PHYA2 Revision minutes. 72 marks. Page 1 of 20

Size: px
Start display at page:

Download "PHYA2 Revision minutes. 72 marks. Page 1 of 20"

Transcription

1 PHYA Revision 1 73 minutes 7 marks Page 1 of 0

2 Q1. An aerial system consists of a horizontal copper wire of length 38 m supported between two masts, as shown in the figure below. The wire transmits electromagnetic waves when an alternating potential is applied to it at one end. (a) The wavelength of the radiation transmitted from the wire is twice the length of the copper wire. Calculate the frequency of the transmitted radiation (1) (b) The ends of the copper wire are fixed to masts of height 1.0 m. The masts are held in a vertical position by cables, labelled P and Q, as shown in the figure above. (i) P has a length of 14.0 m and the tension in it is 110 N. Calculate the tension in the copper wire. (ii) The copper wire has a diameter of 4.0 mm. Calculate the stress in the copper wire. Page of 0

3 (iii) Discuss whether the wire is in danger of breaking if it is stretched further due to movement of the top of the masts in strong winds. breaking stress of copper = Pa (7) (Total 8 marks) Q. (a) A laser emits monochromatic light. Explain the meaning of the term monochromatic light (1) Page 3 of 0

4 (b) The diagram below shows a laser emitting blue light directed at a single slit, where the slit width is greater than the wavelength of the light. The intensity graph for the diffracted blue light is shown. The laser is replaced by a laser emitting red light. On the axes shown in the diagram above sketch the intensity graph for a laser emitting red light. (c) State and explain one precaution that should be taken when using laser light Page 4 of 0

5 (d) The red laser light is replaced by a non-laser source emitting white light. Describe how the appearance of the pattern would change (3) (Total 8 marks) Q3. A supertanker of mass kg, cruising at an initial speed of 4.5 m s 1, takes one hour to come to rest. (a) Assuming that the force slowing the tanker down is constant, calculate (i) the deceleration of the tanker, (ii) the distance travelled by the tanker while slowing to a stop. (4) (b) Sketch, using the axes below, a distance-time graph representing the motion of the tanker until it stops. Page 5 of 0

6 (c) Explain the shape of the graph you have sketched in part (b) (Total 8 marks) Q4. The diagram below shows three transparent glass blocks A, B and C joined together. Each glass block has a different refractive index. (a) State the two conditions necessary for a light ray to undergo total internal reflection at the boundary between two transparent media. condition condition Page 6 of 0

7 (b) Calculate the speed of light in glass A. refractive index of glass A = 1.80 speed of light... ms 1 (c) Show that angle θ is about 30 o. (d) The refractive index of glass C is Calculate the critical angle between glass A and glass C. critical angle... degrees (e) (i) State and explain what happens to the light ray when it reaches the boundary between glass A and glass C (ii) On the diagram above continue the path of the light ray after it strikes the boundary between glass A and glass C. (1) (Total 11 marks) Page 7 of 0

8 Q5. Earthquakes produce transverse and longitudinal seismic waves that travel through rock. The diagram below shows the displacement of the particles of rock at a given instant, for different positions along a transverse wave. (a) State the phase difference between (i) points A and B on the wave... (ii) points A and C on the wave... (b) Describe the motion of the rock particle at point B during the passage of the next complete cycle (c) A scientist detects a seismic wave that is polarised. State and explain what the scientist can deduce from this information (d) The frequency of the seismic wave is measured to be 6.0 Hz. (i) Define the frequency of a progressive wave..... (1) Page 8 of 0

9 (ii) Calculate the wavelength of the wave if its speed is m s 1. wavelength... m (Total 9 marks) Q6. The figure below shows an apparatus used to locate the centre of gravity of a non-uniform metal rod. The rod is supported horizontally by two wires, P and Q and is in equilibrium. (a) State two conditions that must be satisfied for the rod to be in equilibrium (b) Wire Q is attached to a newtonmeter so that the force the wire exerts on the rod can be measured. The reading on the newtonmeter is.0 N and the weight of the rod is 5.0 N. Calculate (i) the force that wire P exerts on the rod, Page 9 of 0

10 (ii) the distance d. (3) (Total 5 marks) Q7. The figure below shows a skateboarder descending a ramp. The skateboarder starts from rest at the top of the ramp at A and leaves the ramp at B horizontally with a velocity v. (a) State the energy changes that take place as the skateboarder moves from A to B (b) In going from A to B the skateboarder s centre of gravity descends a vertical height of 1.5 m. Calculate the horizontal velocity, v, stating an assumption that you make (3) Page 10 of 0

11 (c) Explain why the acceleration decreases as the skateboarder moves from A to B (d) After leaving the ramp at B the skateboarder lands on the ground at C 0.4 s later. Calculate for the skateboarder (i) the horizontal distance travelled between B and C, (ii) the vertical component of the velocity immediately before impact at C, (iii) the magnitude of the resultant velocity immediately before impact at C. (5) (Total 1 marks) Q8. (a) (i) Describe the behaviour of a wire that obeys Hooke s law. (ii) Explain what is meant by the elastic limit of the wire. Page 11 of 0

12 (iii) Define the Young modulus of a material and state the unit in which it is measured. (5) (b) A student is required to carry out an experiment and draw a suitable graph in order to obtain a value for the Young modulus of a material in the form of a wire. A long, uniform wire is suspended vertically and a weight, sufficient to make the wire taut, is fixed to the free end. The student increases the load gradually by adding known weights. As each weight is added, the extension of the wire is measured accurately. (i) What other quantities must be measured before the value of the Young modulus can be obtained? (ii) Explain how the student may obtain a value of the Young modulus. (iii) How would a value for the elastic energy stored in the wire be found from the results? (6) (Total 11 marks) Page 1 of 0

13 M1. (a) λ(= 38) = 76(m) MHz (1) 1 (b) (i) angle between cable and horizontal = (1) T= 110 cos59 = 57N (56.7N) (1) (allow C.E. for value of angle) (ii) cross-sectional area (= Π( ) ) = (m ) (1) ( (m )) stress (1) = Pa (1) ( Pa) (use of 56.7 and 1.6 gives Pa) (allow C.E. for values of T and area) (iii) breaking stress is 65 stress copper is ductile copper wire could extend much more before breaking because of plastic deformation extension to breaking point unlikely any three (1)(1)(1) 7 [8] M. (a) single frequency (or wavelength or photon energy) not single colour accept very narrow band of frequencies 1 (b) subsidiary maxima (centre of) peaks further away from centre For second mark: One square tolerance horizontally. One whole subsid max seen on either side. subsidiary maxima peaks further away from centre AND central maximum twice width of subsidiaries AND symmetrical Central higher than subsid and subsid same height + / squares. Minima on the x axis + / 1 square. Must see 1 whole subsidiary for second mark Page 13 of 0

14 (c) ONE FROM: don't shine towards a person avoid (accidental) reflections wear laser safety goggles 'laser on' warning light outside room Stand behind laser other sensible suggestion allow green goggles for red laser, high intensity goggles, etc. not goggles, sunglasses eye / skin damage could occur (d) 3 from 4 central white (fringe) each / every / all subsidiary maxima are composed of a spectrum (clearly stated or implied) each / every / all subsidiary maxima are composed of a spectrum (clearly stated or implied) AND (subsidiary maxima) have violet (allow blue) nearest central maximum OR red furthest from centre Fringe spacing less / maxima are wider / dark fringes are smaller (or not present) allow white in middle For second mark do not allow there are colours or there is a spectrum on their own Allow rainbow pattern instead of spectrum but not a rainbow Allow rainbow pattern instead of spectrum but not a rainbow If they get the first, the second and third are easier to award Allow full credit for annotated sketch 3 [8] M3. (a) (i) (use of gives) (1) = ms (1) (ii) (use of v = u +as gives) 0= s (1) (1) 4 (b) increasing curve (1) correct curve (1) 1 Page 14 of 0

15 (c) gradient (slope) of graph represents speed (1) hence graph has decreasing gradient (1) [8] M4. (a) n 1 > n Allow correct reference to optical density (incident) angle > critical angle (allow θ c not c ) OR critical angle must be exceeded Allow n A > n B Do not allow: angle passes the critical angle (b) For second mark, don t allow Allow or Allow (= ) = (ms 1 ) (c) sin7 = 1.80sin θ Correct answer on its own gets both marks θ = = 31.9 correct answer >= sf seen Do not allow 31 for second mark Allow (d) 1.80 sin θ c =1.40 OR θ c = = 51.1 (accept 51) Correct answer on its own gets both marks Don t accept 50 by itself Page 15 of 0

16 OR = (e) (i) + their (c) ( = 53.9) 53.9 > (51.1) critical angle If c + < d then TIR expected If c + > d then REFRACTION expected OR c + < their d (θ c ) ecf from (c) and (d) angle less than critical angle Allow max 1 for TIR because angle > critical angle only if their d > c + (ii) TIR angle correct ecf from e(i) for refraction answer Tolerance: horizontal line from normal on the right / horizontal line from top of lower arrow. If ei not answered then ecf (d). If ei and d not answered then ecf c 1 [11] M5. (a) (i) π / (radians) or 90 (degrees) No path differences Penalise contradictions No fractions of a cycle 1 (ii) 3π / (rad) or 70 (degrees) No path differences Penalise contradictions No fractions of a cycle 1 (b) (oscillation or motion) perpendicular to direction of wave (travel / velocity / energy transfer) (oscillates from equilibrium to maximum positive displacement, back to equilibrium, then to max negative displacement) and back to equilibrium / starting position / rest position do not allow up and down for first mark allow up and down, or down then up, side to side, rise and fall in place of oscillates Allow rest position, starting position, middle, centre line ref to nodes / antinodes not allowed for nd mark (c) (the wave is) transverse OR not longitudinal accept it is an S wave or secondary wave only transverse can be polarised OR longitudinal waves cannot be polarised OR oscillations are in one plane Page 16 of 0

17 (d) (i) number of waves / complete cycles / wavelengths (passing a point / produced) per second or unit time allow: (number of) oscillations / vibrations / cycles per second allow f=1 / T only if T is correctly defined do not allow references to f=c / λ 1 (ii) ( v = f / λ λ = v / f = ) / 6.0 = 750 (m) correct answer only gets marks [9] M6. (a) resultant force zero (1) resultant torque about any point zero (1) (b) (i) force due to wire P = = 3.0 N (1) (ii) (moments give) 5.0 d = (1) d= 0.36 m (1) 3 [5] M7. (a) potential energy to kinetic energy (1) mention of thermal energy and friction (1) (b) (use of ½ mv = mgh gives) ½ v h = (1) v h = 5.4ms 1 (1) (assumption) energy converted to thermal energy is negligible (1) (c) component of weight down the slope causes acceleration (1) this component decreases as skateboard moves further down the slope (1) air resistance/friction increases (with speed) (1) 3 Page 17 of 0

18 (d) (i) distance (= ) =.3m (1) (.7m) (allow C.E. for value of v h from (b)) (ii) v v = (1) 1 (1) = 4.1(l) m s (iii) v = (1) v = 6.8 m s 1 (1) (6.78 m s 1 ) (allow C.E. for value of v h from (b)) 5 [1] M8. (a) (i) the extension produced (by a force) in a wire is directly proportional to the force applied (1) applies up to the limit of proportionality (1) (ii) elastic limit: the maximum amount that a material can be stretched (by a force) and still return to its original length (when the force is removed) (1) [or correct use of permanent deformation] (iii) the Young modulus: ratio of tensile stress to tensile strain (1) unit: Pa or Nm (1) 5 (b) (i) length of wire (1) diameter (of wire) (1) (ii) graph of force vs extension (1) reference to gradient (1) gradient = (1) [or graph of stress vs strain, with both defined reference to gradient gradient = E] area under the line of F vs ΔL (1) [or energy per unit volume = area under graph of stress vs strain] 6 [11] Page 18 of 0

19 N1. Question source: Legacy Spec A June 006 Unit 10 Question 8 Description: Horizontal copper aerial; breaking stress Marks: 8 Mathematical requirements: Decimal and standard form Calculator functions Manipulate equations Substitution Solve equations Circumference; area; volume Sin x; cos x; tan x Topic: Elastic properties of solids Type: Structured quantitative Specification:..1 Bulk properties of solids.3.1 Progressive waves N. Specification 7408 Question source: June 013 Unit Question 7 Description: Diffraction at single slit Marks: 8 Maths requirements: Translate information between forms Maths demand: Topic: Oscillation and waves Type: State/explain/describe Specification: Diffraction Specification 450 Question source: June 013 Unit Question 7 Description: Single slit diffraction using a laser Marks: 8 Maths requirements: Translate information Topic: Oscillation and waves Type: State/explain/describe Specification:.3.6 Diffraction N3. Question source: Legacy Spec A June 006 Unit Question 6 Description: Supertanker coming to rest Marks: 8 Mathematical requirements: Decimal and standard form Calculator functions Manipulate equations Substitution Solve equations Translate information Tangent + rate of change Topic: Mechanics Type: Structured quantitative Specification:.1.3 Motion along a straight line N4. Question source: June 013 Unit Question 5 Description: Light travelling though glass block Marks: 11 Mathematical requirements: Substitution Solve equations Pythagoras; angle sum of triangle Sin x; cos x; tan x Degrees and radians Topic: Oscillation and waves Type: Structured quantitative Specification:.3.3 Refraction at a plane surface Page 19 of 0

20 N5. Specification 7408 Question source: June 013 Unit Question 6 Description: Transverse seismic wave Marks: 9 Maths requirements: Decimal + standard form Substitution Translate information between forms Maths demand: 1 Topic: Oscillation and waves Type: State/explain/numerical Specification: Progressive waves Longitudinal + transverse waves Specification 450 Question source: June 013 Unit Question 6 Description: Transverse seismic wave Marks: 9 Maths requirements: Decimal and standard form Translate information Topic: Oscillation and waves Type: State/explain/numerical Specification:.3.1 Progressive waves.3. Longitudinal and transverse N6. Question source: Legacy Spec A June 006 Unit Question 3 Description: Suspended rod Marks: 5 Mathematical requirements: Substitution Solve equations Topic: Mechanics Type: State/explain/numerical Specification:.1. Moments N7. Question source: Legacy Spec A June 006 Unit Question Description: Skateboarder; ramp; projectile motion Marks: 1 Mathematical requirements: Calculator functions Substitution Solve equations Pythagoras; angle sum of triangle Topic: Mechanics Type: State/explain/numerical Specification:.1.4 Projectile motion.1.7 Conservation of energy N8. Question source: Legacy Spec A June 006 Unit 3 Question 5 Description: Hooke's Law; elastic limit; Young modulus Marks: 11 Mathematical requirements: None Topic: Elastic properties of solids Type: State/explain/describe Specification:..1 Bulk properties of solids.. The Young modulus Page 0 of 0

PHYA2. General Certificate of Education Advanced Subsidiary Examination June 2010. Mechanics, Materials and Waves

PHYA2. General Certificate of Education Advanced Subsidiary Examination June 2010. Mechanics, Materials and Waves Centre Number Surname Candidate Number For Examiner s Use Other Names Candidate Signature Examiner s Initials Physics A Unit 2 For this paper you must have: a ruler a calculator a Data and Formulae Booklet.

More information

v = fλ PROGRESSIVE WAVES 1 Candidates should be able to :

v = fλ PROGRESSIVE WAVES 1 Candidates should be able to : PROGRESSIVE WAVES 1 Candidates should be able to : Describe and distinguish between progressive longitudinal and transverse waves. With the exception of electromagnetic waves, which do not need a material

More information

Boardworks AS Physics

Boardworks AS Physics Boardworks AS Physics Vectors 24 slides 11 Flash activities Prefixes, scalars and vectors Guide to the SI unit prefixes of orders of magnitude Matching powers of ten to their SI unit prefixes Guide to

More information

www.mathsbox.org.uk Displacement (x) Velocity (v) Acceleration (a) x = f(t) differentiate v = dx Acceleration Velocity (v) Displacement x

www.mathsbox.org.uk Displacement (x) Velocity (v) Acceleration (a) x = f(t) differentiate v = dx Acceleration Velocity (v) Displacement x Mechanics 2 : Revision Notes 1. Kinematics and variable acceleration Displacement (x) Velocity (v) Acceleration (a) x = f(t) differentiate v = dx differentiate a = dv = d2 x dt dt dt 2 Acceleration Velocity

More information

Weight The weight of an object is defined as the gravitational force acting on the object. Unit: Newton (N)

Weight The weight of an object is defined as the gravitational force acting on the object. Unit: Newton (N) Gravitational Field A gravitational field as a region in which an object experiences a force due to gravitational attraction Gravitational Field Strength The gravitational field strength at a point in

More information

Physical Science Study Guide Unit 7 Wave properties and behaviors, electromagnetic spectrum, Doppler Effect

Physical Science Study Guide Unit 7 Wave properties and behaviors, electromagnetic spectrum, Doppler Effect Objectives: PS-7.1 Physical Science Study Guide Unit 7 Wave properties and behaviors, electromagnetic spectrum, Doppler Effect Illustrate ways that the energy of waves is transferred by interaction with

More information

A-LEVEL PHYSICS A. PHYA2 mechanics, materials and waves Mark scheme. 2450 June 2014. Version: 1.0 Final

A-LEVEL PHYSICS A. PHYA2 mechanics, materials and waves Mark scheme. 2450 June 2014. Version: 1.0 Final A-LEVEL PHYSICS A PHYA2 mechanics, materials and waves Mark scheme 2450 June 2014 Version: 1.0 Final Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions,

More information

A-level PHYSICS (7408/1)

A-level PHYSICS (7408/1) SPECIMEN MATERIAL A-level PHYSICS (7408/1) Paper 1 Specimen 2014 Morning Time allowed: 2 hours Materials For this paper you must have: a pencil a ruler a calculator a data and formulae booklet. Instructions

More information

Cambridge International Examinations Cambridge International Advanced Subsidiary and Advanced Level

Cambridge International Examinations Cambridge International Advanced Subsidiary and Advanced Level Cambridge International Examinations Cambridge International Advanced Subsidiary and Advanced Level *0123456789* PHYSICS 9702/02 Paper 2 AS Level Structured Questions For Examination from 2016 SPECIMEN

More information

GCE. Physics A. Mark Scheme for January 2013. Advanced Subsidiary GCE Unit G481/01: Mechanics. Oxford Cambridge and RSA Examinations

GCE. Physics A. Mark Scheme for January 2013. Advanced Subsidiary GCE Unit G481/01: Mechanics. Oxford Cambridge and RSA Examinations GCE Physics A Advanced Subsidiary GCE Unit G481/01: Mechanics Mark Scheme for January 2013 Oxford Cambridge and RSA Examinations OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing

More information

Interference. Physics 102 Workshop #3. General Instructions

Interference. Physics 102 Workshop #3. General Instructions Interference Physics 102 Workshop #3 Name: Lab Partner(s): Instructor: Time of Workshop: General Instructions Workshop exercises are to be carried out in groups of three. One report per group is due by

More information

AS COMPETITION PAPER 2008

AS COMPETITION PAPER 2008 AS COMPETITION PAPER 28 Name School Town & County Total Mark/5 Time Allowed: One hour Attempt as many questions as you can. Write your answers on this question paper. Marks allocated for each question

More information

AP Physics B Ch. 23 and Ch. 24 Geometric Optics and Wave Nature of Light

AP Physics B Ch. 23 and Ch. 24 Geometric Optics and Wave Nature of Light AP Physics B Ch. 23 and Ch. 24 Geometric Optics and Wave Nature of Light Name: Period: Date: MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Reflection,

More information

PHYS 222 Spring 2012 Final Exam. Closed books, notes, etc. No electronic device except a calculator.

PHYS 222 Spring 2012 Final Exam. Closed books, notes, etc. No electronic device except a calculator. PHYS 222 Spring 2012 Final Exam Closed books, notes, etc. No electronic device except a calculator. NAME: (all questions with equal weight) 1. If the distance between two point charges is tripled, the

More information

Physics 9e/Cutnell. correlated to the. College Board AP Physics 1 Course Objectives

Physics 9e/Cutnell. correlated to the. College Board AP Physics 1 Course Objectives Physics 9e/Cutnell correlated to the College Board AP Physics 1 Course Objectives Big Idea 1: Objects and systems have properties such as mass and charge. Systems may have internal structure. Enduring

More information

AP Physics C. Oscillations/SHM Review Packet

AP Physics C. Oscillations/SHM Review Packet AP Physics C Oscillations/SHM Review Packet 1. A 0.5 kg mass on a spring has a displacement as a function of time given by the equation x(t) = 0.8Cos(πt). Find the following: a. The time for one complete

More information

PHYSICAL QUANTITIES AND UNITS

PHYSICAL QUANTITIES AND UNITS 1 PHYSICAL QUANTITIES AND UNITS Introduction Physics is the study of matter, its motion and the interaction between matter. Physics involves analysis of physical quantities, the interaction between them

More information

GCSE COMBINED SCIENCE: TRILOGY

GCSE COMBINED SCIENCE: TRILOGY SPECIMEN MATERIAL GCSE COMBINED SCIENCE: TRILOGY PAPER 6: PHYSICS 2H Mark scheme Specimen 208 Version.0 Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant

More information

4.4 WAVE CHARACTERISTICS 4.5 WAVE PROPERTIES HW/Study Packet

4.4 WAVE CHARACTERISTICS 4.5 WAVE PROPERTIES HW/Study Packet 4.4 WAVE CHARACTERISTICS 4.5 WAVE PROPERTIES HW/Study Packet Required: READ Hamper pp 115-134 SL/HL Supplemental: Cutnell and Johnson, pp 473-477, 507-513 Tsokos, pp 216-242 REMEMBER TO. Work through all

More information

AP1 Oscillations. 1. Which of the following statements about a spring-block oscillator in simple harmonic motion about its equilibrium point is false?

AP1 Oscillations. 1. Which of the following statements about a spring-block oscillator in simple harmonic motion about its equilibrium point is false? 1. Which of the following statements about a spring-block oscillator in simple harmonic motion about its equilibrium point is false? (A) The displacement is directly related to the acceleration. (B) The

More information

Friday 18 January 2013 Morning

Friday 18 January 2013 Morning Friday 18 January 2013 Morning AS GCE PHYSICS B (ADVANCING PHYSICS) G492/01 Understanding Processes / Experimentation and Data Handling *G411640113* Candidates answer on the Question Paper. OCR supplied

More information

AP PHYSICS C Mechanics - SUMMER ASSIGNMENT FOR 2016-2017

AP PHYSICS C Mechanics - SUMMER ASSIGNMENT FOR 2016-2017 AP PHYSICS C Mechanics - SUMMER ASSIGNMENT FOR 2016-2017 Dear Student: The AP physics course you have signed up for is designed to prepare you for a superior performance on the AP test. To complete material

More information

CHAPTER 6 WORK AND ENERGY

CHAPTER 6 WORK AND ENERGY CHAPTER 6 WORK AND ENERGY CONCEPTUAL QUESTIONS. REASONING AND SOLUTION The work done by F in moving the box through a displacement s is W = ( F cos 0 ) s= Fs. The work done by F is W = ( F cos θ). s From

More information

Chapter 6 Work and Energy

Chapter 6 Work and Energy Chapter 6 WORK AND ENERGY PREVIEW Work is the scalar product of the force acting on an object and the displacement through which it acts. When work is done on or by a system, the energy of that system

More information

Physics 2A, Sec B00: Mechanics -- Winter 2011 Instructor: B. Grinstein Final Exam

Physics 2A, Sec B00: Mechanics -- Winter 2011 Instructor: B. Grinstein Final Exam Physics 2A, Sec B00: Mechanics -- Winter 2011 Instructor: B. Grinstein Final Exam INSTRUCTIONS: Use a pencil #2 to fill your scantron. Write your code number and bubble it in under "EXAM NUMBER;" an entry

More information

Sample Questions for the AP Physics 1 Exam

Sample Questions for the AP Physics 1 Exam Sample Questions for the AP Physics 1 Exam Sample Questions for the AP Physics 1 Exam Multiple-choice Questions Note: To simplify calculations, you may use g 5 10 m/s 2 in all problems. Directions: Each

More information

ANALYTICAL METHODS FOR ENGINEERS

ANALYTICAL METHODS FOR ENGINEERS UNIT 1: Unit code: QCF Level: 4 Credit value: 15 ANALYTICAL METHODS FOR ENGINEERS A/601/1401 OUTCOME - TRIGONOMETRIC METHODS TUTORIAL 1 SINUSOIDAL FUNCTION Be able to analyse and model engineering situations

More information

Physics 25 Exam 3 November 3, 2009

Physics 25 Exam 3 November 3, 2009 1. A long, straight wire carries a current I. If the magnetic field at a distance d from the wire has magnitude B, what would be the the magnitude of the magnetic field at a distance d/3 from the wire,

More information

State Newton's second law of motion for a particle, defining carefully each term used.

State Newton's second law of motion for a particle, defining carefully each term used. 5 Question 1. [Marks 20] An unmarked police car P is, travelling at the legal speed limit, v P, on a straight section of highway. At time t = 0, the police car is overtaken by a car C, which is speeding

More information

PHY121 #8 Midterm I 3.06.2013

PHY121 #8 Midterm I 3.06.2013 PHY11 #8 Midterm I 3.06.013 AP Physics- Newton s Laws AP Exam Multiple Choice Questions #1 #4 1. When the frictionless system shown above is accelerated by an applied force of magnitude F, the tension

More information

How To Understand Light And Color

How To Understand Light And Color PRACTICE EXAM IV P202 SPRING 2004 1. In two separate double slit experiments, an interference pattern is observed on a screen. In the first experiment, violet light (λ = 754 nm) is used and a second-order

More information

physics 1/12/2016 Chapter 20 Lecture Chapter 20 Traveling Waves

physics 1/12/2016 Chapter 20 Lecture Chapter 20 Traveling Waves Chapter 20 Lecture physics FOR SCIENTISTS AND ENGINEERS a strategic approach THIRD EDITION randall d. knight Chapter 20 Traveling Waves Chapter Goal: To learn the basic properties of traveling waves. Slide

More information

6) How wide must a narrow slit be if the first diffraction minimum occurs at ±12 with laser light of 633 nm?

6) How wide must a narrow slit be if the first diffraction minimum occurs at ±12 with laser light of 633 nm? Test IV Name 1) In a single slit diffraction experiment, the width of the slit is 3.1 10-5 m and the distance from the slit to the screen is 2.2 m. If the beam of light of wavelength 600 nm passes through

More information

1) The time for one cycle of a periodic process is called the A) wavelength. B) period. C) frequency. D) amplitude.

1) The time for one cycle of a periodic process is called the A) wavelength. B) period. C) frequency. D) amplitude. practice wave test.. Name Use the text to make use of any equations you might need (e.g., to determine the velocity of waves in a given material) MULTIPLE CHOICE. Choose the one alternative that best completes

More information

PHYS 101-4M, Fall 2005 Exam #3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

PHYS 101-4M, Fall 2005 Exam #3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. PHYS 101-4M, Fall 2005 Exam #3 Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A bicycle wheel rotates uniformly through 2.0 revolutions in

More information

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION PHYSICAL SETTING PHYSICS. Friday, June 20, 2014 1:15 to 4:15 p.m.

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION PHYSICAL SETTING PHYSICS. Friday, June 20, 2014 1:15 to 4:15 p.m. P.S./PHYSICS The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION PHYSICAL SETTING PHYSICS Friday, June 20, 2014 1:15 to 4:15 p.m., only The possession or use of any communications device

More information

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA MECHANICAL PRINCIPLES AND APPLICATIONS NQF LEVEL 3 OUTCOME 1 - LOADING SYSTEMS

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA MECHANICAL PRINCIPLES AND APPLICATIONS NQF LEVEL 3 OUTCOME 1 - LOADING SYSTEMS EDEXCEL NATIONAL CERTIFICATE/DIPLOMA MECHANICAL PRINCIPLES AND APPLICATIONS NQF LEVEL 3 OUTCOME 1 - LOADING SYSTEMS TUTORIAL 1 NON-CONCURRENT COPLANAR FORCE SYSTEMS 1. Be able to determine the effects

More information

C B A T 3 T 2 T 1. 1. What is the magnitude of the force T 1? A) 37.5 N B) 75.0 N C) 113 N D) 157 N E) 192 N

C B A T 3 T 2 T 1. 1. What is the magnitude of the force T 1? A) 37.5 N B) 75.0 N C) 113 N D) 157 N E) 192 N Three boxes are connected by massless strings and are resting on a frictionless table. Each box has a mass of 15 kg, and the tension T 1 in the right string is accelerating the boxes to the right at a

More information

MECHANICS OF SOLIDS - BEAMS TUTORIAL 1 STRESSES IN BEAMS DUE TO BENDING. On completion of this tutorial you should be able to do the following.

MECHANICS OF SOLIDS - BEAMS TUTORIAL 1 STRESSES IN BEAMS DUE TO BENDING. On completion of this tutorial you should be able to do the following. MECHANICS OF SOLIDS - BEAMS TUTOIAL 1 STESSES IN BEAMS DUE TO BENDING This is the first tutorial on bending of beams designed for anyone wishing to study it at a fairly advanced level. You should judge

More information

Chapter 4. Forces and Newton s Laws of Motion. continued

Chapter 4. Forces and Newton s Laws of Motion. continued Chapter 4 Forces and Newton s Laws of Motion continued 4.9 Static and Kinetic Frictional Forces When an object is in contact with a surface forces can act on the objects. The component of this force acting

More information

Simple Harmonic Motion

Simple Harmonic Motion Simple Harmonic Motion 1 Object To determine the period of motion of objects that are executing simple harmonic motion and to check the theoretical prediction of such periods. 2 Apparatus Assorted weights

More information

Tennessee State University

Tennessee State University Tennessee State University Dept. of Physics & Mathematics PHYS 2010 CF SU 2009 Name 30% Time is 2 hours. Cheating will give you an F-grade. Other instructions will be given in the Hall. MULTIPLE CHOICE.

More information

Waves Sound and Light

Waves Sound and Light Waves Sound and Light r2 c:\files\courses\1710\spr12\wavetrans.doc Ron Robertson The Nature of Waves Waves are a type of energy transmission that results from a periodic disturbance (vibration). They are

More information

Prelab Exercises: Hooke's Law and the Behavior of Springs

Prelab Exercises: Hooke's Law and the Behavior of Springs 59 Prelab Exercises: Hooke's Law and the Behavior of Springs Study the description of the experiment that follows and answer the following questions.. (3 marks) Explain why a mass suspended vertically

More information

Practice Test SHM with Answers

Practice Test SHM with Answers Practice Test SHM with Answers MPC 1) If we double the frequency of a system undergoing simple harmonic motion, which of the following statements about that system are true? (There could be more than one

More information

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION PHYSICAL SETTING PHYSICS. Wednesday, June 17, 2015 1:15 to 4:15 p.m.

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION PHYSICAL SETTING PHYSICS. Wednesday, June 17, 2015 1:15 to 4:15 p.m. P.S./PHYSICS The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION PHYSICAL SETTING PHYSICS Wednesday, June 17, 2015 1:15 to 4:15 p.m., only The possession or use of any communications

More information

Candidate Number. General Certificate of Education Advanced Level Examination June 2014

Candidate Number. General Certificate of Education Advanced Level Examination June 2014 entre Number andidate Number Surname Other Names andidate Signature General ertificate of Education dvanced Level Examination June 214 Physics PHY4/1 Unit 4 Fields and Further Mechanics Section Wednesday

More information

Physics 111 Homework Solutions Week #9 - Tuesday

Physics 111 Homework Solutions Week #9 - Tuesday Physics 111 Homework Solutions Week #9 - Tuesday Friday, February 25, 2011 Chapter 22 Questions - None Multiple-Choice 223 A 224 C 225 B 226 B 227 B 229 D Problems 227 In this double slit experiment we

More information

Rotation: Moment of Inertia and Torque

Rotation: Moment of Inertia and Torque Rotation: Moment of Inertia and Torque Every time we push a door open or tighten a bolt using a wrench, we apply a force that results in a rotational motion about a fixed axis. Through experience we learn

More information

Lesson 11. Luis Anchordoqui. Physics 168. Tuesday, December 8, 15

Lesson 11. Luis Anchordoqui. Physics 168. Tuesday, December 8, 15 Lesson 11 Physics 168 1 Oscillations and Waves 2 Simple harmonic motion If an object vibrates or oscillates back and forth over same path each cycle taking same amount of time motion is called periodic

More information

State Newton's second law of motion for a particle, defining carefully each term used.

State Newton's second law of motion for a particle, defining carefully each term used. 5 Question 1. [Marks 28] An unmarked police car P is, travelling at the legal speed limit, v P, on a straight section of highway. At time t = 0, the police car is overtaken by a car C, which is speeding

More information

Physics 41 HW Set 1 Chapter 15

Physics 41 HW Set 1 Chapter 15 Physics 4 HW Set Chapter 5 Serway 8 th OC:, 4, 7 CQ: 4, 8 P: 4, 5, 8, 8, 0, 9,, 4, 9, 4, 5, 5 Discussion Problems:, 57, 59, 67, 74 OC CQ P: 4, 5, 8, 8, 0, 9,, 4, 9, 4, 5, 5 Discussion Problems:, 57, 59,

More information

Objectives. Experimentally determine the yield strength, tensile strength, and modules of elasticity and ductility of given materials.

Objectives. Experimentally determine the yield strength, tensile strength, and modules of elasticity and ductility of given materials. Lab 3 Tension Test Objectives Concepts Background Experimental Procedure Report Requirements Discussion Objectives Experimentally determine the yield strength, tensile strength, and modules of elasticity

More information

LAB 6 - GRAVITATIONAL AND PASSIVE FORCES

LAB 6 - GRAVITATIONAL AND PASSIVE FORCES L06-1 Name Date Partners LAB 6 - GRAVITATIONAL AND PASSIVE FORCES OBJECTIVES And thus Nature will be very conformable to herself and very simple, performing all the great Motions of the heavenly Bodies

More information

Physics Midterm Review Packet January 2010

Physics Midterm Review Packet January 2010 Physics Midterm Review Packet January 2010 This Packet is a Study Guide, not a replacement for studying from your notes, tests, quizzes, and textbook. Midterm Date: Thursday, January 28 th 8:15-10:15 Room:

More information

PHYSICS 111 HOMEWORK SOLUTION #10. April 8, 2013

PHYSICS 111 HOMEWORK SOLUTION #10. April 8, 2013 PHYSICS HOMEWORK SOLUTION #0 April 8, 203 0. Find the net torque on the wheel in the figure below about the axle through O, taking a = 6.0 cm and b = 30.0 cm. A torque that s produced by a force can be

More information

EDUH 1017 - SPORTS MECHANICS

EDUH 1017 - SPORTS MECHANICS 4277(a) Semester 2, 2011 Page 1 of 9 THE UNIVERSITY OF SYDNEY EDUH 1017 - SPORTS MECHANICS NOVEMBER 2011 Time allowed: TWO Hours Total marks: 90 MARKS INSTRUCTIONS All questions are to be answered. Use

More information

104 Practice Exam 2-3/21/02

104 Practice Exam 2-3/21/02 104 Practice Exam 2-3/21/02 1. Two electrons are located in a region of space where the magnetic field is zero. Electron A is at rest; and electron B is moving westward with a constant velocity. A non-zero

More information

Physics 3 Summer 1989 Lab 7 - Elasticity

Physics 3 Summer 1989 Lab 7 - Elasticity Physics 3 Summer 1989 Lab 7 - Elasticity Theory All materials deform to some extent when subjected to a stress (a force per unit area). Elastic materials have internal forces which restore the size and

More information

Spring Simple Harmonic Oscillator. Spring constant. Potential Energy stored in a Spring. Understanding oscillations. Understanding oscillations

Spring Simple Harmonic Oscillator. Spring constant. Potential Energy stored in a Spring. Understanding oscillations. Understanding oscillations Spring Simple Harmonic Oscillator Simple Harmonic Oscillations and Resonance We have an object attached to a spring. The object is on a horizontal frictionless surface. We move the object so the spring

More information

Determination of g using a spring

Determination of g using a spring INTRODUCTION UNIVERSITY OF SURREY DEPARTMENT OF PHYSICS Level 1 Laboratory: Introduction Experiment Determination of g using a spring This experiment is designed to get you confident in using the quantitative

More information

Science Standard Articulated by Grade Level Strand 5: Physical Science

Science Standard Articulated by Grade Level Strand 5: Physical Science Concept 1: Properties of Objects and Materials Classify objects and materials by their observable properties. Kindergarten Grade 1 Grade 2 Grade 3 Grade 4 PO 1. Identify the following observable properties

More information

226 Chapter 15: OSCILLATIONS

226 Chapter 15: OSCILLATIONS Chapter 15: OSCILLATIONS 1. In simple harmonic motion, the restoring force must be proportional to the: A. amplitude B. frequency C. velocity D. displacement E. displacement squared 2. An oscillatory motion

More information

Monday 11 June 2012 Afternoon

Monday 11 June 2012 Afternoon Monday 11 June 2012 Afternoon A2 GCE PHYSICS B (ADVANCING PHYSICS) G495 Field and Particle Pictures *G412090612* Candidates answer on the Question Paper. OCR supplied materials: Data, Formulae and Relationships

More information

Waves - Transverse and Longitudinal Waves

Waves - Transverse and Longitudinal Waves Waves - Transverse and Longitudinal Waves wave may be defined as a periodic disturbance in a medium that carries energy from one point to another. ll waves require a source and a medium of propagation.

More information

Mechanical Principles

Mechanical Principles Unit 4: Mechanical Principles Unit code: F/60/450 QCF level: 5 Credit value: 5 OUTCOME 3 POWER TRANSMISSION TUTORIAL BELT DRIVES 3 Power Transmission Belt drives: flat and v-section belts; limiting coefficient

More information

Version 1.0. klm. General Certificate of Education June 2010. Mechanics, Materials and Waves Unit 2. Final. Mark Scheme

Version 1.0. klm. General Certificate of Education June 2010. Mechanics, Materials and Waves Unit 2. Final. Mark Scheme Version.0 klm General Certificate of Education June 00 Physics A PHYA Mechanics, Materials and Waves Unit Final Mark Scheme Mark schemes are prepared by the Principal Examiner and considered, together

More information

Solving Simultaneous Equations and Matrices

Solving Simultaneous Equations and Matrices Solving Simultaneous Equations and Matrices The following represents a systematic investigation for the steps used to solve two simultaneous linear equations in two unknowns. The motivation for considering

More information

GRID AND PRISM SPECTROMETERS

GRID AND PRISM SPECTROMETERS FYSA230/2 GRID AND PRISM SPECTROMETERS 1. Introduction Electromagnetic radiation (e.g. visible light) experiences reflection, refraction, interference and diffraction phenomena when entering and passing

More information

Pre-lab Quiz/PHYS 224 Magnetic Force and Current Balance. Your name Lab section

Pre-lab Quiz/PHYS 224 Magnetic Force and Current Balance. Your name Lab section Pre-lab Quiz/PHYS 224 Magnetic Force and Current Balance Your name Lab section 1. What do you investigate in this lab? 2. Two straight wires are in parallel and carry electric currents in opposite directions

More information

8. Potential Energy and Conservation of Energy Potential Energy: When an object has potential to have work done on it, it is said to have potential

8. Potential Energy and Conservation of Energy Potential Energy: When an object has potential to have work done on it, it is said to have potential 8. Potential Energy and Conservation of Energy Potential Energy: When an object has potential to have work done on it, it is said to have potential energy, e.g. a ball in your hand has more potential energy

More information

LAB 6: GRAVITATIONAL AND PASSIVE FORCES

LAB 6: GRAVITATIONAL AND PASSIVE FORCES 55 Name Date Partners LAB 6: GRAVITATIONAL AND PASSIVE FORCES And thus Nature will be very conformable to herself and very simple, performing all the great Motions of the heavenly Bodies by the attraction

More information

TEACHER S CLUB EXAMS GRADE 11. PHYSICAL SCIENCES: PHYSICS Paper 1

TEACHER S CLUB EXAMS GRADE 11. PHYSICAL SCIENCES: PHYSICS Paper 1 TEACHER S CLUB EXAMS GRADE 11 PHYSICAL SCIENCES: PHYSICS Paper 1 MARKS: 150 TIME: 3 hours INSTRUCTIONS AND INFORMATION 1. This question paper consists of 12 pages, two data sheets and a sheet of graph

More information

Reflection and Refraction

Reflection and Refraction Equipment Reflection and Refraction Acrylic block set, plane-concave-convex universal mirror, cork board, cork board stand, pins, flashlight, protractor, ruler, mirror worksheet, rectangular block worksheet,

More information

Indiana's Academic Standards 2010 ICP Indiana's Academic Standards 2016 ICP. map) that describe the relationship acceleration, velocity and distance.

Indiana's Academic Standards 2010 ICP Indiana's Academic Standards 2016 ICP. map) that describe the relationship acceleration, velocity and distance. .1.1 Measure the motion of objects to understand.1.1 Develop graphical, the relationships among distance, velocity and mathematical, and pictorial acceleration. Develop deeper understanding through representations

More information

PHY231 Section 2, Form A March 22, 2012. 1. Which one of the following statements concerning kinetic energy is true?

PHY231 Section 2, Form A March 22, 2012. 1. Which one of the following statements concerning kinetic energy is true? 1. Which one of the following statements concerning kinetic energy is true? A) Kinetic energy can be measured in watts. B) Kinetic energy is always equal to the potential energy. C) Kinetic energy is always

More information

Chapter 15, example problems:

Chapter 15, example problems: Chapter, example problems: (.0) Ultrasound imaging. (Frequenc > 0,000 Hz) v = 00 m/s. λ 00 m/s /.0 mm =.0 0 6 Hz. (Smaller wave length implies larger frequenc, since their product,

More information

Physics 1120: Simple Harmonic Motion Solutions

Physics 1120: Simple Harmonic Motion Solutions Questions: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Physics 1120: Simple Harmonic Motion Solutions 1. A 1.75 kg particle moves as function of time as follows: x = 4cos(1.33t+π/5) where distance is measured

More information

1. Fluids Mechanics and Fluid Properties. 1.1 Objectives of this section. 1.2 Fluids

1. Fluids Mechanics and Fluid Properties. 1.1 Objectives of this section. 1.2 Fluids 1. Fluids Mechanics and Fluid Properties What is fluid mechanics? As its name suggests it is the branch of applied mechanics concerned with the statics and dynamics of fluids - both liquids and gases.

More information

Force on Moving Charges in a Magnetic Field

Force on Moving Charges in a Magnetic Field [ Assignment View ] [ Eðlisfræði 2, vor 2007 27. Magnetic Field and Magnetic Forces Assignment is due at 2:00am on Wednesday, February 28, 2007 Credit for problems submitted late will decrease to 0% after

More information

AS COMPETITION PAPER 2007 SOLUTIONS

AS COMPETITION PAPER 2007 SOLUTIONS AS COMPETITION PAPER 2007 Total Mark/50 SOLUTIONS Section A: Multiple Choice 1. C 2. D 3. B 4. B 5. B 6. A 7. A 8. C 1 Section B: Written Answer Question 9. A mass M is attached to the end of a horizontal

More information

FXA 2008. UNIT G484 Module 2 4.2.3 Simple Harmonic Oscillations 11. frequency of the applied = natural frequency of the

FXA 2008. UNIT G484 Module 2 4.2.3 Simple Harmonic Oscillations 11. frequency of the applied = natural frequency of the 11 FORCED OSCILLATIONS AND RESONANCE POINTER INSTRUMENTS Analogue ammeter and voltmeters, have CRITICAL DAMPING so as to allow the needle pointer to reach its correct position on the scale after a single

More information

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA MECHANICAL PRINCIPLES AND APPLICATIONS NQF LEVEL 3 OUTCOME 1 - LOADING SYSTEMS TUTORIAL 3 LOADED COMPONENTS

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA MECHANICAL PRINCIPLES AND APPLICATIONS NQF LEVEL 3 OUTCOME 1 - LOADING SYSTEMS TUTORIAL 3 LOADED COMPONENTS EDEXCEL NATIONAL CERTIICATE/DIPLOMA MECHANICAL PRINCIPLES AND APPLICATIONS NQ LEVEL 3 OUTCOME 1 - LOADING SYSTEMS TUTORIAL 3 LOADED COMPONENTS 1. Be able to determine the effects of loading in static engineering

More information

Solid Mechanics. Stress. What you ll learn: Motivation

Solid Mechanics. Stress. What you ll learn: Motivation Solid Mechanics Stress What you ll learn: What is stress? Why stress is important? What are normal and shear stresses? What is strain? Hooke s law (relationship between stress and strain) Stress strain

More information

Polarization of Light

Polarization of Light Polarization of Light References Halliday/Resnick/Walker Fundamentals of Physics, Chapter 33, 7 th ed. Wiley 005 PASCO EX997A and EX999 guide sheets (written by Ann Hanks) weight Exercises and weights

More information

Biggar High School Mathematics Department. National 5 Learning Intentions & Success Criteria: Assessing My Progress

Biggar High School Mathematics Department. National 5 Learning Intentions & Success Criteria: Assessing My Progress Biggar High School Mathematics Department National 5 Learning Intentions & Success Criteria: Assessing My Progress Expressions & Formulae Topic Learning Intention Success Criteria I understand this Approximation

More information

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION PHYSICAL SETTING PHYSICS. Tuesday, June 22, 2010 9:15 a.m. to 12:15 p.m.

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION PHYSICAL SETTING PHYSICS. Tuesday, June 22, 2010 9:15 a.m. to 12:15 p.m. PS/PHYSICS The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION PHYSICAL SETTING PHYSICS Tuesday, June 22, 2010 9:15 a.m. to 12:15 p.m., only The answers to all questions in this examination

More information

Motion Graphs. It is said that a picture is worth a thousand words. The same can be said for a graph.

Motion Graphs. It is said that a picture is worth a thousand words. The same can be said for a graph. Motion Graphs It is said that a picture is worth a thousand words. The same can be said for a graph. Once you learn to read the graphs of the motion of objects, you can tell at a glance if the object in

More information

PHYS 211 FINAL FALL 2004 Form A

PHYS 211 FINAL FALL 2004 Form A 1. Two boys with masses of 40 kg and 60 kg are holding onto either end of a 10 m long massless pole which is initially at rest and floating in still water. They pull themselves along the pole toward each

More information

Current Staff Course Unit/ Length. Basic Outline/ Structure. Unit Objectives/ Big Ideas. Properties of Waves A simple wave has a PH: Sound and Light

Current Staff Course Unit/ Length. Basic Outline/ Structure. Unit Objectives/ Big Ideas. Properties of Waves A simple wave has a PH: Sound and Light Current Staff Course Unit/ Length August August September September October Unit Objectives/ Big Ideas Basic Outline/ Structure PS4- Types of Waves Because light can travel through space, it cannot be

More information

MECHANICAL PRINCIPLES HNC/D PRELIMINARY LEVEL TUTORIAL 1 BASIC STUDIES OF STRESS AND STRAIN

MECHANICAL PRINCIPLES HNC/D PRELIMINARY LEVEL TUTORIAL 1 BASIC STUDIES OF STRESS AND STRAIN MECHANICAL PRINCIPLES HNC/D PRELIMINARY LEVEL TUTORIAL 1 BASIC STUDIES O STRESS AND STRAIN This tutorial is essential for anyone studying the group of tutorials on beams. Essential pre-requisite knowledge

More information

Fraunhofer Diffraction

Fraunhofer Diffraction Physics 334 Spring 1 Purpose Fraunhofer Diffraction The experiment will test the theory of Fraunhofer diffraction at a single slit by comparing a careful measurement of the angular dependence of intensity

More information

Lecture L22-2D Rigid Body Dynamics: Work and Energy

Lecture L22-2D Rigid Body Dynamics: Work and Energy J. Peraire, S. Widnall 6.07 Dynamics Fall 008 Version.0 Lecture L - D Rigid Body Dynamics: Work and Energy In this lecture, we will revisit the principle of work and energy introduced in lecture L-3 for

More information

ENGINEERING COUNCIL CERTIFICATE LEVEL

ENGINEERING COUNCIL CERTIFICATE LEVEL ENGINEERING COUNCIL CERTIICATE LEVEL ENGINEERING SCIENCE C103 TUTORIAL - BASIC STUDIES O STRESS AND STRAIN You should judge your progress by completing the self assessment exercises. These may be sent

More information

FRICTION, WORK, AND THE INCLINED PLANE

FRICTION, WORK, AND THE INCLINED PLANE FRICTION, WORK, AND THE INCLINED PLANE Objective: To measure the coefficient of static and inetic friction between a bloc and an inclined plane and to examine the relationship between the plane s angle

More information

PHY231 Section 1, Form B March 22, 2012

PHY231 Section 1, Form B March 22, 2012 1. A car enters a horizontal, curved roadbed of radius 50 m. The coefficient of static friction between the tires and the roadbed is 0.20. What is the maximum speed with which the car can safely negotiate

More information

Magnetism. d. gives the direction of the force on a charge moving in a magnetic field. b. results in negative charges moving. clockwise.

Magnetism. d. gives the direction of the force on a charge moving in a magnetic field. b. results in negative charges moving. clockwise. Magnetism 1. An electron which moves with a speed of 3.0 10 4 m/s parallel to a uniform magnetic field of 0.40 T experiences a force of what magnitude? (e = 1.6 10 19 C) a. 4.8 10 14 N c. 2.2 10 24 N b.

More information

Mechanical Properties of Metals Mechanical Properties refers to the behavior of material when external forces are applied

Mechanical Properties of Metals Mechanical Properties refers to the behavior of material when external forces are applied Mechanical Properties of Metals Mechanical Properties refers to the behavior of material when external forces are applied Stress and strain fracture or engineering point of view: allows to predict the

More information

VELOCITY, ACCELERATION, FORCE

VELOCITY, ACCELERATION, FORCE VELOCITY, ACCELERATION, FORCE velocity Velocity v is a vector, with units of meters per second ( m s ). Velocity indicates the rate of change of the object s position ( r ); i.e., velocity tells you how

More information