Chapter 11~ The Basic Principles of Heredity

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Chapter 11~ The Basic Principles of Heredity"

Transcription

1 Chapter 11~ The Basic Principles of Heredity

2 Mendelian genetics Character (heritable feature, i.e., fur color) Trait (variant for a character, i.e., brown) True-bred (all offspring of same variety) Hybridization (crossing of 2 different truebreds) P generation (parents) F1 generation (first filial generation)

3 Leading to the Law of Segregation Alternative versions of genes (alleles) account for variations in inherited characteristics For each character, an organism inherits 2 alleles, one from each parent If the two alleles differ, then one, the dominant allele, is fully expressed in the organism s appearance; the other, the recessive allele, has no noticeable effect on the organism s appearance The alleles for each character segregate (separate) during gamete production (meiosis). Mendel s Law of Segregation

4 Genetic vocabulary. Punnett square: predicts the results of a genetic cross between individuals of known genotype Homozygous: pair of identical alleles for a character Heterozygous: two different alleles for a gene Phenotype: an organism s traits Genotype: an organism s genetic makeup Testcross: breeding of a recessive homozygote X dominate phenotype (but unknown genotype)

5 The Law of Independent Assortment Law of Segregation involves 1 character. What about 2 (or more) characters? Monohybrid cross vs. dihybrid cross The two pairs of alleles segregate independently of each other. Mendel s Law of Independent Assortment

6 Genetic Ratios Expressed as probabilities Probability expressed as fraction or decimal fraction favorable events divided by total events Range from 0 (impossible event) to 1 (certain event)

7 Rules of Probability

8 The Product Rule The probability of two independent events occurring together multiply the probabilities of each event occurring separately Therefore, the probability of obtaining heads two times in a row = ½ X ½ = ¼ or The probability of Bb X Bb parents having a bb child is ½ X ½ = ¼

9 The Sum Rule The probability of an outcome that can be obtained in more than one way add the separate probabilities Therefore, the probability of Bb X Bb obtaining a Bb child is ¼ + ¼ = ½

10 Monohybrid Cross

11 Dihybrid Cross

12 The Chromosomal Theory of Inheritance Genes have specific loci on chromosomes and chromosomes undergo segregation and independent assortment

13 Chromosomal Linkage Morgan Drosophilia melanogaster XX (female) vs. XY (male) Sex-linkage: genes located on a sex chromosome Linked genes: genes located on the same chromosome that tend to be inherited together

14 Genetic recombination Crossing over Genes that DO NOT assort independently of each other Genetic maps The further apart 2 genes are, the higher the probability that a crossover will occur between them and therefore the higher the recombination frequency Linkage maps Genetic map based on recombination frequencies

15 Crossing-Over

16 Linkage in Fruit Flies

17 Calculations of Recombination Frequency Number of parental-type offspring = = 1909 Number of recombinant-type offspring = = 391 Total number of offspring = = 2300 Recombinant frequency = 391/2300 = 17%

18 Human sex-linkage SRY gene: gene on Y chromosome that triggers the development of testes Fathers= pass X-linked alleles to all daughters only (but not to sons) Mothers= pass X-linked alleles to both sons & daughters Sex-Linked Disorders: Color-blindness; Duchenne muscular dystropy (MD); hemophilia X-inactivation: 2nd X chromosome in females condenses into a Barr body (e.g., tortoiseshell gene gene in cats)

19 X-Linked Color Blindness

20 Non-single gene genetics, I Incomplete dominance: appearance between the phenotypes of the 2 parents. Ex: snapdragons Codominance: two alleles affect the phenotype in separate, distinguishable ways. Ex: Tay-Sachs disease Multiple alleles: more than 2 possible alleles for a gene. Ex: human blood types

21 Non-single gene genetics, II Pleiotropy: genes with multiple phenotypic effect. Ex: sickle-cell anemia Epistasis: a gene at one locus (chromosomal location) affects the phenotypic expression of a gene at a second locus. Ex: mice coat color Polygenic Inheritance: an additive effect of two or more genes on a single phenotypic character Ex: human skin pigmentation and height

22 Epistasis

23 Polygenic Inheritance

24 Chromosomal errors, I Nondisjunction: members of a pair of homologous chromosomes do not separate properly during meiosis I or sister chromatids fail to separate during meiosis II Aneuploidy: chromosome number is abnormal Monosomy~ missing chromosome Trisomy~ extra chromosome (Down syndrome) Polyploidy~ extra sets of chromosomes

25 Chromosomal errors, II Alterations of chromosomal structure: Deletion: removal of a chromosomal segment Duplication: repeats a chromosomal segment Inversion: segment reversal in a chromosome Translocation: movement of a chromosomal segment to another

26 Human disorders The family pedigree Recessive disorders: Cystic fibrosis Tay-Sachs Sickle-cell Dominant disorders: Huntington s Testing: amniocentesis chorionic villus sampling (CVS)

Chapter 15: The Chromosomal Basis of Inheritance

Chapter 15: The Chromosomal Basis of Inheritance Name Period Chapter 15: The Chromosomal Basis of Inheritance Concept 15.1 Mendelian inheritance has its physical basis in the behavior of chromosomes 1. What is the chromosome theory of inheritance? The

More information

Chapter 9 Patterns of Inheritance

Chapter 9 Patterns of Inheritance Bio 100 Patterns of Inheritance 1 Chapter 9 Patterns of Inheritance Modern genetics began with Gregor Mendel s quantitative experiments with pea plants History of Heredity Blending theory of heredity -

More information

The correct answer is c A. Answer a is incorrect. The white-eye gene must be recessive since heterozygous females have red eyes.

The correct answer is c A. Answer a is incorrect. The white-eye gene must be recessive since heterozygous females have red eyes. 1. Why is the white-eye phenotype always observed in males carrying the white-eye allele? a. Because the trait is dominant b. Because the trait is recessive c. Because the allele is located on the X chromosome

More information

Name: 4. A typical phenotypic ratio for a dihybrid cross is a) 9:1 b) 3:4 c) 9:3:3:1 d) 1:2:1:2:1 e) 6:3:3:6

Name: 4. A typical phenotypic ratio for a dihybrid cross is a) 9:1 b) 3:4 c) 9:3:3:1 d) 1:2:1:2:1 e) 6:3:3:6 Name: Multiple-choice section Choose the answer which best completes each of the following statements or answers the following questions and so make your tutor happy! 1. Which of the following conclusions

More information

Complex Inheritance. Mendel observed monogenic traits and no linked genes It s not usually that simple.

Complex Inheritance. Mendel observed monogenic traits and no linked genes It s not usually that simple. Complex Inheritance Mendel observed monogenic traits and no linked genes It s not usually that simple. Other Types of Inheritance Incomplete Dominance The phenotype of the heterozygote is intermediate

More information

Chapter 13: Meiosis and Sexual Life Cycles

Chapter 13: Meiosis and Sexual Life Cycles Name Period Concept 13.1 Offspring acquire genes from parents by inheriting chromosomes 1. Let s begin with a review of several terms that you may already know. Define: gene locus gamete male gamete female

More information

Exam #2 BSC Fall. NAME Key answers in bold

Exam #2 BSC Fall. NAME Key answers in bold Exam #2 BSC 2011 2004 Fall NAME Key answers in bold _ FORM B Before you begin, please write your name and social security number on the computerized score sheet. Mark in the corresponding bubbles under

More information

Chapter 24 Genetics and Genomics

Chapter 24 Genetics and Genomics Chapter 24 Genetics and Genomics Genetics study of inheritance of characteristics Genome complete set of genetic instructions Genomics field in which the body is studied in terms of multiple, interacting

More information

CCR Biology - Chapter 7 Practice Test - Summer 2012

CCR Biology - Chapter 7 Practice Test - Summer 2012 Name: Class: Date: CCR Biology - Chapter 7 Practice Test - Summer 2012 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A person who has a disorder caused

More information

Heredity - Patterns of Inheritance

Heredity - Patterns of Inheritance Heredity - Patterns of Inheritance Genes and Alleles A. Genes 1. A sequence of nucleotides that codes for a special functional product a. Transfer RNA b. Enzyme c. Structural protein d. Pigments 2. Genes

More information

Chromosomes, Mapping, and the Meiosis Inheritance Connection

Chromosomes, Mapping, and the Meiosis Inheritance Connection Chromosomes, Mapping, and the Meiosis Inheritance Connection Carl Correns 1900 Chapter 13 First suggests central role for chromosomes Rediscovery of Mendel s work Walter Sutton 1902 Chromosomal theory

More information

Genetics II Answered Review Questions Explain the incomplete dominance inheritance pattern.

Genetics II Answered Review Questions Explain the incomplete dominance inheritance pattern. Genetics II Answered Review Questions 1. Explain the incomplete dominance inheritance pattern. Alleles can show different degrees of dominance and recessiveness in relation to each other. We refer to this

More information

Biology 1406 Exam 4 Notes Cell Division and Genetics Ch. 8, 9

Biology 1406 Exam 4 Notes Cell Division and Genetics Ch. 8, 9 Biology 1406 Exam 4 Notes Cell Division and Genetics Ch. 8, 9 Ch. 8 Cell Division Cells divide to produce new cells must pass genetic information to new cells - What process of DNA allows this? Two types

More information

Heredity. Sarah crosses a homozygous white flower and a homozygous purple flower. The cross results in all purple flowers.

Heredity. Sarah crosses a homozygous white flower and a homozygous purple flower. The cross results in all purple flowers. Heredity 1. Sarah is doing an experiment on pea plants. She is studying the color of the pea plants. Sarah has noticed that many pea plants have purple flowers and many have white flowers. Sarah crosses

More information

GENETIC CROSSES. Monohybrid Crosses

GENETIC CROSSES. Monohybrid Crosses GENETIC CROSSES Monohybrid Crosses Objectives Explain the difference between genotype and phenotype Explain the difference between homozygous and heterozygous Explain how probability is used to predict

More information

11.1 The Work of Gregor Mendel

11.1 The Work of Gregor Mendel 11.1 The Work of Gregor Mendel Lesson Objectives Describe Mendel s studies and conclusions about inheritance. Describe what happens during segregation. Lesson Summary The Experiments of Gregor Mendel The

More information

CHROMOSOMES AND INHERITANCE

CHROMOSOMES AND INHERITANCE SECTION 12-1 REVIEW CHROMOSOMES AND INHERITANCE VOCABULARY REVIEW Distinguish between the terms in each of the following pairs of terms. 1. sex chromosome, autosome 2. germ-cell mutation, somatic-cell

More information

The Mendelian Genetics of Corn

The Mendelian Genetics of Corn The Mendelian Genetics of Corn (Adapted from Mendelian Genetics for Corn by Carolina Biological Supply Company) Objectives: In this laboratory investigation, you will: a. Use corn to study genetic crosses.

More information

Foundations of Genetics. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display

Foundations of Genetics. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display Foundations of Genetics 8.1 Mendel and the Garden Pea The tendency for traits to be passed from parent to offspring is called heredity Gregor Mendel (1822-1884) The first person to systematically study

More information

Genetics Problem Set

Genetics Problem Set AP Biology Name: Genetics Problem Set Independent Assortment Problems 1. One gene has alleles A and a. Another has alleles B and b. For each genotype listed, what type(s) of gametes will be produced? (Assume

More information

6/2/2015. (Sperm could also be XY)

6/2/2015. (Sperm could also be XY) Chapter 6 Genetics and Inheritance Sometimes there is not one clear dominant allele In a heterozygous individual, both alleles are expressed Phenotype is a blend of both traits Lecture 2: Genetics and

More information

CIBI Midterm Examination III November 2005

CIBI Midterm Examination III November 2005 Name: CIBI3031-070 Midterm Examination III November 2005 Multiple Choice In each blank, identify the letter of the choice that best completes the statement or answers the question. 1. If a parent cell

More information

Not all traits are simply inherited by dominant and recessive alleles (Mendelian Genetics). In some traits, neither allele is dominant or many

Not all traits are simply inherited by dominant and recessive alleles (Mendelian Genetics). In some traits, neither allele is dominant or many Not all traits are simply inherited by dominant and recessive alleles (Mendelian Genetics). In some traits, neither allele is dominant or many alleles control the trait. Below are different ways in which

More information

Scientists use observable evidence to direct their questions about phenomena. For which question would the karyotype provide the most evidence?

Scientists use observable evidence to direct their questions about phenomena. For which question would the karyotype provide the most evidence? 1. A karyotype shows the visual appearance of an individual s chromosomes. The karyotype below shows the chromosomes of a person with a genetic disorder. Scientists use observable evidence to direct their

More information

Chapter 14: Mendel and the Gene Idea

Chapter 14: Mendel and the Gene Idea Name Period Chapter 14: Mendel and the Gene Idea If you have completed a first-year high school biology course, some of this chapter will serve as a review for the basic concepts of Mendelian genetics.

More information

c. Law of Independent Assortment: Alleles separate and do not have an effect on another allele.

c. Law of Independent Assortment: Alleles separate and do not have an effect on another allele. Level Genetics Review KEY Describe the 3 laws that Gregor Mendel established after working with pea plants. a. Law of Dominance: states that the effect of a recessive allele is not observed when a dominant

More information

CHAPTER : Beyond Mendelian Genetics

CHAPTER : Beyond Mendelian Genetics CHAPTER 12.2 12.6: Beyond Mendelian Genetics Incomplete Dominance 1. In radishes, the gene that controls color exhibits incomplete dominance. Pure-breeding red radishes crossed with pure-breeding white

More information

Human Blood Types: Codominance and Multiple Alleles. Codominance: both alleles in the heterozygous genotype express themselves fully

Human Blood Types: Codominance and Multiple Alleles. Codominance: both alleles in the heterozygous genotype express themselves fully Human Blood Types: Codominance and Multiple Alleles Codominance: both alleles in the heterozygous genotype express themselves fully Multiple alleles: three or more alleles for a trait are found in the

More information

NAME PER DATE. We'll analyze inheritance for the case where each parent has one A allele and one a allele (i.e. both parents are Aa).

NAME PER DATE. We'll analyze inheritance for the case where each parent has one A allele and one a allele (i.e. both parents are Aa). 1 NAME PER DATE GENETICS REVIEW We all know that children tend to resemble their parents in appearance. Parents and children generally have similar eye color, hair texture, height and other characteristics

More information

Name: Class: Date: ID: A

Name: Class: Date: ID: A Name: Class: _ Date: _ Meiosis Quiz 1. (1 point) A kidney cell is an example of which type of cell? a. sex cell b. germ cell c. somatic cell d. haploid cell 2. (1 point) How many chromosomes are in a human

More information

TEST NAME: Genetics unit test TEST ID: GRADE:07 SUBJECT:Life and Physical Sciences TEST CATEGORY: School Assessment

TEST NAME: Genetics unit test TEST ID: GRADE:07 SUBJECT:Life and Physical Sciences TEST CATEGORY: School Assessment TEST NAME: Genetics unit test TEST ID: 437885 GRADE:07 SUBJECT:Life and Physical Sciences TEST CATEGORY: School Assessment Genetics unit test Page 1 of 12 Student: Class: Date: 1. There are four blood

More information

Genetics Copyright, 2009, by Dr. Scott Poethig, Dr. Ingrid Waldron, and Jennifer Doherty Department of Biology, University of Pennsylvania 1

Genetics Copyright, 2009, by Dr. Scott Poethig, Dr. Ingrid Waldron, and Jennifer Doherty Department of Biology, University of Pennsylvania 1 Genetics Copyright, 2009, by Dr. Scott Poethig, Dr. Ingrid Waldron, and Jennifer Doherty Department of Biology, University of Pennsylvania 1 We all know that children tend to resemble their parents in

More information

7A The Origin of Modern Genetics

7A The Origin of Modern Genetics Life Science Chapter 7 Genetics of Organisms 7A The Origin of Modern Genetics Genetics the study of inheritance (the study of how traits are inherited through the interactions of alleles) Heredity: the

More information

Answers to Mendelian genetics questions BI164 Spring, 2007

Answers to Mendelian genetics questions BI164 Spring, 2007 Answers to Mendelian genetics questions BI164 Spring, 2007 1. The father has normal vision and must therefore be hemizygous for the normal vision allele. The mother must be a carrier and hence the source

More information

Bio EOC Topics for Cell Reproduction: Bio EOC Questions for Cell Reproduction:

Bio EOC Topics for Cell Reproduction: Bio EOC Questions for Cell Reproduction: Bio EOC Topics for Cell Reproduction: Asexual vs. sexual reproduction Mitosis steps, diagrams, purpose o Interphase, Prophase, Metaphase, Anaphase, Telophase, Cytokinesis Meiosis steps, diagrams, purpose

More information

Inheritance Patterns and Human Genetics. Chapter 12. Table of Contents. Section 1 Chromosomes and Inheritance Section 2 Human Genetics

Inheritance Patterns and Human Genetics. Chapter 12. Table of Contents. Section 1 Chromosomes and Inheritance Section 2 Human Genetics Inheritance Patterns and Human Genetics Table of Contents Section 1 Chromosomes and Inheritance Section 1 Chromosomes and Inheritance Objectives Distinguish between sex chromosomes and autosomes. Explain

More information

GENETICS PROBLEMS Genetics Problems Lab 17-1

GENETICS PROBLEMS Genetics Problems Lab 17-1 GENETICS PROBLEMS Introduction: One of the facts of life involves the different types of offspring that can be produced as a result of sexual reproduction. Offspring may have traits of one parent, both

More information

Genetics. The connection between Gene expression and Genetics. Genotype is the genetic make up of an organism (gene), which codes for a protein.

Genetics. The connection between Gene expression and Genetics. Genotype is the genetic make up of an organism (gene), which codes for a protein. Genetics The connection between Gene expression and Genetics Genotype is the genetic make up of an organism (gene), which codes for a protein. The protein has a specific function which produces a trait.

More information

MODULE 11: MENDELIAN GENETICS 1

MODULE 11: MENDELIAN GENETICS 1 PEER-LED TEAM LEARNING INTRODUCTORY BIOLOGY MODULE 11: MENDELIAN GENETICS 1 JOSEPH G. GRISWOLD, PH.D. (City College of New York, CUNY) I. Introduction In sexually reproducing animals, genetic information

More information

Biology 201 (Genetics) Exam #1 21 September 2004

Biology 201 (Genetics) Exam #1 21 September 2004 Name KEY Biology 201 (Genetics) Exam #1 21 September 2004 Read the question carefully before answering. Think before you write. Be concise. You will have up to 85 minutes hour to take this exam. After

More information

Biology Chapter 7 Beyond Mendel Notes

Biology Chapter 7 Beyond Mendel Notes Biology Chapter 7 Beyond Mendel Notes Phenotype: Genotype: What is Mendelian inheritance controlled by? Incomplete Dominance:. Example of Incomplete Dominance: Example Number 2 When green betta fish (B

More information

HEREDITY (B) In domestic cats, the gene for Tabby stripes (T) is dominant over the gene for no stripes (t)

HEREDITY (B) In domestic cats, the gene for Tabby stripes (T) is dominant over the gene for no stripes (t) GENETIC CROSSES In minks, a single gene controls coat color. The allele for a brown (B) coat is dominant to the allele for silver-blue (b) coats. 1. A homozygous brown mink was crossed with a silverblue

More information

Heredity and Prenatal Development: Chapter 3

Heredity and Prenatal Development: Chapter 3 Genetics 1 DEP 4053 Christine L. Ruva, Ph.D. Heredity and Prenatal Development: Chapter 3 PRINCIPLES OF HEREDITARY TRANSMISSION Genotype Phenotype Chromosomes: in the nucleus of the cell store and transmit

More information

Biology 160 Lab Module 12 Mendelian Genetics

Biology 160 Lab Module 12 Mendelian Genetics BIOL& 160 Clark College 1 Biology 160 Lab Module 12 Mendelian Genetics Name Learning Outcomes Upon successful completion of this lab, you should be able to: 1. Understand character inheritance, allelic

More information

Mendelian and Non-Mendelian Heredity Grade Ten

Mendelian and Non-Mendelian Heredity Grade Ten Ohio Standards Connection: Life Sciences Benchmark C Explain the genetic mechanisms and molecular basis of inheritance. Indicator 6 Explain that a unit of hereditary information is called a gene, and genes

More information

3. Mating two organisms produces a 3:1 ratio of the phenotype in progeny. The parental genotypes are

3. Mating two organisms produces a 3:1 ratio of the phenotype in progeny. The parental genotypes are 1. In dihybrid crosses, the ratio 9:3:3:1 indicates A. codominance. B. independent assortment. C. intermediate dominance. D. three alleles for each trait. 2. Mating of two organisms produces a 1:1 ratio

More information

I. Types of Genetic Disorders

I. Types of Genetic Disorders I. Types of Genetic Disorders Sex-Linked Disorders Diseases caused by alleles on sex chromosomes Autosomal Dominant Diseases caused by dominant alleles Autosomal Recessive Diseases caused by recessive

More information

Problems 1-6: In tomato fruit, red flesh color is dominant over yellow flesh color, Use R for the Red allele and r for the yellow allele.

Problems 1-6: In tomato fruit, red flesh color is dominant over yellow flesh color, Use R for the Red allele and r for the yellow allele. Genetics Problems Name ANSWER KEY Problems 1-6: In tomato fruit, red flesh color is dominant over yellow flesh color, Use R for the Red allele and r for the yellow allele. 1. What would be the genotype

More information

Name Period Date GENETICS

Name Period Date GENETICS Name Period Date GENETICS I. GREGOR MENDEL founder of genetics (crossed pea plants to study heredity = passing on of traits) 1. GENES make up chromosomes a. 2 genes (ALLELES) for every trait (1 from each

More information

BASIC GENETICS VOCABULARY

BASIC GENETICS VOCABULARY Name: Date: Period: Genetics Problem Sets Introduction: How do organisms come to look and act the way they do? How are characteristics passed from generation to generation? Genetics, the study of inheritance,

More information

011 Chapter 11. Student: 1. The location on a chromosome where a particular gene is located is known as the:

011 Chapter 11. Student: 1. The location on a chromosome where a particular gene is located is known as the: 011 Chapter 11 Student: 1. The location on a chromosome where a particular gene is located is known as the: A. allele B. dihybrid C. locus D. diploid E. autosome 2. Which of the following is NOT a trait

More information

What are genetic disorders?

What are genetic disorders? What are genetic disorders? A disease caused by abnormalities in an individual s genetic material (genome) There are four types of genetic disorders 1. Single-gene (also called Mendelian or monogenic)

More information

Problem Set 4 BILD10 / Winter 2014

Problem Set 4 BILD10 / Winter 2014 1) The DNA in linear eukaryotic chromosomes is wrapped around proteins called, which keep the DNA from getting tangled and enable an orderly, tight, and efficient packing of the DNA inside the cell. A)

More information

Mendelian Genetics and Inheritance Problems

Mendelian Genetics and Inheritance Problems Biology 211 Mendelian Genetics and Inheritance Problems Mendel discovered and described many of the basic rules of genetics after studying the pattern of how inheritable traits were passed from generation

More information

Genetic Interactions and Linkage

Genetic Interactions and Linkage Genetic Interactions and Linkage Lecture 3 Applied Animal and Plant Breeding GENE 251/351 School of Environment and Rural Science (Genetics) 1 Topics Relating Genotype to Phenotype Mendelian genetics and

More information

A trait is a variation of a particular character (e.g. color, height). Traits are passed from parents to offspring through genes.

A trait is a variation of a particular character (e.g. color, height). Traits are passed from parents to offspring through genes. 1 Biology Chapter 10 Study Guide Trait A trait is a variation of a particular character (e.g. color, height). Traits are passed from parents to offspring through genes. Genes Genes are located on chromosomes

More information

INTRODUCTION TO GENETICS USING TOBACCO (Nicotiana tabacum) SEEDLINGS

INTRODUCTION TO GENETICS USING TOBACCO (Nicotiana tabacum) SEEDLINGS INTRODUCTION TO GENETICS USING TOBACCO (Nicotiana tabacum) SEEDLINGS By Dr. Susan Petro Based on a lab by Dr. Elaine Winshell Nicotiana tabacum Objectives To apply Mendel s Law of Segregation To use Punnett

More information

Lecture 4 Linkage and Recombination

Lecture 4 Linkage and Recombination Lecture 4 Linkage and Recombination CAMPBELL BIOLOGY Chapter 9 Notes at: tcd.ie/biology_teaching_centre/local/ junior-freshman/ by1101local This is an Irish family with an autosomal dominant disease mutation

More information

Two copies of each autosomal gene affect phenotype.

Two copies of each autosomal gene affect phenotype. SECTION 7.1 CHROMOSOMES AND PHENOTYPE Study Guide KEY CONCEPT The chromosomes on which genes are located can affect the expression of traits. VOCABULARY carrier sex-linked gene X chromosome inactivation

More information

Punnett Square: Monohybird Crosses

Punnett Square: Monohybird Crosses Punnett Squares A Punnett square is a mathematical device used by geneticists to show combinations of gametes and to predict offspring ratios. There are a few fundamental concepts of Punnett squares that

More information

Ch.12 Reading and Concept Review Packet /20

Ch.12 Reading and Concept Review Packet /20 Name: Period: Date: Ch.12 Reading and Concept Review Packet /20 Term Chapter 12 Reading and Concept Review: page 308-333. Directions: Link the various terms into coherent sentence or two that connects

More information

Mendelian Genetics. I. Background

Mendelian Genetics. I. Background Mendelian Genetics Objectives 1. To understand the Principles of Segregation and Independent Assortment. 2. To understand how Mendel s principles can explain transmission of characters from one generation

More information

CHAPTER 15 THE CHROMOSOMAL BASIS OF INHERITANCE. Section B: Sex Chromosomes

CHAPTER 15 THE CHROMOSOMAL BASIS OF INHERITANCE. Section B: Sex Chromosomes CHAPTER 15 THE CHROMOSOMAL BASIS OF INHERITANCE Section B: Sex Chromosomes 1. The chromosomal basis of sex varies with the organism 2. Sex-linked genes have unique patterns of inheritance 1. The chromosomal

More information

Mendelian inheritance and the

Mendelian inheritance and the Mendelian inheritance and the most common genetic diseases Cornelia Schubert, MD, University of Goettingen, Dept. Human Genetics EUPRIM-Net course Genetics, Immunology and Breeding Mangement German Primate

More information

Genetics Module B, Anchor 3

Genetics Module B, Anchor 3 Genetics Module B, Anchor 3 Key Concepts: - An individual s characteristics are determines by factors that are passed from one parental generation to the next. - During gamete formation, the alleles for

More information

Lab. 9 Deviation of Mendel s first law Monohybrid part 2

Lab. 9 Deviation of Mendel s first law Monohybrid part 2 Main topics: Lab. 9 Deviation of Mendel s first law Monohybrid part 2 Deviation of Mutation a. ABO type b. Fur color of rabbits Deviation of Sex a. Sex limited b. Sex influence c. Sex linkage Deviation

More information

Mendel suggested that flower colour was controlled by inherited factors. Draw a ring around the correct answer to complete the following sentences.

Mendel suggested that flower colour was controlled by inherited factors. Draw a ring around the correct answer to complete the following sentences. Q. The diagrams show one of Mendel s experiments. He bred pea plants. Mendel suggested that flower colour was controlled by inherited factors. Draw a ring around the correct answer to complete the following

More information

AP Biology PowerPoint Notes Chapter 11 & 12 Patterns of Heredity and Human Genetics

AP Biology PowerPoint Notes Chapter 11 & 12 Patterns of Heredity and Human Genetics AP Biology PowerPoint Notes Chapter 11 & 12 Patterns of Heredity and Human Genetics Mendelism and Genotype Genotype must be considered an integrated whole of all the genes because genes often work together

More information

Bio 102 Practice Problems Chromosomes, Karyotyping and Sex Linkage

Bio 102 Practice Problems Chromosomes, Karyotyping and Sex Linkage Bio 102 Practice Problems Chromosomes, Karyotyping and Sex Linkage Multiple choice: Unless otherwise directed, circle the one best answer: 1. A sex-linked trait is a trait: A. That can be inherited only

More information

4. In a molecule of DNA, if there is 21% adenine (A), how much thymine (T) is present? How much cytosine (C) is present?

4. In a molecule of DNA, if there is 21% adenine (A), how much thymine (T) is present? How much cytosine (C) is present? Name Biology I Test Review DNA, Protein Synthesis and Genetics This review should only be used as a supplement to your notes, activities, and previous quizzes. For additional review and questions it may

More information

Congenital and Genetic Disorders. Review of Genetic Control. Human Karyotype BIO 375. Pathophysiology

Congenital and Genetic Disorders. Review of Genetic Control. Human Karyotype BIO 375. Pathophysiology Congenital and Genetic Disorders BIO 375 Pathophysiology Review of Genetic Control Genetic information for each cell is stored on chromosomes: Each body cell contains 2 sets (diploid) of chromosomes; one

More information

4.6 Dihybrid Crosses. offspring produced from such a cross are heterozygous for both the yellow and round genotypes. YYRR. YR YR yr.

4.6 Dihybrid Crosses. offspring produced from such a cross are heterozygous for both the yellow and round genotypes. YYRR. YR YR yr. (a) Indicate the genotypes and phenotypes of the F generation from the mating of a heterozygous Himalayan rabbit with an albino rabbit. (b) The mating of a full-coloured rabbit with a light-grey rabbit

More information

Some word roots useful for Lab exercise 2 and 3:

Some word roots useful for Lab exercise 2 and 3: Some word roots useful for Lab exercise 2 and 3: a- = not or without (asexual: type of reproduction not involving fertilization) ana- = up, throughout, again (anaphase: the mitotic stage in which the chromatids

More information

14-1 Notes. Human Heredity

14-1 Notes. Human Heredity 14-1 Notes Human Heredity Human Chromosomes Biologists can make a karyotype by cutting chromosomes out of photographs. There are 46 total chromosomes in a human body cell 23 from a haploid sperm 23 from

More information

BioBoot Camp Genetics

BioBoot Camp Genetics BioBoot Camp Genetics BIO.B.1.2.1 Describe how the process of DNA replication results in the transmission and/or conservation of genetic information DNA Replication is the process of DNA being copied before

More information

Asexual Reproduction is reproduction that requires only one parent and produces genetically identical offspring.

Asexual Reproduction is reproduction that requires only one parent and produces genetically identical offspring. 4.2: Sexual Reproduction pg. 169 Asexual Reproduction is reproduction that requires only one parent and produces genetically identical offspring. Sexual Reproduction is reproduction that requires two parents

More information

Genetics test questions

Genetics test questions Class: Date: Genetics test questions Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. Pea plants were particularly well suited for use in

More information

Conceptual Questions C1. Answer: Dominance occurs when one allele completely exerts its phenotypic effects over another allele. Incomplete dominance

Conceptual Questions C1. Answer: Dominance occurs when one allele completely exerts its phenotypic effects over another allele. Incomplete dominance Conceptual Questions C1. Answer: Dominance occurs when one allele completely exerts its phenotypic effects over another allele. Incomplete dominance is a situation in which two alleles in the heterozygote

More information

Lecture 32: Numerical Chromosomal Abnormalities and Nondisjunction. Meiosis I Meiosis II Centromere-linked markers

Lecture 32: Numerical Chromosomal Abnormalities and Nondisjunction. Meiosis I Meiosis II Centromere-linked markers Lecture 32: Numerical Chromosomal Abnormalities and Nondisjunction Meiosis I Meiosis II Centromere-linked markers Female Male 46,XX 46,XY Human chromosomal abnormalities may be numerical or structural.

More information

5 GENETIC LINKAGE AND MAPPING

5 GENETIC LINKAGE AND MAPPING 5 GENETIC LINKAGE AND MAPPING 5.1 Genetic Linkage So far, we have considered traits that are affected by one or two genes, and if there are two genes, we have assumed that they assort independently. However,

More information

7.013 Problem Set 1 Solutions

7.013 Problem Set 1 Solutions MIT Department of Biology 7.013: Introductory Biology - Spring 2004 Instructors: Professor Hazel Sive, Professor Tyler Jacks, Dr. Claudette Gardel NAME TA Section # 7.013 Problem Set 1 Solutions FRIDAY

More information

17. A testcross A.is used to determine if an organism that is displaying a recessive trait is heterozygous or homozygous for that trait. B.

17. A testcross A.is used to determine if an organism that is displaying a recessive trait is heterozygous or homozygous for that trait. B. ch04 Student: 1. Which of the following does not inactivate an X chromosome? A. Mammals B. Drosophila C. C. elegans D. Humans 2. Who originally identified a highly condensed structure in the interphase

More information

Figure S1 Clicker questions and their associated learning objectives and Bloom s level

Figure S1 Clicker questions and their associated learning objectives and Bloom s level Figure S1 Clicker questions and their associated learning objectives and Bloom s level Mitosis and Meiosis questions Q1: Which of the following events does not occur during mitosis? A.Breakdown of the

More information

C12. One of the parents may carry a balanced translocation between chromosomes 5 and 7. The phenotypically abnormal offspring has inherited an

C12. One of the parents may carry a balanced translocation between chromosomes 5 and 7. The phenotypically abnormal offspring has inherited an C1. Duplications and deficiencies involve a change in the total amount of genetic material. Duplication: a repeat of some genetic material Deficiency: a shortage of some genetic material Inversion: a segment

More information

Ch. 15: Chromosomal Abnormalities

Ch. 15: Chromosomal Abnormalities Ch 15: Chromosomal Abnormalities Abnormalities in Chromosomal Number Abnormalities in Chromosomal Structure: Rearrangements Fragile Sites Define: nondisjunction polyploidy aneupoidy trisomy monosomy Abnormalities

More information

Cell Division. Use Target Reading Skills. This section explains how cells grow and divide.

Cell Division. Use Target Reading Skills. This section explains how cells grow and divide. Cell Processes and Energy Name Date Class Cell Processes and Energy Guided Reading and Study Cell Division This section explains how cells grow and divide. Use Target Reading Skills As you read, make a

More information

Genetic Mutations. Indicator 4.8: Compare the consequences of mutations in body cells with those in gametes.

Genetic Mutations. Indicator 4.8: Compare the consequences of mutations in body cells with those in gametes. Genetic Mutations Indicator 4.8: Compare the consequences of mutations in body cells with those in gametes. Agenda Warm UP: What is a mutation? Body cell? Gamete? Notes on Mutations Karyotype Web Activity

More information

LESSON #1.8: SEX-LINKED TRAITS, PEDIGREE CHARTS, MULTIPLE ALLELES

LESSON #1.8: SEX-LINKED TRAITS, PEDIGREE CHARTS, MULTIPLE ALLELES LESSON #1.8: SEX-LINKED TRAITS, PEDIGREE CHARTS, MULTIPLE ALLELES PART A: SEX-LINKED TRAITS Sex-linked traits are controlled by genes located on the sex chromosomes. A recessive trait located on the X

More information

Population Genetics (Outline)

Population Genetics (Outline) Population Genetics (Outline) Definition of terms of population genetics: population, species, gene, pool, gene flow Calculation of genotypic of homozygous dominant, recessive, or heterozygous individuals,

More information

What about two traits? Dihybrid Crosses

What about two traits? Dihybrid Crosses What about two traits? Dihybrid Crosses! Consider two traits for pea: Color: Y (yellow) and y (green) Shape: R (round) and r (wrinkled)! Each dihybrid plant produces 4 gamete types of equal frequency.

More information

GENETICS PRACTICE QUESTIONS

GENETICS PRACTICE QUESTIONS Mr. Lastowski Biology I Honors GENETICS PRACTICE QUESTIONS 1. Using the results of his experiments with pea plant crosses, what did Gregor Mendel discover? the laws of dominance, segregation, and independent

More information

Solutions to Genetics Problems

Solutions to Genetics Problems Solutions to Genetics Problems This chapter is much more than a solution set for the genetics problems. ere you will find details concerning the assumptions made, the approaches taken, the predictions

More information

MANDELIAN GENETICS. Crosses that deviate from Mandelian inherintance

MANDELIAN GENETICS. Crosses that deviate from Mandelian inherintance MANDELIAN GENETICS Crosses that deviate from Mandelian inherintance Explain codominant alleles. TO THE STUDENTS Calculate the genotypic and phenotypic ratio (1:2:1). Explain incomplete dominant alleles.

More information

Exam 1. CSS/Hort 430. 2008 All questions worth 2 points

Exam 1. CSS/Hort 430. 2008 All questions worth 2 points Exam 1. CSS/Hort 430. 2008 All questions worth 2 points 1. A general definition of plants is they are eukaryotic, multi-cellular organisms and are usually photosynthetic. In this definition, eukaryotic

More information

Influence of Sex on Genetics. Chapter Six

Influence of Sex on Genetics. Chapter Six Influence of Sex on Genetics Chapter Six Humans 23 Autosomes Chromosomal abnormalities very severe Often fatal All have at least one X Deletion of X chromosome is fatal Males = heterogametic sex XY Females

More information

Genetics: Punnett Squares Practice Packet: Ness PAP Biology

Genetics: Punnett Squares Practice Packet: Ness PAP Biology 100 Points Name: Date: Period: Genetics: Punnett Squares Practice Packet: Ness PAP Biology Most genetic traits have a stronger, dominant allele and a weaker, recessive allele. In an individual with a heterozygous

More information

INCOMPLETE DOMINANCE

INCOMPLETE DOMINANCE DOMINANCE INCOMPLETE DOMINANCE Pattern of gene expression in which the phenotype of a heterozygous individual is intermediate between those of the parents. Cases in which one allele is not completely dominant

More information

Alleles, Phenotype & Genetic interaction

Alleles, Phenotype & Genetic interaction Alleles, Phenotype & Genetic interaction Problem Set #2 (not for credit): (thanks to Steve Jackson for some of these problems) 1. For each of the terms in the left column, choose the best matching phrase

More information

2 18. If a boy s father has haemophilia and his mother has one gene for haemophilia. What is the chance that the boy will inherit the disease? 1. 0% 2

2 18. If a boy s father has haemophilia and his mother has one gene for haemophilia. What is the chance that the boy will inherit the disease? 1. 0% 2 1 GENETICS 1. Mendel is considered to be lucky to discover the laws of inheritance because 1. He meticulously analyzed his data statistically 2. He maintained pedigree records of various generations he

More information

Determining Acceptance of the 9:3:3:1 Ratio in Fruit Fly Crosses Using the Chi Squared Test

Determining Acceptance of the 9:3:3:1 Ratio in Fruit Fly Crosses Using the Chi Squared Test Determining Acceptance of the 9:3:3:1 Ratio in Fruit Fly Crosses Using the Chi Squared Test Abstract In this experiment we set out to determine whether or not two different fruit fly crosses fit the 9:3:3:1

More information