) for Segment 1 8 / 33

9 Example: 2D Descriptor Space Left: Regions in a segmented image. Right: Descriptor space 80,000 Area ,000 60, ,000 40,000 30, ,000 10, Perimeter ,000 1,400 1,800 2,200 2,600 The blue line defines a binary classifier; it subdivides the descriptor space into two half-planes such that descriptors in one half-plane have value +1 (i.e. +1 is a class identifier) assigned, and -1 if in the other half-plane 9 / 33

10 Classifiers A classifier (i.e. a partioning of the descriptor space) assigns class numbers to descriptors Training: using a given set {x 1,..., x m } of already-classified descriptors (the learning set) for defining the partitioning (the classifier) Application: on descriptors generated for recorded data General classifier: Assigns class numbers 1, 2,..., k for k > 1 classes, and 0 for not classified Binary classifier: Assigns class numbers 1 or / 33

11 Weak or Strong Classifiers A classifier is weak if it does not perform up to expectations (e.g., it might be just a bit better than random guessing) Multiple weak classifiers can be mapped into a strong classifier, aiming at a satisfactory solution of a classification problem Weak or strong classifiers can be general-case (i.e. multi-class) classifiers or just binary classifiers; just being binary does not define weak Example: AdaBoost defines a statistical combination of multiple weak classifiers into one strong classifier (see later) 11 / 33

12 Example 1: Binary Classifier by Linear Separation We define a binary classifier by constructing a hyperplane in R n, for n 1 Vector w R n is the weight vector Real b R is the bias of Π Π : w x + b = 0 Example: n = 2 or n = 3, then w is the gradient or normal orthogonal to the defined line or plane Π, respectively 12 / 33

13 Example 1: Continued x 2 x 2 Π x 1 Π x 1 Left: Linear-separable distribution of descriptors pre-classified to be either in class +1 (green descriptors) or -1 (red descriptors) Right: Not linear separable; sum of shown distances (black line segments) of misclassified descriptors defines total error for Π 13 / 33

14 Example 1: Continued h(x) = w x + b h(x) 0: One side of the hyperplane (including the plane itself) defines value +1 h(x) < 0: The other side (not including the plane itself) value -1 Linear classifier defined by w and b can be calculated for a distribution of (pre-classified) training descriptors in nd descriptor space Error for a misclassified descriptor x is the perpendicular distance w x + b d 2 (x, Π) = w 2 to the hyperplane Π Task: Calculate Π such that total error for all misclassified training descriptors is minimized 14 / 33

15 Example 2: Classification by Using a Binary Decision Tree Classifier defined by binary decisions at split nodes in a tree (i.e. yes or no ) Each decision is formalized by a rule, and given input data can be tested whether they satisfy the rule or not Accordingly, we proceed with the identified successor node in the tree Each leaf node of the tree defines finally an assignment of data arriving at this node into classes Example: each leaf node identifies exactly one class in R n ; see next slide for n = 2 15 / 33

16 Example 2: Continued Left: Decision tree Right: Resulting subdivison in 2D descriptor space x 2 x 1 < 100 yes no x 2 >60 x 1 >160 yes no yes no x 1 + x 2 < 120 yes no x Tested rules in the shown example of a tree define straight lines in the 2D descriptor space; descriptors arriving at one of the leaf nodes are then in one of the shown subsets of R 2 16 / 33

17 Trees, Forests, Cascades of Binary Classifiers A single decision tree (defined by at least one split node) can be considered to be an example for a weak classifier A set of decision trees, called a forest, can then be used for defining a strong classifier Observation. A single decision tree provides a way to partition a descriptor space into multiple regions (i.e. classes) When applying binary classifiers defined by linear separation then we need to combine several of those (e.g. in a cascade) to achieve a similar partitioning of a descriptor space 17 / 33

18 Learning Learning is the process when defining or training a classifier based on a set of descriptors Classification is the actual application of the classifier During classification we may also identify some misbehavior, and this can lead again to another phase of learning The set of descriptors used for learning may be pre-classified or not Supervised learning: We have a mechanism for assigning class numbers to descriptors (e.g. manually based on expertise such as yes, the driver does have closed eyes in this image ) Unsupervised learning: We do not have prior knowledge about class memberships of descriptors, e.g. for randomly selected patches in an image: a typical patch for a pedestrian or not? 18 / 33

19 Unsupervised Learning: Two Examples Data distribution in learning set decides about the classifier Clustering Apply a clustering algorithm for a given set of descriptors for identifying a separation of R n into classes Example: Analyze the density of the distribution of given descriptors in R n ; a region having a dense distribution defines a seed point of one class, and then we assign all descriptors to identified seed points by applying, for example, the nearest-neighbor rule Learn Rules at Split Nodes in a Decision Tree Learn decision rules at split nodes e.g. by having a general scheme how to define such rules, and optimise parameters by maximising the information gain at this split node (e.g. equal number of training descriptors passing to either the left or the right successor) 19 / 33

20 Positive (for Pedestrian ) and Negative Class Examples 20 / 33

21 Combined Learning Approaches There are also cases where we may combine supervised learning with strategies known from unsupervised learning Example Supervised: Decide whether a given bounding box shows a pedestrian, or decide for a patch, being a subwindow of a bounding box, whether it possibly belongs to a pedestrian Unsupervised: Generate a decision tree, e.g. by maximising information gain at split nodes Result: Assign class probabilities to a leaf node in the generated tree according to percentages of pre-classified descriptors arriving at this leaf node 21 / 33

22 Agenda 1 Localization, Classification, Evaluation 2 Descriptors, Classifiers, Learning 3 Performance of Object Detectors 4 Descriptor Example: Histogram of Oriented Gradients 22 / 33

23 Object Detector and Measures An object detector is defined by applying a classifier for an object detection problem We assume that any made decision can be evaluated as being either correct or false Evaluations of designed object detectors are required to compare their performance under particular conditions There are common measures in pattern recognition or information retrieval for performance evaluation of classifiers 23 / 33

24 Basic Definitions Let tp or fp denote the numbers of true-positives or false-positives, respectively Let tn or fn denote the numbers of true-negatives or false-negatives, respectively What are the numbers for the example on Page 6? Note: just the image does not indicate how many non-object regions have been analyzed (and correctly identified as being no faces); thus we cannot specify the number tn; we need to analyze the applied classifier for obtaining tn 24 / 33

25 PR, RC, MR, and FPPI Precision is the ratio of true-positives compared to all detections Recall (or sensitivity) is the ratio of true-positives to all potentially possible detections PR = tp tp + fp and RC = tp tp + fn PR = 1: no false-positive is detected RC = 1: all visible objects are detected & there is no false-negative Miss rate is the ratio of false-negatives to all objects False-positives per image is the ratio of false-positives to all detected objects MR = fn fp = 1 RC and FPPI = tp + fn tp + fp = 1 PR MR = 0: all visible objects are detected FPPI = 0: detected objects are correctly classified 25 / 33

26 TNR and AC tn is not a common entry for performance measures, but, if available then we also have TNR and AC: True-negative rate (or specificity) is the ratio of true-negatives to all decisions in no-object regions Accuracy is the ratio of correct decisions to all decisions TNR = tn tn + fp and AC = tp + tn tp + tn + fp + fn 26 / 33

27 Detected? How to decide whether a detected object is true-positive? Assume: Objects in images have been locally identified (e.g. manually) by bounding boxes, serving as the ground truth Detected objects are matched with these ground-truth boxes by calculating ratios of areas of overlapping regions a o = A(D T ) A(D T ) where A denotes the area of a region in an image, D is the detected bounding box of the object, and T is the area of the bounding box of the matched ground-truth box If a o T, say for T = 0.5, the detected object is taken as a true-positive If more than one possible matching for a detected bounding box then use the one with the largest a o -value 27 / 33

28 Agenda 1 Localization, Classification, Evaluation 2 Descriptors, Classifiers, Learning 3 Performance of Object Detectors 4 Descriptor Example: Histogram of Oriented Gradients 28 / 33

29 Scanning an Image for Object Candidates 1 Window of the size of the expected bounding box scans through an image 2 The scan stops at potential object candidates 3 If a potential bounding box has been identified, a process for descriptor calculation starts Histogram of oriented gradients (HoG) is a common way to derive a descriptor for a bounding box for an object candidate 29 / 33

30 Bounding Box, Blocks, and Cells A bounding box (here: of a pedestrian) is subdivided into blocks, and each block into smaller cells for calculating the HoG Yellow solid or dashed blocks are subdivided into red cells; a block moves left to right, top down, through a bounding box Right: Magnitudes of gradient vectors 30 / 33

31 Algorithm for Calculating the HoG Descriptor 1 Preprocessing. Intensity normalization and smoothing 2 Calculate an edge map. Gradient magnitudes and gradient angles for each pixel, generating a magnitude map I m and an angle map I a 3 Spatial binning. 1 Group pixels into non-overlapping cells (e.g. 8 8) 2 Accumulate magnitude values in I m into direction bins (e.g., nine bins for intervals of 20 each) to obtain a voting vector for each cell calculation 4 Normalize voting values for generating a descriptor. 1 Group cells (e.g., 2 2) into one block 2 Normalize voting vectors over each block, and combine them into one block vector 5 Concatenation. Augment all block vectors consecutively; this produces the final HoG descriptor 31 / 33

32 Two Examples Length of vectors in nine different directions in each cell represents the accumulated magnitude of gradient vectors for one of those nine directions 32 / 33

33 Copyright Information This slide show was prepared by Reinhard Klette with kind permission from Springer Science+Business Media B.V. The slide show can be used freely for presentations. However, all the material is copyrighted. R. Klette. Concise Computer Vision. c Springer-Verlag, London, In case of citation: just cite the book, that s fine. 33 / 33

Data Mining Practical Machine Learning Tools and Techniques

Data Mining Practical Machine Learning Tools and Techniques Ensemble learning Data Mining Practical Machine Learning Tools and Techniques Slides for Chapter 8 of Data Mining by I. H. Witten, E. Frank and M. A. Hall Combining multiple models Bagging The basic idea

More information

Lecture 2: The SVM classifier

Lecture 2: The SVM classifier Lecture 2: The SVM classifier C19 Machine Learning Hilary 2015 A. Zisserman Review of linear classifiers Linear separability Perceptron Support Vector Machine (SVM) classifier Wide margin Cost function

More information

CI6227: Data Mining. Lesson 11b: Ensemble Learning. Data Analytics Department, Institute for Infocomm Research, A*STAR, Singapore.

CI6227: Data Mining. Lesson 11b: Ensemble Learning. Data Analytics Department, Institute for Infocomm Research, A*STAR, Singapore. CI6227: Data Mining Lesson 11b: Ensemble Learning Sinno Jialin PAN Data Analytics Department, Institute for Infocomm Research, A*STAR, Singapore Acknowledgements: slides are adapted from the lecture notes

More information

Local features and matching. Image classification & object localization

Local features and matching. Image classification & object localization Overview Instance level search Local features and matching Efficient visual recognition Image classification & object localization Category recognition Image classification: assigning a class label to

More information

Colour Image Segmentation Technique for Screen Printing

Colour Image Segmentation Technique for Screen Printing 60 R.U. Hewage and D.U.J. Sonnadara Department of Physics, University of Colombo, Sri Lanka ABSTRACT Screen-printing is an industry with a large number of applications ranging from printing mobile phone

More information

Modelling, Extraction and Description of Intrinsic Cues of High Resolution Satellite Images: Independent Component Analysis based approaches

Modelling, Extraction and Description of Intrinsic Cues of High Resolution Satellite Images: Independent Component Analysis based approaches Modelling, Extraction and Description of Intrinsic Cues of High Resolution Satellite Images: Independent Component Analysis based approaches PhD Thesis by Payam Birjandi Director: Prof. Mihai Datcu Problematic

More information

Machine Learning for Medical Image Analysis. A. Criminisi & the InnerEye team @ MSRC

Machine Learning for Medical Image Analysis. A. Criminisi & the InnerEye team @ MSRC Machine Learning for Medical Image Analysis A. Criminisi & the InnerEye team @ MSRC Medical image analysis the goal Automatic, semantic analysis and quantification of what observed in medical scans Brain

More information

Classifying Large Data Sets Using SVMs with Hierarchical Clusters. Presented by :Limou Wang

Classifying Large Data Sets Using SVMs with Hierarchical Clusters. Presented by :Limou Wang Classifying Large Data Sets Using SVMs with Hierarchical Clusters Presented by :Limou Wang Overview SVM Overview Motivation Hierarchical micro-clustering algorithm Clustering-Based SVM (CB-SVM) Experimental

More information

Social Media Mining. Data Mining Essentials

Social Media Mining. Data Mining Essentials Introduction Data production rate has been increased dramatically (Big Data) and we are able store much more data than before E.g., purchase data, social media data, mobile phone data Businesses and customers

More information

Recognition. Sanja Fidler CSC420: Intro to Image Understanding 1 / 28

Recognition. Sanja Fidler CSC420: Intro to Image Understanding 1 / 28 Recognition Topics that we will try to cover: Indexing for fast retrieval (we still owe this one) History of recognition techniques Object classification Bag-of-words Spatial pyramids Neural Networks Object

More information

Topographic Change Detection Using CloudCompare Version 1.0

Topographic Change Detection Using CloudCompare Version 1.0 Topographic Change Detection Using CloudCompare Version 1.0 Emily Kleber, Arizona State University Edwin Nissen, Colorado School of Mines J Ramón Arrowsmith, Arizona State University Introduction CloudCompare

More information

PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 4: LINEAR MODELS FOR CLASSIFICATION

PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 4: LINEAR MODELS FOR CLASSIFICATION PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 4: LINEAR MODELS FOR CLASSIFICATION Introduction In the previous chapter, we explored a class of regression models having particularly simple analytical

More information

A Study on SURF Algorithm and Real-Time Tracking Objects Using Optical Flow

A Study on SURF Algorithm and Real-Time Tracking Objects Using Optical Flow , pp.233-237 http://dx.doi.org/10.14257/astl.2014.51.53 A Study on SURF Algorithm and Real-Time Tracking Objects Using Optical Flow Giwoo Kim 1, Hye-Youn Lim 1 and Dae-Seong Kang 1, 1 Department of electronices

More information

Decision Trees from large Databases: SLIQ

Decision Trees from large Databases: SLIQ Decision Trees from large Databases: SLIQ C4.5 often iterates over the training set How often? If the training set does not fit into main memory, swapping makes C4.5 unpractical! SLIQ: Sort the values

More information

Environmental Remote Sensing GEOG 2021

Environmental Remote Sensing GEOG 2021 Environmental Remote Sensing GEOG 2021 Lecture 4 Image classification 2 Purpose categorising data data abstraction / simplification data interpretation mapping for land cover mapping use land cover class

More information

Lecture 6: Classification & Localization. boris. ginzburg@intel.com

Lecture 6: Classification & Localization. boris. ginzburg@intel.com Lecture 6: Classification & Localization boris. ginzburg@intel.com 1 Agenda ILSVRC 2014 Overfeat: integrated classification, localization, and detection Classification with Localization Detection. 2 ILSVRC-2014

More information

Monday Morning Data Mining

Monday Morning Data Mining Monday Morning Data Mining Tim Ruhe Statistische Methoden der Datenanalyse Outline: - data mining - IceCube - Data mining in IceCube Computer Scientists are different... Fakultät Physik Fakultät Physik

More information

Facebook Friend Suggestion Eytan Daniyalzade and Tim Lipus

Facebook Friend Suggestion Eytan Daniyalzade and Tim Lipus Facebook Friend Suggestion Eytan Daniyalzade and Tim Lipus 1. Introduction Facebook is a social networking website with an open platform that enables developers to extract and utilize user information

More information

VEHICLE LOCALISATION AND CLASSIFICATION IN URBAN CCTV STREAMS

VEHICLE LOCALISATION AND CLASSIFICATION IN URBAN CCTV STREAMS VEHICLE LOCALISATION AND CLASSIFICATION IN URBAN CCTV STREAMS Norbert Buch 1, Mark Cracknell 2, James Orwell 1 and Sergio A. Velastin 1 1. Kingston University, Penrhyn Road, Kingston upon Thames, KT1 2EE,

More information

Learning Example. Machine learning and our focus. Another Example. An example: data (loan application) The data and the goal

Learning Example. Machine learning and our focus. Another Example. An example: data (loan application) The data and the goal Learning Example Chapter 18: Learning from Examples 22c:145 An emergency room in a hospital measures 17 variables (e.g., blood pressure, age, etc) of newly admitted patients. A decision is needed: whether

More information

Active Learning SVM for Blogs recommendation

Active Learning SVM for Blogs recommendation Active Learning SVM for Blogs recommendation Xin Guan Computer Science, George Mason University Ⅰ.Introduction In the DH Now website, they try to review a big amount of blogs and articles and find the

More information

Segmentation of building models from dense 3D point-clouds

Segmentation of building models from dense 3D point-clouds Segmentation of building models from dense 3D point-clouds Joachim Bauer, Konrad Karner, Konrad Schindler, Andreas Klaus, Christopher Zach VRVis Research Center for Virtual Reality and Visualization, Institute

More information

L25: Ensemble learning

L25: Ensemble learning L25: Ensemble learning Introduction Methods for constructing ensembles Combination strategies Stacked generalization Mixtures of experts Bagging Boosting CSCE 666 Pattern Analysis Ricardo Gutierrez-Osuna

More information

Artificial Neural Network, Decision Tree and Statistical Techniques Applied for Designing and Developing E-mail Classifier

Artificial Neural Network, Decision Tree and Statistical Techniques Applied for Designing and Developing E-mail Classifier International Journal of Recent Technology and Engineering (IJRTE) ISSN: 2277-3878, Volume-1, Issue-6, January 2013 Artificial Neural Network, Decision Tree and Statistical Techniques Applied for Designing

More information

Random Forest Based Imbalanced Data Cleaning and Classification

Random Forest Based Imbalanced Data Cleaning and Classification Random Forest Based Imbalanced Data Cleaning and Classification Jie Gu Software School of Tsinghua University, China Abstract. The given task of PAKDD 2007 data mining competition is a typical problem

More information

ALGEBRA. sequence, term, nth term, consecutive, rule, relationship, generate, predict, continue increase, decrease finite, infinite

ALGEBRA. sequence, term, nth term, consecutive, rule, relationship, generate, predict, continue increase, decrease finite, infinite ALGEBRA Pupils should be taught to: Generate and describe sequences As outcomes, Year 7 pupils should, for example: Use, read and write, spelling correctly: sequence, term, nth term, consecutive, rule,

More information

Data Mining Algorithms Part 1. Dejan Sarka

Data Mining Algorithms Part 1. Dejan Sarka Data Mining Algorithms Part 1 Dejan Sarka Join the conversation on Twitter: @DevWeek #DW2015 Instructor Bio Dejan Sarka (dsarka@solidq.com) 30 years of experience SQL Server MVP, MCT, 13 books 7+ courses

More information

Big Data Analytics CSCI 4030

Big Data Analytics CSCI 4030 High dim. data Graph data Infinite data Machine learning Apps Locality sensitive hashing PageRank, SimRank Filtering data streams SVM Recommen der systems Clustering Community Detection Web advertising

More information

Supporting Online Material for

Supporting Online Material for www.sciencemag.org/cgi/content/full/313/5786/504/dc1 Supporting Online Material for Reducing the Dimensionality of Data with Neural Networks G. E. Hinton* and R. R. Salakhutdinov *To whom correspondence

More information

Pixels Description of scene contents. Rob Fergus (NYU) Antonio Torralba (MIT) Yair Weiss (Hebrew U.) William T. Freeman (MIT) Banksy, 2006

Pixels Description of scene contents. Rob Fergus (NYU) Antonio Torralba (MIT) Yair Weiss (Hebrew U.) William T. Freeman (MIT) Banksy, 2006 Object Recognition Large Image Databases and Small Codes for Object Recognition Pixels Description of scene contents Rob Fergus (NYU) Antonio Torralba (MIT) Yair Weiss (Hebrew U.) William T. Freeman (MIT)

More information

Machine Learning Final Project Spam Email Filtering

Machine Learning Final Project Spam Email Filtering Machine Learning Final Project Spam Email Filtering March 2013 Shahar Yifrah Guy Lev Table of Content 1. OVERVIEW... 3 2. DATASET... 3 2.1 SOURCE... 3 2.2 CREATION OF TRAINING AND TEST SETS... 4 2.3 FEATURE

More information

How To Cluster

How To Cluster Data Clustering Dec 2nd, 2013 Kyrylo Bessonov Talk outline Introduction to clustering Types of clustering Supervised Unsupervised Similarity measures Main clustering algorithms k-means Hierarchical Main

More information

Supervised Learning (Big Data Analytics)

Supervised Learning (Big Data Analytics) Supervised Learning (Big Data Analytics) Vibhav Gogate Department of Computer Science The University of Texas at Dallas Practical advice Goal of Big Data Analytics Uncover patterns in Data. Can be used

More information

3D Model based Object Class Detection in An Arbitrary View

3D Model based Object Class Detection in An Arbitrary View 3D Model based Object Class Detection in An Arbitrary View Pingkun Yan, Saad M. Khan, Mubarak Shah School of Electrical Engineering and Computer Science University of Central Florida http://www.eecs.ucf.edu/

More information

Chapter 6. The stacking ensemble approach

Chapter 6. The stacking ensemble approach 82 This chapter proposes the stacking ensemble approach for combining different data mining classifiers to get better performance. Other combination techniques like voting, bagging etc are also described

More information

Image Segmentation and Registration

Image Segmentation and Registration Image Segmentation and Registration Dr. Christine Tanner (tanner@vision.ee.ethz.ch) Computer Vision Laboratory, ETH Zürich Dr. Verena Kaynig, Machine Learning Laboratory, ETH Zürich Outline Segmentation

More information

COMPARISON OF OBJECT BASED AND PIXEL BASED CLASSIFICATION OF HIGH RESOLUTION SATELLITE IMAGES USING ARTIFICIAL NEURAL NETWORKS

COMPARISON OF OBJECT BASED AND PIXEL BASED CLASSIFICATION OF HIGH RESOLUTION SATELLITE IMAGES USING ARTIFICIAL NEURAL NETWORKS COMPARISON OF OBJECT BASED AND PIXEL BASED CLASSIFICATION OF HIGH RESOLUTION SATELLITE IMAGES USING ARTIFICIAL NEURAL NETWORKS B.K. Mohan and S. N. Ladha Centre for Studies in Resources Engineering IIT

More information

OUTLIER ANALYSIS. Data Mining 1

OUTLIER ANALYSIS. Data Mining 1 OUTLIER ANALYSIS Data Mining 1 What Are Outliers? Outlier: A data object that deviates significantly from the normal objects as if it were generated by a different mechanism Ex.: Unusual credit card purchase,

More information

Data Mining. Cluster Analysis: Advanced Concepts and Algorithms

Data Mining. Cluster Analysis: Advanced Concepts and Algorithms Data Mining Cluster Analysis: Advanced Concepts and Algorithms Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 1 More Clustering Methods Prototype-based clustering Density-based clustering Graph-based

More information

Part-Based Recognition

Part-Based Recognition Part-Based Recognition Benedict Brown CS597D, Fall 2003 Princeton University CS 597D, Part-Based Recognition p. 1/32 Introduction Many objects are made up of parts It s presumably easier to identify simple

More information

Application of Face Recognition to Person Matching in Trains

Application of Face Recognition to Person Matching in Trains Application of Face Recognition to Person Matching in Trains May 2008 Objective Matching of person Context : in trains Using face recognition and face detection algorithms With a video-surveillance camera

More information

Leveraging Ensemble Models in SAS Enterprise Miner

Leveraging Ensemble Models in SAS Enterprise Miner ABSTRACT Paper SAS133-2014 Leveraging Ensemble Models in SAS Enterprise Miner Miguel Maldonado, Jared Dean, Wendy Czika, and Susan Haller SAS Institute Inc. Ensemble models combine two or more models to

More information

Robust Real-Time Face Detection

Robust Real-Time Face Detection Robust Real-Time Face Detection International Journal of Computer Vision 57(2), 137 154, 2004 Paul Viola, Michael Jones 授 課 教 授 : 林 信 志 博 士 報 告 者 : 林 宸 宇 報 告 日 期 :96.12.18 Outline Introduction The Boost

More information

Data Mining for Knowledge Management. Classification

Data Mining for Knowledge Management. Classification 1 Data Mining for Knowledge Management Classification Themis Palpanas University of Trento http://disi.unitn.eu/~themis Data Mining for Knowledge Management 1 Thanks for slides to: Jiawei Han Eamonn Keogh

More information

Improving performance of Memory Based Reasoning model using Weight of Evidence coded categorical variables

Improving performance of Memory Based Reasoning model using Weight of Evidence coded categorical variables Paper 10961-2016 Improving performance of Memory Based Reasoning model using Weight of Evidence coded categorical variables Vinoth Kumar Raja, Vignesh Dhanabal and Dr. Goutam Chakraborty, Oklahoma State

More information

Open-Set Face Recognition-based Visitor Interface System

Open-Set Face Recognition-based Visitor Interface System Open-Set Face Recognition-based Visitor Interface System Hazım K. Ekenel, Lorant Szasz-Toth, and Rainer Stiefelhagen Computer Science Department, Universität Karlsruhe (TH) Am Fasanengarten 5, Karlsruhe

More information

Face detection is a process of localizing and extracting the face region from the

Face detection is a process of localizing and extracting the face region from the Chapter 4 FACE NORMALIZATION 4.1 INTRODUCTION Face detection is a process of localizing and extracting the face region from the background. The detected face varies in rotation, brightness, size, etc.

More information

Canny Edge Detection

Canny Edge Detection Canny Edge Detection 09gr820 March 23, 2009 1 Introduction The purpose of edge detection in general is to significantly reduce the amount of data in an image, while preserving the structural properties

More information

SVM Ensemble Model for Investment Prediction

SVM Ensemble Model for Investment Prediction 19 SVM Ensemble Model for Investment Prediction Chandra J, Assistant Professor, Department of Computer Science, Christ University, Bangalore Siji T. Mathew, Research Scholar, Christ University, Dept of

More information

The Delicate Art of Flower Classification

The Delicate Art of Flower Classification The Delicate Art of Flower Classification Paul Vicol Simon Fraser University University Burnaby, BC pvicol@sfu.ca Note: The following is my contribution to a group project for a graduate machine learning

More information

G E N E R A L A P P R O A CH: LO O K I N G F O R D O M I N A N T O R I E N T A T I O N I N I M A G E P A T C H E S

G E N E R A L A P P R O A CH: LO O K I N G F O R D O M I N A N T O R I E N T A T I O N I N I M A G E P A T C H E S G E N E R A L A P P R O A CH: LO O K I N G F O R D O M I N A N T O R I E N T A T I O N I N I M A G E P A T C H E S In object categorization applications one of the main problems is that objects can appear

More information

Automatic 3D Reconstruction via Object Detection and 3D Transformable Model Matching CS 269 Class Project Report

Automatic 3D Reconstruction via Object Detection and 3D Transformable Model Matching CS 269 Class Project Report Automatic 3D Reconstruction via Object Detection and 3D Transformable Model Matching CS 69 Class Project Report Junhua Mao and Lunbo Xu University of California, Los Angeles mjhustc@ucla.edu and lunbo

More information

Assessment. Presenter: Yupu Zhang, Guoliang Jin, Tuo Wang Computer Vision 2008 Fall

Assessment. Presenter: Yupu Zhang, Guoliang Jin, Tuo Wang Computer Vision 2008 Fall Automatic Photo Quality Assessment Presenter: Yupu Zhang, Guoliang Jin, Tuo Wang Computer Vision 2008 Fall Estimating i the photorealism of images: Distinguishing i i paintings from photographs h Florin

More information

Digital image processing

Digital image processing 746A27 Remote Sensing and GIS Lecture 4 Digital image processing Chandan Roy Guest Lecturer Department of Computer and Information Science Linköping University Digital Image Processing Most of the common

More information

Going Big in Data Dimensionality:

Going Big in Data Dimensionality: LUDWIG- MAXIMILIANS- UNIVERSITY MUNICH DEPARTMENT INSTITUTE FOR INFORMATICS DATABASE Going Big in Data Dimensionality: Challenges and Solutions for Mining High Dimensional Data Peer Kröger Lehrstuhl für

More information

Data Mining Part 5. Prediction

Data Mining Part 5. Prediction Data Mining Part 5. Prediction 5.1 Spring 2010 Instructor: Dr. Masoud Yaghini Outline Classification vs. Numeric Prediction Prediction Process Data Preparation Comparing Prediction Methods References Classification

More information

Classification algorithm in Data mining: An Overview

Classification algorithm in Data mining: An Overview Classification algorithm in Data mining: An Overview S.Neelamegam #1, Dr.E.Ramaraj *2 #1 M.phil Scholar, Department of Computer Science and Engineering, Alagappa University, Karaikudi. *2 Professor, Department

More information

Data Mining Cluster Analysis: Basic Concepts and Algorithms. Lecture Notes for Chapter 8. Introduction to Data Mining

Data Mining Cluster Analysis: Basic Concepts and Algorithms. Lecture Notes for Chapter 8. Introduction to Data Mining Data Mining Cluster Analysis: Basic Concepts and Algorithms Lecture Notes for Chapter 8 by Tan, Steinbach, Kumar 1 What is Cluster Analysis? Finding groups of objects such that the objects in a group will

More information

Ensemble Methods. Knowledge Discovery and Data Mining 2 (VU) (707.004) Roman Kern. KTI, TU Graz 2015-03-05

Ensemble Methods. Knowledge Discovery and Data Mining 2 (VU) (707.004) Roman Kern. KTI, TU Graz 2015-03-05 Ensemble Methods Knowledge Discovery and Data Mining 2 (VU) (707004) Roman Kern KTI, TU Graz 2015-03-05 Roman Kern (KTI, TU Graz) Ensemble Methods 2015-03-05 1 / 38 Outline 1 Introduction 2 Classification

More information

CAB TRAVEL TIME PREDICTI - BASED ON HISTORICAL TRIP OBSERVATION

CAB TRAVEL TIME PREDICTI - BASED ON HISTORICAL TRIP OBSERVATION CAB TRAVEL TIME PREDICTI - BASED ON HISTORICAL TRIP OBSERVATION N PROBLEM DEFINITION Opportunity New Booking - Time of Arrival Shortest Route (Distance/Time) Taxi-Passenger Demand Distribution Value Accurate

More information

MA 323 Geometric Modelling Course Notes: Day 02 Model Construction Problem

MA 323 Geometric Modelling Course Notes: Day 02 Model Construction Problem MA 323 Geometric Modelling Course Notes: Day 02 Model Construction Problem David L. Finn November 30th, 2004 In the next few days, we will introduce some of the basic problems in geometric modelling, and

More information

A New Approach to Cutting Tetrahedral Meshes

A New Approach to Cutting Tetrahedral Meshes A New Approach to Cutting Tetrahedral Meshes Menion Croll August 9, 2007 1 Introduction Volumetric models provide a realistic representation of three dimensional objects above and beyond what traditional

More information

Galaxy Morphological Classification

Galaxy Morphological Classification Galaxy Morphological Classification Jordan Duprey and James Kolano Abstract To solve the issue of galaxy morphological classification according to a classification scheme modelled off of the Hubble Sequence,

More information

Human Pose Estimation from RGB Input Using Synthetic Training Data

Human Pose Estimation from RGB Input Using Synthetic Training Data Human Pose Estimation from RGB Input Using Synthetic Training Data Oscar Danielsson and Omid Aghazadeh School of Computer Science and Communication KTH, Stockholm, Sweden {osda02, omida}@kth.se arxiv:1405.1213v2

More information

Clustering. Danilo Croce Web Mining & Retrieval a.a. 2015/201 16/03/2016

Clustering. Danilo Croce Web Mining & Retrieval a.a. 2015/201 16/03/2016 Clustering Danilo Croce Web Mining & Retrieval a.a. 2015/201 16/03/2016 1 Supervised learning vs. unsupervised learning Supervised learning: discover patterns in the data that relate data attributes with

More information

Lecture 10: Regression Trees

Lecture 10: Regression Trees Lecture 10: Regression Trees 36-350: Data Mining October 11, 2006 Reading: Textbook, sections 5.2 and 10.5. The next three lectures are going to be about a particular kind of nonlinear predictive model,

More information

Pigeonhole Principle Solutions

Pigeonhole Principle Solutions Pigeonhole Principle Solutions 1. Show that if we take n + 1 numbers from the set {1, 2,..., 2n}, then some pair of numbers will have no factors in common. Solution: Note that consecutive numbers (such

More information

TRTML - A Tripleset Recommendation Tool based on Supervised Learning Algorithms

TRTML - A Tripleset Recommendation Tool based on Supervised Learning Algorithms TRTML - A Tripleset Recommendation Tool based on Supervised Learning Algorithms Alexander Arturo Mera Caraballo 1, Narciso Moura Arruda Júnior 2, Bernardo Pereira Nunes 1, Giseli Rabello Lopes 1, Marco

More information

FAST APPROXIMATE NEAREST NEIGHBORS WITH AUTOMATIC ALGORITHM CONFIGURATION

FAST APPROXIMATE NEAREST NEIGHBORS WITH AUTOMATIC ALGORITHM CONFIGURATION FAST APPROXIMATE NEAREST NEIGHBORS WITH AUTOMATIC ALGORITHM CONFIGURATION Marius Muja, David G. Lowe Computer Science Department, University of British Columbia, Vancouver, B.C., Canada mariusm@cs.ubc.ca,

More information

Analysis of kiva.com Microlending Service! Hoda Eydgahi Julia Ma Andy Bardagjy December 9, 2010 MAS.622j

Analysis of kiva.com Microlending Service! Hoda Eydgahi Julia Ma Andy Bardagjy December 9, 2010 MAS.622j Analysis of kiva.com Microlending Service! Hoda Eydgahi Julia Ma Andy Bardagjy December 9, 2010 MAS.622j What is Kiva? An organization that allows people to lend small amounts of money via the Internet

More information

T O B C A T C A S E G E O V I S A T DETECTIE E N B L U R R I N G V A N P E R S O N E N IN P A N O R A MISCHE BEELDEN

T O B C A T C A S E G E O V I S A T DETECTIE E N B L U R R I N G V A N P E R S O N E N IN P A N O R A MISCHE BEELDEN T O B C A T C A S E G E O V I S A T DETECTIE E N B L U R R I N G V A N P E R S O N E N IN P A N O R A MISCHE BEELDEN Goal is to process 360 degree images and detect two object categories 1. Pedestrians,

More information

FRAUD DETECTION IN ELECTRIC POWER DISTRIBUTION NETWORKS USING AN ANN-BASED KNOWLEDGE-DISCOVERY PROCESS

FRAUD DETECTION IN ELECTRIC POWER DISTRIBUTION NETWORKS USING AN ANN-BASED KNOWLEDGE-DISCOVERY PROCESS FRAUD DETECTION IN ELECTRIC POWER DISTRIBUTION NETWORKS USING AN ANN-BASED KNOWLEDGE-DISCOVERY PROCESS Breno C. Costa, Bruno. L. A. Alberto, André M. Portela, W. Maduro, Esdras O. Eler PDITec, Belo Horizonte,

More information

LCs for Binary Classification

LCs for Binary Classification Linear Classifiers A linear classifier is a classifier such that classification is performed by a dot product beteen the to vectors representing the document and the category, respectively. Therefore it

More information

Statistical Validation and Data Analytics in ediscovery. Jesse Kornblum

Statistical Validation and Data Analytics in ediscovery. Jesse Kornblum Statistical Validation and Data Analytics in ediscovery Jesse Kornblum Administrivia Silence your mobile Interactive talk Please ask questions 2 Outline Introduction Big Questions What Makes Things Similar?

More information

SPECIAL PERTURBATIONS UNCORRELATED TRACK PROCESSING

SPECIAL PERTURBATIONS UNCORRELATED TRACK PROCESSING AAS 07-228 SPECIAL PERTURBATIONS UNCORRELATED TRACK PROCESSING INTRODUCTION James G. Miller * Two historical uncorrelated track (UCT) processing approaches have been employed using general perturbations

More information

A Non-Linear Schema Theorem for Genetic Algorithms

A Non-Linear Schema Theorem for Genetic Algorithms A Non-Linear Schema Theorem for Genetic Algorithms William A Greene Computer Science Department University of New Orleans New Orleans, LA 70148 bill@csunoedu 504-280-6755 Abstract We generalize Holland

More information

Document Image Retrieval using Signatures as Queries

Document Image Retrieval using Signatures as Queries Document Image Retrieval using Signatures as Queries Sargur N. Srihari, Shravya Shetty, Siyuan Chen, Harish Srinivasan, Chen Huang CEDAR, University at Buffalo(SUNY) Amherst, New York 14228 Gady Agam and

More information

Information Retrieval and Web Search Engines

Information Retrieval and Web Search Engines Information Retrieval and Web Search Engines Lecture 7: Document Clustering December 10 th, 2013 Wolf-Tilo Balke and Kinda El Maarry Institut für Informationssysteme Technische Universität Braunschweig

More information

RANDOM PROJECTIONS FOR SEARCH AND MACHINE LEARNING

RANDOM PROJECTIONS FOR SEARCH AND MACHINE LEARNING = + RANDOM PROJECTIONS FOR SEARCH AND MACHINE LEARNING Stefan Savev Berlin Buzzwords June 2015 KEYWORD-BASED SEARCH Document Data 300 unique words per document 300 000 words in vocabulary Data sparsity:

More information

Feature Subset Selection in E-mail Spam Detection

Feature Subset Selection in E-mail Spam Detection Feature Subset Selection in E-mail Spam Detection Amir Rajabi Behjat, Universiti Technology MARA, Malaysia IT Security for the Next Generation Asia Pacific & MEA Cup, Hong Kong 14-16 March, 2012 Feature

More information

Recognizing Cats and Dogs with Shape and Appearance based Models. Group Member: Chu Wang, Landu Jiang

Recognizing Cats and Dogs with Shape and Appearance based Models. Group Member: Chu Wang, Landu Jiang Recognizing Cats and Dogs with Shape and Appearance based Models Group Member: Chu Wang, Landu Jiang Abstract Recognizing cats and dogs from images is a challenging competition raised by Kaggle platform

More information

DATA MINING CLUSTER ANALYSIS: BASIC CONCEPTS

DATA MINING CLUSTER ANALYSIS: BASIC CONCEPTS DATA MINING CLUSTER ANALYSIS: BASIC CONCEPTS 1 AND ALGORITHMS Chiara Renso KDD-LAB ISTI- CNR, Pisa, Italy WHAT IS CLUSTER ANALYSIS? Finding groups of objects such that the objects in a group will be similar

More information

Comparison of Non-linear Dimensionality Reduction Techniques for Classification with Gene Expression Microarray Data

Comparison of Non-linear Dimensionality Reduction Techniques for Classification with Gene Expression Microarray Data CMPE 59H Comparison of Non-linear Dimensionality Reduction Techniques for Classification with Gene Expression Microarray Data Term Project Report Fatma Güney, Kübra Kalkan 1/15/2013 Keywords: Non-linear

More information

Android Ros Application

Android Ros Application Android Ros Application Advanced Practical course : Sensor-enabled Intelligent Environments 2011/2012 Presentation by: Rim Zahir Supervisor: Dejan Pangercic SIFT Matching Objects Android Camera Topic :

More information

Data Mining. Nonlinear Classification

Data Mining. Nonlinear Classification Data Mining Unit # 6 Sajjad Haider Fall 2014 1 Nonlinear Classification Classes may not be separable by a linear boundary Suppose we randomly generate a data set as follows: X has range between 0 to 15

More information

W6.B.1. FAQs CS535 BIG DATA W6.B.3. 4. If the distance of the point is additionally less than the tight distance T 2, remove it from the original set

W6.B.1. FAQs CS535 BIG DATA W6.B.3. 4. If the distance of the point is additionally less than the tight distance T 2, remove it from the original set http://wwwcscolostateedu/~cs535 W6B W6B2 CS535 BIG DAA FAQs Please prepare for the last minute rush Store your output files safely Partial score will be given for the output from less than 50GB input Computer

More information

Tattoo Detection for Soft Biometric De-Identification Based on Convolutional NeuralNetworks

Tattoo Detection for Soft Biometric De-Identification Based on Convolutional NeuralNetworks 1 Tattoo Detection for Soft Biometric De-Identification Based on Convolutional NeuralNetworks Tomislav Hrkać, Karla Brkić, Zoran Kalafatić Faculty of Electrical Engineering and Computing University of

More information

1 if 1 x 0 1 if 0 x 1

1 if 1 x 0 1 if 0 x 1 Chapter 3 Continuity In this chapter we begin by defining the fundamental notion of continuity for real valued functions of a single real variable. When trying to decide whether a given function is or

More information

Gerry Hobbs, Department of Statistics, West Virginia University

Gerry Hobbs, Department of Statistics, West Virginia University Decision Trees as a Predictive Modeling Method Gerry Hobbs, Department of Statistics, West Virginia University Abstract Predictive modeling has become an important area of interest in tasks such as credit

More information

Introduction to data mining. Example of remote sensing image analysis

Introduction to data mining. Example of remote sensing image analysis Ocean's Big Data Mining, 2014 (Data mining in large sets of complex oceanic data: new challenges and solutions) 8-9 Sep 2014 Brest (France) Monday, September 8, 2014, 4:00 pm - 5:30 pm Introduction to

More information

CS231M Project Report - Automated Real-Time Face Tracking and Blending

CS231M Project Report - Automated Real-Time Face Tracking and Blending CS231M Project Report - Automated Real-Time Face Tracking and Blending Steven Lee, slee2010@stanford.edu June 6, 2015 1 Introduction Summary statement: The goal of this project is to create an Android

More information

DYNAMIC FUZZY PATTERN RECOGNITION WITH APPLICATIONS TO FINANCE AND ENGINEERING LARISA ANGSTENBERGER

DYNAMIC FUZZY PATTERN RECOGNITION WITH APPLICATIONS TO FINANCE AND ENGINEERING LARISA ANGSTENBERGER DYNAMIC FUZZY PATTERN RECOGNITION WITH APPLICATIONS TO FINANCE AND ENGINEERING LARISA ANGSTENBERGER Kluwer Academic Publishers Boston/Dordrecht/London TABLE OF CONTENTS FOREWORD ACKNOWLEDGEMENTS XIX XXI

More information

Information Theory and Coding Prof. S. N. Merchant Department of Electrical Engineering Indian Institute of Technology, Bombay

Information Theory and Coding Prof. S. N. Merchant Department of Electrical Engineering Indian Institute of Technology, Bombay Information Theory and Coding Prof. S. N. Merchant Department of Electrical Engineering Indian Institute of Technology, Bombay Lecture - 17 Shannon-Fano-Elias Coding and Introduction to Arithmetic Coding

More information

Role of Neural network in data mining

Role of Neural network in data mining Role of Neural network in data mining Chitranjanjit kaur Associate Prof Guru Nanak College, Sukhchainana Phagwara,(GNDU) Punjab, India Pooja kapoor Associate Prof Swami Sarvanand Group Of Institutes Dinanagar(PTU)

More information

International Journal of Advance Research in Computer Science and Management Studies

International Journal of Advance Research in Computer Science and Management Studies Volume 2, Issue 12, December 2014 ISSN: 2321 7782 (Online) International Journal of Advance Research in Computer Science and Management Studies Research Article / Survey Paper / Case Study Available online

More information

Calculation of Minimum Distances. Minimum Distance to Means. Σi i = 1

Calculation of Minimum Distances. Minimum Distance to Means. Σi i = 1 Minimum Distance to Means Similar to Parallelepiped classifier, but instead of bounding areas, the user supplies spectral class means in n-dimensional space and the algorithm calculates the distance between

More information

Machine Learning. CUNY Graduate Center, Spring 2013. Professor Liang Huang. huang@cs.qc.cuny.edu

Machine Learning. CUNY Graduate Center, Spring 2013. Professor Liang Huang. huang@cs.qc.cuny.edu Machine Learning CUNY Graduate Center, Spring 2013 Professor Liang Huang huang@cs.qc.cuny.edu http://acl.cs.qc.edu/~lhuang/teaching/machine-learning Logistics Lectures M 9:30-11:30 am Room 4419 Personnel

More information

Data Warehousing und Data Mining

Data Warehousing und Data Mining Data Warehousing und Data Mining Multidimensionale Indexstrukturen Ulf Leser Wissensmanagement in der Bioinformatik Content of this Lecture Multidimensional Indexing Grid-Files Kd-trees Ulf Leser: Data

More information

Signature Segmentation from Machine Printed Documents using Conditional Random Field

Signature Segmentation from Machine Printed Documents using Conditional Random Field 2011 International Conference on Document Analysis and Recognition Signature Segmentation from Machine Printed Documents using Conditional Random Field Ranju Mandal Computer Vision and Pattern Recognition

More information

R-trees. R-Trees: A Dynamic Index Structure For Spatial Searching. R-Tree. Invariants

R-trees. R-Trees: A Dynamic Index Structure For Spatial Searching. R-Tree. Invariants R-Trees: A Dynamic Index Structure For Spatial Searching A. Guttman R-trees Generalization of B+-trees to higher dimensions Disk-based index structure Occupancy guarantee Multiple search paths Insertions

More information