THREE PHASE vs SINGLE PHASE SUPPLY

Size: px
Start display at page:

Download "THREE PHASE vs SINGLE PHASE SUPPLY"

Transcription

1 THREE PHASE vs SINGLE PHASE SUPPLY Presently 3-ø AC system is very popular and being used worldwide for power generation, power transmission, distribution and for electric motors. Three phase system has the following advantages as compare to single phase system: 1. Power to weight ratio of 3-ø alternator is high as compare to 1-ø alternator. Means for generation for same amount of Electric Power, the size of 3-ø alternator is small as compare to 1-ø Alternator. Hence, the overall cost of alternator is reduced for generation of same amount of power. Moreover, of due to reduction in weight, transportation and 1

2 installation alternator become convenient and less space is required to accommodate the alternator in power house. 2. For electric power transmission and distribution of same amount of power, the requirement of conductor material is less in 3-ø system as compare to 1-ø system. Hence, the 3-ø transmission and distribution system is economical as compare 1-ø system. 3. Let us consider the power produced by single phase supply and 3-phase supply at unity power factor. Wave form of power produce due 1-phase supply at unity power factor is shown in figure (C) and Wave form of power produced due to 3-phase supply is shown in figure (D) below. 2

3 From power wave forms shown in figure (C) and (D) above it is clear that in 3- phase system, the instantaneous power is always constant over the cycle results in smooth and vibration free operation of machine. Whereas in 1-ø system the instantaneous power is pulsating hence change over the cycle, which leads to vibrations in machines. Power to weight ratio of three phase induction motor is high as compare to single phase induction motor. Means for same amount of Mechanical Power, the size of three phase induction motor is small as compare to single phase induction motor. Hence, the overall cost of induction motor is reduced. Moreover, due to reduction in weight, transportation and installation of induction motor become convenient and less space is required to accommodate the Induction motor. 3-phase induction motor is self-started as the magnetic flux produced by 3- phase supply is rotating in nature with constant magnitude. Whereas 1-ø induction motor is not self-started as the magnetic flux produced by 1-ø supply is pulsating in nature. Hence, we have to make some arrangement to make the 1-ø induction motor self-started. Which further increase the cost of 1-ø induction motor. 3-phase motor is having better power factor and efficiency as compare to 1-ø motor. 3

4 Power to weight ratio of 3-phase transformer is high as compare to 1-ø transformer. Means for same amount of Electric Power, the size of 3-phase transformer is small as compare to 1-ø transformer. Hence, the overall cost of transformer is reduced. Moreover, due to reduction in weight, transportation and installation of transformer become convenient and less space is required to accommodate the transformer. If fault occurs in any winding of 3-phase transformer, the rest of two winding can be used in open delta to serve the 3-phase load which is not possible in 1-ø transformer. This ability of 3-phase transformer further increase the reliability of 3-phase transformer. A 3-phase system can be used to feed a 1-ø load, whereas vice-versa is not possible. DC rectified from 3-phase supply is having the ripple factor 4% and DC rectified from 1-ø supply is having the ripple factor 48.2 %. Mean DC rectified from 3-ø supply contains less ripples as compare to DC rectified from 1-ø supply. Hence the requirement of filter is reduced for DC rectified from 3-phase supply. Which reduce the overall cost of convector. From above it clear the 3-phase system is more economical, efficient, reliable and convenient as compare to 1-ø system. There are two types of system available in electric circuit, single phase and three phase system. In single phase circuit, there will be only one phase, i.e the current will flow through only one wire and there will be one return path called neutral line to complete the circuit. So in single phase minimum amount of power can be transported. Here the generating station and load station will also be single phase. This is an old system using from previous time. In 1882, new invention has been done on polyphase system, that more than one phase can be used for generating, transmitting and for load system. Three phase circuit is the polyphase system where three phases are send together from the generator to the load. Each phase are having a phase difference of 120, i.e 120 angle electrically. So from the total of 360, three phases are equally divided into 120 each. The power in three phase system is continuous as all the three phases are involved in generating the total power. The sinusoidal waves for 3 phase system is shown below- 4

5 The three phases can be used as single phase each. So if the load is single phase, then one phase can be taken from the three phase circuit and the neutral can be used as ground to complete the circuit. Why Three Phase is preferred Over Single Phase? There are various reasons for this question because there are numbers of advantages over single phase circuit. The three phase system can be used as three single phase line so it can act as three single phase system. The three phase generation and single phase generation is same in the generator except the arrangement of coil in the generator to get 120 phase difference. The conductor needed in three phase circuit is 75% that of conductor needed in single phase circuit. And also the instantaneous power in single phase system falls down to zero as in single phase we can see from the sinusoidal curve but in three phase system the net power from all the phases gives a continuous power to the load. Till now we can say that there are three voltage source connected together to form a three phase circuit. And actually it is inside the generator. The generator is having three voltage source s which are acting together in 120 phase difference. If we can arrange three single phase circuit with 120 phase difference, then it will become a three phase circuit. So 120 phase difference is must otherwise the circuit will not work, the three phase load will not be able to get active and it may also cause damage to the system. The size or metal quantity of three phase devices is not having much difference. Now if we consider the transformer, it will be almost same size for both single phase and three phase because transformer will make only the linkage of flux. So the three phase system will have higher efficiency compared to single phase because for the same or little difference in mass of transformer, three phase line will be out 5

6 whereas in single phase it will be only one. And losses will be minimum in three phase circuit. So overall in conclusion the three phase system will have better and higher efficiency compared to the single phase system. In three phase circuit, connections can be given in two types: 1. Star connection 2. Delta connection Star Connection In star connection, there is four wire, three wires are phase wire and fourth is neutral which is taken from the star point. Star connection is preferred for long distance power transmission because it is having the neutral point. In this we need to come to the concept of balanced and unbalanced current in power system. When equal current will flow through all the three phases, then it is called as balanced current. And when the current will not be equal in any of the phase, then it is unbalanced current. In this case, during balanced condition there will be no current flowing through the neutral line and hence there is no use of the neutral terminal. But when there will be unbalanced current flowing in the three phase circuit, neutral is having a vital role. It will take the unbalanced current through to the ground and protect the transformer. Unbalanced current affects transformer and it may also cause damage to the transformer and for this star connection is preferred for long distance transmission. The star connection is shown below- 6

7 In star connection, the line voltage is 3 times of phase voltage. Line voltage is the voltage between two phases in three phase circuit and phase voltage is the voltage between one phase to the neutral line. And the current is same for both line and phase. It is shown as expression below If a balance symmetrical load is connected across three phase voltage system in parallel, then the three currents will flow in neutral wire which quantities would be same, but they would be differ by 120 (out of phase), hence the vector sum of these three currents = 0. i.e. I R + I Y + I B = 0. Victorially The voltage between any two terminals or Voltage between Line and Neutral (Star Point) is called Phase voltage or Star voltage. And the voltage between two Lines is called Line to Line Voltage or Line Voltage 7

8 Voltage, Current and Power Values in Star Connection (Y) 1. Line Voltages and Phase Voltages in Star Connection We know that the Line Voltage between Line 1 and Line 2 (from fig 3a) is V RY = V R V Y. (Vector Difference) Thus, to find vector of V RY, increase the Vector of V Y in reverse direction as shown in the dotted form in the below fig 2. Similarly, on the both ends of vector V R and Vector V Y, make perpendicular dotted lines which look like a parallelogram as shown in fig (2). The Diagonal line which divides the parallelogram into two parts, showing the value of V RY. The angle between V Y and V R vectors is 60. Hence, if V R = V Y = V B = V PH, then V RY = 2 x V PH x Cos (60 /2) = 2 x V PH x Cos 30 = 2 x V PH x ( 3/2) Since Cos 30 = 3/2 = 3 V PH Similarly, V YB = V Y V B = 3 V PH And V BR = V B V R = 3 V PH Hence, it is proved that V RY = V YB = V BR is line voltages V L in Star Connection, Therefore, in Star Connection; V L = 3 V PH or V L = 3 E PH 8

9 It is seen from the fig 2 that; Line voltages are 120 apart from each other Line voltages are 30 leading from the corresponding phase voltages The angle Ф between line currents and respective line voltages are (30 +Ф), i.e. each line current is lagging (30 +Ф) from the corresponding line voltage. 2. Line Currents and Phase Currents in Star Connection It is seen from the fig (3a) that each line is in series with individual phase winding, therefore, the value of line current is same as in Phase windings to which the line is connected. i.e.; Current in Line 1 = I R Current in Line 2 = I Y Current in Line 3 = I B Since, the flowing currents in all three lines are same, and the individual current in each line is equal to the corresponding phase current, therefore; I R = I Y = I B = I PH. The phase current 9

10 Line Current = Phase Current I L = I PH In simple words, the value of Line Current and Phase Current is same in Star Connection. 3. Power in Star Connection In a three phase AC circuit, the total True or Active power is the sum of the three phase power. Or the sum of the all three phase powers is the Total Active or True Power. Hence, total active or true power in a three phase AC system; Total True or Active Power = 3 Phase Power Or P = 3 x V PH x I PH x CosФ.. Eq (1) Good to Know: Where Cos Φ = Power factor = the phase angle between Phase Voltage and Phase Current and not between Line current and line voltage. We know that the values of Phase Current and Phase Voltage in Star Connection; I L = I PH V PH = V L / 3.. (From V L = 3 V PH ) Putting these values in power eq. (1) P = 3 x (V L / 3) x I L x CosФ.. (V PH = V L / 3) 10

11 P = 3 x 3 x (V L / 3) x I L x CosФ. {3 = 3x 3} P = 3 x V L x I L x CosФ Hence proved; Power in Star Connection, P = 3 x V PH x I PH x CosФ or P = 3 x V L x I L x CosФ Similarly, Total Reactive Power = Q = 3 x V L x I L x SinФ Good to know: Reactive Power of Inductive coil is taken as Positive (+) and that of a Capacitor as Negative (-). Also, the total apparent power of the three phases Total Apparent Power = S = 3 x V L x I L Or, S = (P 2 + Q 2 ) Delta Connection In delta connection, there is three wires alone and no neutral terminal is taken. Normally delta connection is preferred for short distance due to the problem of unbalanced current in the circuit. The figure is shown below for delta connection. In the load station, ground can be used as neutral path if required. In this system of interconnection, the starting ends of the three phases or coils are connected to the finishing ends of the coil. Or the starting end of the first coil is connected to the finishing end of the second coil and so on (for all three coils) and it looks like a closed mesh or circuit as shown in fig In more clear words, all three coils are connected in series to form a close mesh or circuit. Three wires are taken out from three junctions and the all outgoing currents from junction assumed to be positive. 11

12 In Delta connection, the three windings interconnection looks like a short circuit, but this is not true, if the system is balanced, then the value of the algebraic sum of all voltages around the mesh is zero. When a terminal is open, then there is no chance of flowing currents with basic frequency around the closed mesh. Good to Remember: at any instant, the EMF value of one phase is equal to the resultant of the other two phases EMF values but in the opposite direction. Delta or Mesh Connection System is also called Three Phase Three Wire System (3-Phase 3 Wire) and it is the best and suitable system for AC Power Transmission. In delta connection, the line voltage is same with that of phase voltage. And the line current is 3 times of phase current. It is shown as expression below, 12

13 Voltage, Current and Power Values in Delta Connection (Δ) 1. Line Voltages and Phase Voltages in Delta Connection It is seen from fig 2 that there is only one phase winding between two terminals (i.e. there is one phase winding between two wires). Therefore, in Delta Connection, the voltage between (any pair of) two lines is equal to the phase voltage of the phase winding which is connected between two lines. Since the phase sequence is R Y B, therefore, the direction of voltage from R phase towards Y phase is positive (+), and the voltage of R phase is leading by 120 from Y phase voltage. Likewise, the voltage of Y phase is leading by 120 from the phase voltage of B and its direction is positive from Y towards B. If the line voltage between; Line 1 and Line 2 = V RY Line 2 and Line 3 = V YB Line 3 and Line 1 = V BR Then, we see that V RY leads V YB by 120 and V YB leads V BR by 120. Let s suppose, V RY = V YB = V BR = V L (Line Voltage) Then V L = V PH I.e. in Delta connection, the Line Voltage is equal to the Phase Voltage. 2. Line Currents and Phase Currents in Delta Connection 13

14 It will be noted from the below (fig-2) that the total current of each Line is equal to the vector difference between two phase currents flowing through that line. i.e.; Current in Line 1= I 1 = I R I B Current in Line 2 =I 2 = I Y I R Current in Line 3 =I 3 = I B I Y {Vector Difference} The current of Line 1 can be found by determining the vector difference between I R and I B and we can do that by increasing the I B Vector in reverse, so that, I R and I B makes a parallelogram. The diagonal of that parallelogram shows the vector difference of I R and I B which is equal to Current in Line 1= I 1. Moreover, by reversing the vector of I B, it may indicate as (-I B ), therefore, the angle between I R and -I B (I B, when reversed = -I B ) is 60. If, I R = I Y = I B = I PH. The phase currents Then; The current flowing in Line 1 would be; I L or I 1 = 2 x I PH x Cos (60 /2) 14

15 = 2 x I PH x Cos 30 = 2 x I PH x ( 3/2) Since Cos 30 = 3/2 = 3 I PH i.e. In Delta Connection, The Line current is 3 times of Phase Current Similarly, we can find the reaming two Line currents as same as above. i.e., I 2 = I Y I R Vector Difference = 3 I PH I 3 = I B I Y Vector difference = 3 I PH As, all the Line current are equal in magnitude i.e. I 1 = I 2 = I 3 = I L Hence IL = 3 I PH It is seen from the fig above that; The Line Currents are 120 apart from each other Line currents are lagging by 30 from their corresponding Phase Currents The angle Ф between line currents and respective line voltages is (30 +Ф), i.e. each line current is lagging by (30 +Ф) from the corresponding line voltage. 3. Power in Delta Connection & GAIN We know that the power of each phase Power / Phase = V PH x I PH x CosФ And the total power of three phases; Total Power = P = 3 x V PH x I PH x CosФ.. (1) We know that the values of Phase Current and Phase Voltage in Delta Connection; BEAM 15

16 I PH = I L / / 3.. (From IL = 3 I PH ) V PH = V L Putting these values in power eq. (1) P = 3 x V L x ( I L / 3) x CosФ (I PH = I L / / 3) P = 3 x 3 x V L x ( I L / 3) x CosФ { 3 = 3x 3 } P = 3 x V L x I L x CosФ Hence proved; Power in Delta Connection, P = 3 x V PH x I PH x CosФ. or P = 3 x V L x I L x CosФ Good to Know: Where Cos Φ = Power factor = the phase angle between Phase Voltage and Phase Current and not between Line current and line voltage. Good to Remember: In both Star and Delta Connections, The total power on balanced load is same. I.e. total power in a Three Phase System = P = 3 x V L x I L x CosФ Good to know: Balanced System is a system where: All three phase voltages are equal in magnitude All phase voltages are in phase by each other i.e. 360 /3 = 120 All three phase Currents are equal in magnitude All phase Currents are in phase by each other i.e. 360 /3 = 120 A three phase balanced load is a system in which the load connected across three phases are identical. 16

17 In three phase circuit, star and delta connection can be arranged in four different ways- 1. Star-Star connection 2. Star-Delta connection 3. Delta-Star connection 4. Delta-Delta connection But the power is independent of the circuit arrangement of the three phase system. The net power in the circuit will be same in both star and delta connection. The power in three phase circuit can be calculated from the equation below, Since, there is three phases, so the multiple of 3 is made in the normal power equation and the PF is power factor. Power factor is a very important factor in three phase system and some times due to certain error, it is corrected by using capacitors. Comparison between Star and Delta Connections Star (Y) Connection In STAR connection, the starting or finishing ends (Similar ends) of three coils are connected together to form the neutral point. A common wire is taken out from the neutral point which is called Neutral. Delta (Δ) Connection In DELTA connection, the opposite ends of three coils are connected together. In other words, the end of each coil is connected with the start of another coil, and three wires are taken out from the coil joints There is a Neutral or Star Point Three phase four wire system is derived from Star Connections (3-Phase, 4 Wires System) We may Also derived 3 Phase 3 Wire System from Star No Neutral Point in Delta Connection Three phase three wire system is derived from Delta Connections (3-Phase, 3 Wires System) 17

18 Connection Line Current is Equal to Phase Current. i.e. Line Current = Phase Current I L = I PH Line Voltage is Equal to Phase Voltage. i.e. Line Voltage = Phase Voltage V L = V PH Line Voltage is 3 times of Phase Voltage. i.e. V L = 3 V PH The Total Power of three phases could be found by P = 3 x V L x I L x CosФ. Or P = 3 x V PH x I PH x CosФ The speeds of Star connected motors are slow as they receive 1/ 3 voltage. In Star Connection, the phase voltage is low as 1/ 3 of the line voltage, so, it needs low number of turns, hence, saving in copper. Low insulation required as phase voltage is low In Power Transmission, Star Connection system is general and typical to be used. Line Current is 3 times of Phase Current. i.e. I L = 3 I PH The Total Power of three phases could be found by P = 3 x V L x I L x CosФ or P = 3 x V PH x I PH x CosФ The speeds of Delta connected motors are high because each phase gets the total of line voltage In Delta connection, The phase voltage is equal to the line voltage, hence, it needs more number of turns. Heavy insulation required as Phase voltage = Line Voltage. In Power Distribution and industries, Delta Connection is general and typical to be used. 18

19 STAR DELTA TRANSFORMATIONS 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

52 52

53 53

54 54

55 55

56 56

57 57

58 58

59 59

60 60

61 61

62 62

63 63

64 64

65 65

66 66

67 67

68 68

69 69

70 PHASE CONTROLLED RECTIFIERS OR CONVERTERS 70

71 71

72 72

73 73

74 74

75 75

76 76

77 77

78 78

79 79

80 80

81 81

82 82

83 83

84 84

85 85

86 86

87 87

88 88

89 89

90 90

Three phase circuits

Three phase circuits Three phase circuits THREE PHASE CIRCUITS THREE-PHASE ADVANTAGES 1. The horsepower rating of three-phase motors and the kva rating of three-phase transformers are 150% greater than single-phase motors

More information

The generation and supply of electricity within the U.K is achieved through the use of a 3-phase system.

The generation and supply of electricity within the U.K is achieved through the use of a 3-phase system. Three Phase Electricity Supplies and Systems The generation and supply of electricity within the U.K is achieved through the use of a 3-phase system. This consists of 3 separate phase conductors along

More information

Chapter 24. Three-Phase Voltage Generation

Chapter 24. Three-Phase Voltage Generation Chapter 24 Three-Phase Systems Three-Phase Voltage Generation Three-phase generators Three sets of windings and produce three ac voltages Windings are placed 120 apart Voltages are three identical sinusoidal

More information

SAMPLE OF THE STUDY MATERIAL PART OF CHAPTER 3. Symmetrical Components & Faults Calculations

SAMPLE OF THE STUDY MATERIAL PART OF CHAPTER 3. Symmetrical Components & Faults Calculations SAMPLE OF THE STUDY MATERIAL PART OF CHAPTER 3 3.0 Introduction Fortescue's work proves that an unbalanced system of 'n' related phasors can be resolved into 'n' systems of balanced phasors called the

More information

Power measurement in balanced 3 phase circuits and power factor improvement. 1 Power in Single Phase Circuits. Experiment no 1

Power measurement in balanced 3 phase circuits and power factor improvement. 1 Power in Single Phase Circuits. Experiment no 1 Experiment no 1 Power measurement in balanced 3 phase circuits and power factor improvement 1 Power in Single Phase Circuits Let v = m cos(ωt) = cos(ωt) is the voltage applied to a R-L circuit and i =

More information

Prepared By: Sheilani Binti Shaari Department of Electrical Engineering/PKB

Prepared By: Sheilani Binti Shaari Department of Electrical Engineering/PKB Prepared By: Sheilani Binti Shaari Department of Electrical Engineering/ Course Learning Outcome (CLO) Upon completion of this course, students should be able to: Apply the principles of three phase systems,

More information

(3 )Three Phase Alternating Voltage and Current

(3 )Three Phase Alternating Voltage and Current EEE 2015 EECTRCS (3) Monophase 1 Three phase Three phase electric power is a common method of alternating current electric power generation, transmission, and distribution. t is a type of polyphase system

More information

COMPUTER AIDED ELECTRICAL DRAWING (CAED) 10EE65

COMPUTER AIDED ELECTRICAL DRAWING (CAED) 10EE65 COMPUTER AIDED ELECTRICAL DRAWING (CAED) EE Winding Diagrams: (i) DC Winding diagrams (ii) AC Winding Diagrams Terminologies used in winding diagrams: Conductor: An individual piece of wire placed in the

More information

DIRECT CURRENT GENERATORS

DIRECT CURRENT GENERATORS DIRECT CURRENT GENERATORS Revision 12:50 14 Nov 05 INTRODUCTION A generator is a machine that converts mechanical energy into electrical energy by using the principle of magnetic induction. This principle

More information

ElectroMagnetic Induction. AP Physics B

ElectroMagnetic Induction. AP Physics B ElectroMagnetic Induction AP Physics B What is E/M Induction? Electromagnetic Induction is the process of using magnetic fields to produce voltage, and in a complete circuit, a current. Michael Faraday

More information

How To Understand And Understand The Theory Of Electricity

How To Understand And Understand The Theory Of Electricity DIRECT CURRENT AND ALTERNATING CURRENT SYSTEMS N. Rajkumar, Research Fellow, Energy Systems Group, City University Northampton Square, London EC1V 0HB, UK Keywords: Electrical energy, direct current, alternating

More information

Coupled Inductors. Introducing Coupled Inductors

Coupled Inductors. Introducing Coupled Inductors Coupled Inductors From power distribution across large distances to radio transmissions, coupled inductors are used extensively in electrical applications. Their properties allow for increasing or decreasing

More information

Network Theory Question Bank

Network Theory Question Bank Network Theory Question Bank Unit-I JNTU SYLLABUS: Three Phase Circuits Three phase circuits: Phase sequence Star and delta connection Relation between line and phase voltages and currents in balanced

More information

Digital Energy ITI. Instrument Transformer Basic Technical Information and Application

Digital Energy ITI. Instrument Transformer Basic Technical Information and Application g Digital Energy ITI Instrument Transformer Basic Technical Information and Application Table of Contents DEFINITIONS AND FUNCTIONS CONSTRUCTION FEATURES MAGNETIC CIRCUITS RATING AND RATIO CURRENT TRANSFORMER

More information

Motor Fundamentals. DC Motor

Motor Fundamentals. DC Motor Motor Fundamentals Before we can examine the function of a drive, we must understand the basic operation of the motor. It is used to convert the electrical energy, supplied by the controller, to mechanical

More information

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA UNIT 5 - ELECTRICAL AND ELECTRONIC PRINCIPLES NQF LEVEL 3 OUTCOME 4 - ALTERNATING CURRENT

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA UNIT 5 - ELECTRICAL AND ELECTRONIC PRINCIPLES NQF LEVEL 3 OUTCOME 4 - ALTERNATING CURRENT EDEXCEL NATIONAL CERTIFICATE/DIPLOMA UNIT 5 - ELECTRICAL AND ELECTRONIC PRINCIPLES NQF LEVEL 3 OUTCOME 4 - ALTERNATING CURRENT 4 Understand single-phase alternating current (ac) theory Single phase AC

More information

Basic Electrical Technology Dr. L. Umanand Department of Electrical Engineering Indian Institute of Science, Bangalore. Lecture - 33 3 phase System 4

Basic Electrical Technology Dr. L. Umanand Department of Electrical Engineering Indian Institute of Science, Bangalore. Lecture - 33 3 phase System 4 Basic Electrical Technology Dr. L. Umanand Department of Electrical Engineering Indian Institute of Science, Bangalore Lecture - 33 3 phase System 4 Hello everybody. So, in the last class we have been

More information

Generator Stator Protection, under/over voltage, under /over frequency and unbalanced loading. Ramandeep Kaur Aujla S.NO 250447392

Generator Stator Protection, under/over voltage, under /over frequency and unbalanced loading. Ramandeep Kaur Aujla S.NO 250447392 1 Generator Stator Protection, under/over voltage, under /over frequency and unbalanced loading By Ramandeep Kaur Aujla S.NO 250447392 ES 586b: Theory and applications of protective relays Department of

More information

Circuits with inductors and alternating currents. Chapter 20 #45, 46, 47, 49

Circuits with inductors and alternating currents. Chapter 20 #45, 46, 47, 49 Circuits with inductors and alternating currents Chapter 20 #45, 46, 47, 49 RL circuits Ch. 20 (last section) Symbol for inductor looks like a spring. An inductor is a circuit element that has a large

More information

Lesson 3 DIRECT AND ALTERNATING CURRENTS. Task. The skills and knowledge taught in this lesson are common to all missile repairer tasks.

Lesson 3 DIRECT AND ALTERNATING CURRENTS. Task. The skills and knowledge taught in this lesson are common to all missile repairer tasks. Lesson 3 DIRECT AND ALTERNATING CURRENTS Task. The skills and knowledge taught in this lesson are common to all missile repairer tasks. Objectives. When you have completed this lesson, you should be able

More information

2. A conductor of length 2m moves at 4m/s at 30 to a uniform magnetic field of 0.1T. Which one of the following gives the e.m.f. generated?

2. A conductor of length 2m moves at 4m/s at 30 to a uniform magnetic field of 0.1T. Which one of the following gives the e.m.f. generated? Extra Questions - 2 1. A straight length of wire moves through a uniform magnetic field. The e.m.f. produced across the ends of the wire will be maximum if it moves: a) along the lines of magnetic flux

More information

Edmund Li. Where is defined as the mutual inductance between and and has the SI units of Henries (H).

Edmund Li. Where is defined as the mutual inductance between and and has the SI units of Henries (H). INDUCTANCE MUTUAL INDUCTANCE If we consider two neighbouring closed loops and with bounding surfaces respectively then a current through will create a magnetic field which will link with as the flux passes

More information

NO LOAD & BLOCK ROTOR TEST ON THREE PHASE INDUCTION MOTOR

NO LOAD & BLOCK ROTOR TEST ON THREE PHASE INDUCTION MOTOR INDEX NO. : M-142 TECHNICAL MANUAL FOR NO LOAD & BLOCK ROTOR TEST ON THREE PHASE INDUCTION MOTOR Manufactured by : PREMIER TRADING CORPORATION (An ISO 9001:2000 Certified Company) 212/1, Mansarover Civil

More information

Principles of Adjustable Frequency Drives

Principles of Adjustable Frequency Drives What is an Adjustable Frequency Drive? An adjustable frequency drive is a system for controlling the speed of an AC motor by controlling the frequency of the power supplied to the motor. A basic adjustable

More information

Power Quality Paper #3

Power Quality Paper #3 The Effect of Voltage Dips On Induction Motors by: M D McCulloch 1. INTRODUCTION Voltage depressions caused by faults on the system affect the performance of induction motors, in terms of the production

More information

Force on Moving Charges in a Magnetic Field

Force on Moving Charges in a Magnetic Field [ Assignment View ] [ Eðlisfræði 2, vor 2007 27. Magnetic Field and Magnetic Forces Assignment is due at 2:00am on Wednesday, February 28, 2007 Credit for problems submitted late will decrease to 0% after

More information

DHANALAKSHMI COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING EE2302 - ELECTRICAL MACHINES II UNIT-I SYNCHRONOUS GENERATOR

DHANALAKSHMI COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING EE2302 - ELECTRICAL MACHINES II UNIT-I SYNCHRONOUS GENERATOR 1 DHANALAKSHMI COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING Constructional details Types of rotors EE2302 - ELECTRICAL MACHINES II UNIT-I SYNCHRONOUS GENERATOR PART A 1.

More information

Line Reactors and AC Drives

Line Reactors and AC Drives Line Reactors and AC Drives Rockwell Automation Mequon Wisconsin Quite often, line and load reactors are installed on AC drives without a solid understanding of why or what the positive and negative consequences

More information

W03 Analysis of DC Circuits. Yrd. Doç. Dr. Aytaç Gören

W03 Analysis of DC Circuits. Yrd. Doç. Dr. Aytaç Gören W03 Analysis of DC Circuits Yrd. Doç. Dr. Aytaç Gören ELK 2018 - Contents W01 Basic Concepts in Electronics W02 AC to DC Conversion W03 Analysis of DC Circuits (self and condenser) W04 Transistors and

More information

AC Generators. Basic Generator

AC Generators. Basic Generator AC Generators Basic Generator A basic generator consists of a magnetic field, an armature, slip rings, brushes and a resistive load. The magnetic field is usually an electromagnet. An armature is any number

More information

Prof. Krishna Vasudevan, Prof. G. Sridhara Rao, Prof. P. Sasidhara Rao. x x. x x. Figure 10: Cross sectional view

Prof. Krishna Vasudevan, Prof. G. Sridhara Rao, Prof. P. Sasidhara Rao. x x. x x. Figure 10: Cross sectional view 4 Armature Windings Main field Commutator & Brush Compole field haft v Compensating winding Armature winding Yoke Figure 10: Cross sectional view Fig. 10 gives the cross sectional view of a modern d.c.

More information

3-Phase AC Calculations Revisited

3-Phase AC Calculations Revisited AN110 Dataforth Corporation Page 1 of 6 DID YOU KNOW? Nikola Tesla (1856-1943) came to the United States in 1884 from Yugosiavia. He arrived during the battle of the currents between Thomas Edison, who

More information

Figure 1.1 Vector A and Vector F

Figure 1.1 Vector A and Vector F CHAPTER I VECTOR QUANTITIES Quantities are anything which can be measured, and stated with number. Quantities in physics are divided into two types; scalar and vector quantities. Scalar quantities have

More information

Analog & Digital Electronics Course No: PH-218

Analog & Digital Electronics Course No: PH-218 Analog & Digital Electronics Course No: PH-18 Lec 3: Rectifier and Clipper circuits Course nstructors: Dr. A. P. VAJPEY Department of Physics, ndian nstitute of Technology Guwahati, ndia 1 Rectifier Circuits:

More information

Induced voltages and Inductance Faraday s Law

Induced voltages and Inductance Faraday s Law Induced voltages and Inductance Faraday s Law concept #1, 4, 5, 8, 13 Problem # 1, 3, 4, 5, 6, 9, 10, 13, 15, 24, 23, 25, 31, 32a, 34, 37, 41, 43, 51, 61 Last chapter we saw that a current produces a magnetic

More information

Chapter 12: Three Phase Circuits

Chapter 12: Three Phase Circuits Chapter 12: Three Phase Circuits 12.1 What Is a Three Phase Circuit? 12.2 Balance Three Phase Voltages 12.3 Balance Three Phase Y to Y Connection 12.4 Other Balance Three Phase Connections 12.5 Power in

More information

The following table shows approximate percentage wise the

The following table shows approximate percentage wise the SHORT-CIRCUIT CALCULATION INTRODUCTION Designing an electrical system is easy and simple, if only the normal operation of the network is taken into consideration. However, abnormal conditions which are

More information

Measurement of Power in single and 3-Phase Circuits. by : N.K.Bhati

Measurement of Power in single and 3-Phase Circuits. by : N.K.Bhati Measurement of Power in single and 3-Phase Circuits by : N.K.Bhati A specifically designed programme for Da Afghanistan Breshna Sherkat (DABS) Afghanistan 1 Areas Covered Under this Module 1. Power in

More information

Power Systems Engineering Research Center

Power Systems Engineering Research Center Power Systems Engineering Research Center PSERC Background Paper What is Reactive Power? Peter W. Sauer Department of Electrical and Computer Engineering University of Illinois at Urbana-Champaign September

More information

8 Speed control of Induction Machines

8 Speed control of Induction Machines 8 Speed control of Induction Machines We have seen the speed torque characteristic of the machine. In the stable region of operation in the motoring mode, the curve is rather steep and goes from zero torque

More information

45. The peak value of an alternating current in a 1500-W device is 5.4 A. What is the rms voltage across?

45. The peak value of an alternating current in a 1500-W device is 5.4 A. What is the rms voltage across? PHYS Practice Problems hapters 8- hapter 8. 45. The peak value of an alternating current in a 5-W device is 5.4 A. What is the rms voltage across? The power and current can be used to find the peak voltage,

More information

SYNCHRONOUS MACHINES

SYNCHRONOUS MACHINES SYNCHRONOUS MACHINES The geometry of a synchronous machine is quite similar to that of the induction machine. The stator core and windings of a three-phase synchronous machine are practically identical

More information

1. The diagram below represents magnetic lines of force within a region of space.

1. The diagram below represents magnetic lines of force within a region of space. 1. The diagram below represents magnetic lines of force within a region of space. 4. In which diagram below is the magnetic flux density at point P greatest? (1) (3) (2) (4) The magnetic field is strongest

More information

Three-Phase Electric Power Distribution for Computer Data Centers

Three-Phase Electric Power Distribution for Computer Data Centers Three-hase Electric ower Distribution for Computer Data Centers WHITE AER E901 Geist January 008 Summary This paper will describe the characteristics of three-phase power and outline the advantages of

More information

The full wave rectifier consists of two diodes and a resister as shown in Figure

The full wave rectifier consists of two diodes and a resister as shown in Figure The Full-Wave Rectifier The full wave rectifier consists of two diodes and a resister as shown in Figure The transformer has a centre-tapped secondary winding. This secondary winding has a lead attached

More information

Chapter 22: Electric motors and electromagnetic induction

Chapter 22: Electric motors and electromagnetic induction Chapter 22: Electric motors and electromagnetic induction The motor effect movement from electricity When a current is passed through a wire placed in a magnetic field a force is produced which acts on

More information

Three-phase AC circuits

Three-phase AC circuits Three-phase AC circuits This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/,

More information

Lecture - 4 Diode Rectifier Circuits

Lecture - 4 Diode Rectifier Circuits Basic Electronics (Module 1 Semiconductor Diodes) Dr. Chitralekha Mahanta Department of Electronics and Communication Engineering Indian Institute of Technology, Guwahati Lecture - 4 Diode Rectifier Circuits

More information

PHASOR DIAGRAMS HANDS-ON RELAY SCHOOL WSU PULLMAN, WA. RON ALEXANDER - BPA

PHASOR DIAGRAMS HANDS-ON RELAY SCHOOL WSU PULLMAN, WA. RON ALEXANDER - BPA PHASOR DIAGRAMS HANDS-ON RELAY SCHOOL WSU PULLMAN, WA. RON ALEXANDER - BPA What are phasors??? In normal practice, the phasor represents the rms maximum value of the positive half cycle of the sinusoid

More information

Reading assignment: All students should read the Appendix about using oscilloscopes.

Reading assignment: All students should read the Appendix about using oscilloscopes. 10. A ircuits* Objective: To learn how to analyze current and voltage relationships in alternating current (a.c.) circuits. You will use the method of phasors, or the vector addition of rotating vectors

More information

ELECTRIC FIELD LINES AND EQUIPOTENTIAL SURFACES

ELECTRIC FIELD LINES AND EQUIPOTENTIAL SURFACES ELECTRIC FIELD LINES AND EQUIPOTENTIAL SURFACES The purpose of this lab session is to experimentally investigate the relation between electric field lines of force and equipotential surfaces in two dimensions.

More information

Lecture Notes ELE A6

Lecture Notes ELE A6 ecture Notes EE A6 Ramadan El-Shatshat Three Phase circuits 9/12/2006 EE A6 Three-phase Circuits 1 Three-phase Circuits 9/12/2006 EE A6 Three-phase Circuits 2 Advantages of Three-phase Circuits Smooth

More information

Objectives. Electric Current

Objectives. Electric Current Objectives Define electrical current as a rate. Describe what is measured by ammeters and voltmeters. Explain how to connect an ammeter and a voltmeter in an electrical circuit. Explain why electrons travel

More information

5.3 The Cross Product in R 3

5.3 The Cross Product in R 3 53 The Cross Product in R 3 Definition 531 Let u = [u 1, u 2, u 3 ] and v = [v 1, v 2, v 3 ] Then the vector given by [u 2 v 3 u 3 v 2, u 3 v 1 u 1 v 3, u 1 v 2 u 2 v 1 ] is called the cross product (or

More information

DC GENERATOR THEORY. LIST the three conditions necessary to induce a voltage into a conductor.

DC GENERATOR THEORY. LIST the three conditions necessary to induce a voltage into a conductor. DC Generators DC generators are widely used to produce a DC voltage. The amount of voltage produced depends on a variety of factors. EO 1.5 LIST the three conditions necessary to induce a voltage into

More information

DIODE CIRCUITS LABORATORY. Fig. 8.1a Fig 8.1b

DIODE CIRCUITS LABORATORY. Fig. 8.1a Fig 8.1b DIODE CIRCUITS LABORATORY A solid state diode consists of a junction of either dissimilar semiconductors (pn junction diode) or a metal and a semiconductor (Schottky barrier diode). Regardless of the type,

More information

Linear DC Motors. 15.1 Magnetic Flux. 15.1.1 Permanent Bar Magnets

Linear DC Motors. 15.1 Magnetic Flux. 15.1.1 Permanent Bar Magnets Linear DC Motors The purpose of this supplement is to present the basic material needed to understand the operation of simple DC motors. This is intended to be used as the reference material for the linear

More information

VOLTAGE REGULATOR AND PARALLEL OPERATION

VOLTAGE REGULATOR AND PARALLEL OPERATION VOLTAGE REGULATOR AND PARALLEL OPERATION Generator sets are operated in parallel to improve fuel economy and reliability of the power supply. Economy is improved with multiple paralleled generators by

More information

Chapter 35 Alternating Current Circuits

Chapter 35 Alternating Current Circuits hapter 35 Alternating urrent ircuits ac-ircuits Phasor Diagrams Resistors, apacitors and nductors in ac-ircuits R ac-ircuits ac-ircuit power. Resonance Transformers ac ircuits Alternating currents and

More information

FORCE ON A CURRENT IN A MAGNETIC FIELD

FORCE ON A CURRENT IN A MAGNETIC FIELD 7/16 Force current 1/8 FORCE ON A CURRENT IN A MAGNETIC FIELD PURPOSE: To study the force exerted on an electric current by a magnetic field. BACKGROUND: When an electric charge moves with a velocity v

More information

Objectives. Capacitors 262 CHAPTER 5 ENERGY

Objectives. Capacitors 262 CHAPTER 5 ENERGY Objectives Describe a capacitor. Explain how a capacitor stores energy. Define capacitance. Calculate the electrical energy stored in a capacitor. Describe an inductor. Explain how an inductor stores energy.

More information

Application Note AN- 1095

Application Note AN- 1095 Application Note AN- 1095 Design of the Inverter Output Filter for Motor Drives with IRAMS Power Modules Cesare Bocchiola Table of Contents Page Section 1: Introduction...2 Section 2 : Output Filter Design

More information

Alternating Current and Direct Current

Alternating Current and Direct Current K Hinds 2012 1 Alternating Current and Direct Current Direct Current This is a Current or Voltage which has a constant polarity. That is, either a positive or negative value. K Hinds 2012 2 Alternating

More information

BASIC ELECTRONICS AC CIRCUIT ANALYSIS. December 2011

BASIC ELECTRONICS AC CIRCUIT ANALYSIS. December 2011 AM 5-202 BASIC ELECTRONICS AC CIRCUIT ANALYSIS December 2011 DISTRIBUTION RESTRICTION: Approved for Pubic Release. Distribution is unlimited. DEPARTMENT OF THE ARMY MILITARY AUXILIARY RADIO SYSTEM FORT

More information

Physics 221 Experiment 5: Magnetic Fields

Physics 221 Experiment 5: Magnetic Fields Physics 221 Experiment 5: Magnetic Fields August 25, 2007 ntroduction This experiment will examine the properties of magnetic fields. Magnetic fields can be created in a variety of ways, and are also found

More information

See Horenstein 4.3 and 4.4

See Horenstein 4.3 and 4.4 EE 462: Laboratory # 4 DC Power Supply Circuits Using Diodes by Drs. A.V. Radun and K.D. Donohue (2/14/07) Department of Electrical and Computer Engineering University of Kentucky Lexington, KY 40506 Updated

More information

Understanding Power Factor and How it Affects Your Electric Bill. Presented by Scott Peele PE

Understanding Power Factor and How it Affects Your Electric Bill. Presented by Scott Peele PE Understanding Power Factor and How it Affects Your Electric Bill Presented by Scott Peele PE Understanding Power Factor Definitions kva, kvar, kw, Apparent Power vs. True Power Calculations Measurements

More information

Eðlisfræði 2, vor 2007

Eðlisfræði 2, vor 2007 [ Assignment View ] [ Print ] Eðlisfræði 2, vor 2007 30. Inductance Assignment is due at 2:00am on Wednesday, March 14, 2007 Credit for problems submitted late will decrease to 0% after the deadline has

More information

98% Efficient Single-Stage AC/DC Converter Topologies

98% Efficient Single-Stage AC/DC Converter Topologies 16 POWER CONVERTERS www.teslaco.com 98% Efficient Single-Stage AC/DC Converter Topologies A new Hybrid Switching Method is introduced in this article which for the first time makes possible AC/DC power

More information

Magnetic Field of a Circular Coil Lab 12

Magnetic Field of a Circular Coil Lab 12 HB 11-26-07 Magnetic Field of a Circular Coil Lab 12 1 Magnetic Field of a Circular Coil Lab 12 Equipment- coil apparatus, BK Precision 2120B oscilloscope, Fluke multimeter, Wavetek FG3C function generator,

More information

LABORATORY 10 TIME AVERAGES, RMS VALUES AND THE BRIDGE RECTIFIER. Bridge Rectifier

LABORATORY 10 TIME AVERAGES, RMS VALUES AND THE BRIDGE RECTIFIER. Bridge Rectifier LABORATORY 10 TIME AVERAGES, RMS VALUES AND THE BRIDGE RECTIFIER Full-wave Rectification: Bridge Rectifier For many electronic circuits, DC supply voltages are required but only AC voltages are available.

More information

1 Introduction. 2 The Symmetrical Component Transformation. J.L. Kirtley Jr.

1 Introduction. 2 The Symmetrical Component Transformation. J.L. Kirtley Jr. Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.06 Introduction to Power Systems Class Notes Chapter 4 Introduction To Symmetrical Components J.L. Kirtley

More information

Chapter 19 Operational Amplifiers

Chapter 19 Operational Amplifiers Chapter 19 Operational Amplifiers The operational amplifier, or op-amp, is a basic building block of modern electronics. Op-amps date back to the early days of vacuum tubes, but they only became common

More information

DIMENSIONING OF CURRENT TRANSFORMERS FOR PROTECTON APPLICATION

DIMENSIONING OF CURRENT TRANSFORMERS FOR PROTECTON APPLICATION ÿþ üûúùø öõöôùóùõò CT Dimensioning DIMENSIONING OF CURRENT TRANSFORMERS FOR PROTECTON APPLICATION Application note GER3973 1 CT Dimensioning ÿþ üûúùø öõöôùóùõò GER-3973 Application note ÿþ üûúùø öõöôùóùõò

More information

Principles and Working of DC and AC machines

Principles and Working of DC and AC machines BITS Pilani Dubai Campus Principles and Working of DC and AC machines Dr Jagadish Nayak Constructional features BITS Pilani Dubai Campus DC Generator A generator consists of a stationary portion called

More information

TRANSFORMER: THREE PHASE

TRANSFORMER: THREE PHASE CONTENTS Transformer : Three Phase 1211 C H A P T E R 33 Learning Objectives Three-phase Transformers Three-phase Transformer Connections Star/Star or Y/Y Connection Delta-Delta or Connection Wye/Delta

More information

Semiconductor Diode. It has already been discussed in the previous chapter that a pn junction conducts current easily. Principles of Electronics

Semiconductor Diode. It has already been discussed in the previous chapter that a pn junction conducts current easily. Principles of Electronics 76 6 Principles of Electronics Semiconductor Diode 6.1 Semiconductor Diode 6.3 Resistance of Crystal Diode 6.5 Crystal Diode Equivalent Circuits 6.7 Crystal Diode Rectifiers 6.9 Output Frequency of Half-Wave

More information

Scholars Research Library

Scholars Research Library Available online at www.scholarsresearchlibrary.com Scholars Research Library Archives of Applied Science Research, 2010, 2 (2):380-387 (http://scholarsresearchlibrary.com/archive.html) ISSN 0975-508X

More information

The purposes of this experiment are to test Faraday's Law qualitatively and to test Lenz's Law.

The purposes of this experiment are to test Faraday's Law qualitatively and to test Lenz's Law. 260 17-1 I. THEORY EXPERIMENT 17 QUALITATIVE STUDY OF INDUCED EMF Along the extended central axis of a bar magnet, the magnetic field vector B r, on the side nearer the North pole, points away from this

More information

INDUCTION REGULATOR. Objective:

INDUCTION REGULATOR. Objective: INDUCTION REGULATOR Objective: Using a wound rotor induction motor an Induction Regulator, study the effect of rotor position on the output voltage of the regulator. Also study its behaviour under load

More information

Motor Efficiency and Power Factor ME 416/516

Motor Efficiency and Power Factor ME 416/516 Motor Efficiency and Power Factor Motivation More than half of all electric energy generated goes to power electric motors. Electric motor converts electric power into shaft power. In thermodynamics terms,

More information

Kirchhoff's Current Law (KCL)

Kirchhoff's Current Law (KCL) Kirchhoff's Current Law (KCL) I. Charge (current flow) conservation law (the Kirchhoff s Current law) Pipe Pipe Pipe 3 Total volume of water per second flowing through pipe = total volume of water per

More information

The Importance of the X/R Ratio in Low-Voltage Short Circuit Studies

The Importance of the X/R Ratio in Low-Voltage Short Circuit Studies The Importance of the X/R Ratio in Low-Voltage Short Circuit Studies DATE: November 17, 1999 REVISION: AUTHOR: John Merrell Introduction In some short circuit studies, the X/R ratio is ignored when comparing

More information

The electrical energy produced at the gen

The electrical energy produced at the gen 300 300 Principles of Power System CHAPTER CHAPTER 12 Distribution Systems General 12.1 Distribution System 12.2 Classification of Distribution Systems 12.3 A.C. Distribution 12.4 D.C. Distribution 12.5

More information

S-Parameters and Related Quantities Sam Wetterlin 10/20/09

S-Parameters and Related Quantities Sam Wetterlin 10/20/09 S-Parameters and Related Quantities Sam Wetterlin 10/20/09 Basic Concept of S-Parameters S-Parameters are a type of network parameter, based on the concept of scattering. The more familiar network parameters

More information

Current and Temperature Ratings

Current and Temperature Ratings Document 361-1 Current and Temperature Ratings Introduction This application note describes: How to interpret Coilcraft inductor current and temperature ratings Our current ratings measurement method and

More information

Chapter 11. Inductors ISU EE. C.Y. Lee

Chapter 11. Inductors ISU EE. C.Y. Lee Chapter 11 Inductors Objectives Describe the basic structure and characteristics of an inductor Discuss various types of inductors Analyze series inductors Analyze parallel inductors Analyze inductive

More information

Product Data Bulletin

Product Data Bulletin Product Data Bulletin Power System Harmonics Causes and Effects of Variable Frequency Drives Relative to the IEEE 519-1992 Standard Raleigh, NC, U.S.A. INTRODUCTION This document describes power system

More information

TERMINAL MARKINGS AND INTERNAL WIRING DIAGRAMS SINGLE PHASE AND POLYPHASE MOTORS MEETING NEMA STANDARDS

TERMINAL MARKINGS AND INTERNAL WIRING DIAGRAMS SINGLE PHASE AND POLYPHASE MOTORS MEETING NEMA STANDARDS INTRODUCTION The following represents the most up-to-date information on motor terminal marking for proper connection to power source for all alternating current motors manufactured in accordance with

More information

BSNL TTA Question Paper-Instruments and Measurement Specialization 2007

BSNL TTA Question Paper-Instruments and Measurement Specialization 2007 BSNL TTA Question Paper-Instruments and Measurement Specialization 2007 (1) Instrument is a device for determining (a) the magnitude of a quantity (b) the physics of a variable (c) either of the above

More information

13 ELECTRIC MOTORS. 13.1 Basic Relations

13 ELECTRIC MOTORS. 13.1 Basic Relations 13 ELECTRIC MOTORS Modern underwater vehicles and surface vessels are making increased use of electrical actuators, for all range of tasks including weaponry, control surfaces, and main propulsion. This

More information

AC Induction Motor Slip What It Is And How To Minimize It

AC Induction Motor Slip What It Is And How To Minimize It AC Induction Motor Slip What It Is And How To Minimize It Mauri Peltola, ABB Oy, Helsinki, Finland The alternating current (AC) induction motor is often referred to as the workhorse of the industry because

More information

PS-6.2 Explain the factors that determine potential and kinetic energy and the transformation of one to the other.

PS-6.2 Explain the factors that determine potential and kinetic energy and the transformation of one to the other. PS-6.1 Explain how the law of conservation of energy applies to the transformation of various forms of energy (including mechanical energy, electrical energy, chemical energy, light energy, sound energy,

More information

Ampere's Law. Introduction. times the current enclosed in that loop: Ampere's Law states that the line integral of B and dl over a closed path is 0

Ampere's Law. Introduction. times the current enclosed in that loop: Ampere's Law states that the line integral of B and dl over a closed path is 0 1 Ampere's Law Purpose: To investigate Ampere's Law by measuring how magnetic field varies over a closed path; to examine how magnetic field depends upon current. Apparatus: Solenoid and path integral

More information

Lab 8: DC generators: shunt, series, and compounded.

Lab 8: DC generators: shunt, series, and compounded. Lab 8: DC generators: shunt, series, and compounded. Objective: to study the properties of DC generators under no-load and full-load conditions; to learn how to connect these generators; to obtain their

More information

The DC Motor. Physics 1051 Laboratory #5 The DC Motor

The DC Motor. Physics 1051 Laboratory #5 The DC Motor The DC Motor Physics 1051 Laboratory #5 The DC Motor Contents Part I: Objective Part II: Introduction Magnetic Force Right Hand Rule Force on a Loop Magnetic Dipole Moment Torque Part II: Predictions Force

More information

CYCLOCONVERTERS. Fig.1 Block diagram of a cycloconverter

CYCLOCONVERTERS. Fig.1 Block diagram of a cycloconverter CYCLOCONVERTERS Burak Ozpineci, Leon M. Tolbert Department of Electrical and Computer Engineering University of Tennessee-Knoxville Knoxville, TN 37996-2100 In industrial applications, two forms of electrical

More information

FREQUENCY CONTROLLED AC MOTOR DRIVE

FREQUENCY CONTROLLED AC MOTOR DRIVE FREQUENCY CONTROLLED AC MOTOR DRIVE 1.0 Features of Standard AC Motors The squirrel cage induction motor is the electrical motor motor type most widely used in industry. This leading position results mainly

More information

Simple Analysis for Brushless DC Motors Case Study: Razor Scooter Wheel Motor

Simple Analysis for Brushless DC Motors Case Study: Razor Scooter Wheel Motor Simple Analysis for Brushless DC Motors Case Study: Razor Scooter Wheel Motor At first glance, a brushless direct-current (BLDC) motor might seem more complicated than a permanent magnet brushed DC motor,

More information

Electrical Fundamentals Module 3: Parallel Circuits

Electrical Fundamentals Module 3: Parallel Circuits Electrical Fundamentals Module 3: Parallel Circuits PREPARED BY IAT Curriculum Unit August 2008 Institute of Applied Technology, 2008 ATE310- Electrical Fundamentals 2 Module 3 Parallel Circuits Module

More information