Where the Reynolds number is, And the Prandtl number is, A. Overall Heat Transfer Coefficient, : Where,

Size: px
Start display at page:

Download "Where the Reynolds number is, And the Prandtl number is, A. Overall Heat Transfer Coefficient, : Where,"

Transcription

1 Fired Heater Design Mahesh N. Jethva 1, C. G. Bhagchandani 2 1 M.E., 2 Associate Professor, Chemical Engineering Department, L.D. College of Engineering, Ahmedabad Abstract- In fired heaters, heat is released by combustion of fuels into an open space and transferred to process fluids inside tubes. The tubes are ranged along the walls and roof of the combustion chamber. The heat is transferred by direct radiation and convection and also by reflection from refractory walls lining the chamber. The design and rating of a fired heater is a moderately complex operation. Here forced draft fired heater, which is fired by fuel gas, has been treated. For that all required equations and generalizations are listed from different fired heater design methods as per requirement. A fired heater design calculations are performed using Microsoft Excel Programming software. Keywords- Convective heat transfer, Heat balance, Radiant heat transfer, Shield section. I. INTRODUCTION A fired heater is a direct-fired heat exchanger that uses the hot gases of combustion to raise the temperature of a feed flowing through coils of tubes aligned throughout the heater. Depending on the use, these are also called furnaces or process heaters. Some heaters simply deliver the feed at a predetermined temperature to the next stage of the reaction process; others perform reactions on the feed while it travels through the tubes. Fired heaters are used throughout hydrocarbon and chemical processing industries such as refineries, gas plants, petrochemicals, chemicals and synthetics, olefins, ammonia and fertilizer plants. Most of the unit operations require one or more fired heaters as start-up heater, fired reboiler, cracking furnace, process heater, process heater vaporizer, crude oil heater or reformer furnace. Heater fuels include light ends (e.g. refinery gas) from the crude units and reformers as well as waste gases blended with natural gas. Residual fuels such as tar, pitch, and Bunker C (heavy oil) are also used. Combustion air flow is regulated by positioning the stack damper. Fuel to the burners is regulated from exit feed temperature and firing rate is determined by the level of production desired. A typical fired heater will have following four sections: (1) Radiant section, (2) Shield section, (3) Convection section, and (4) Breeching and stack. A fired heater may be a box (rectangular c/s) or vertical (cylindrical c/s) in shape. Same way, a fired heater may be classified depending on location of the burners and type of the draft. II. RADIANT SECTION DESIGN A. Radiant Heat Transfer in Radiant Section: Applying basic radiation concepts to process-type heater design, Lobo & Evans developed a generally applicable rating method that is followed with various modifications, by many heater designers. Direct radiation in the radiant section of a direct fired heater can be described by the equation shown below. = Radiant heat transfer, = Stefan-Boltzmann constant, 0.173E-8 Btu/ft 2 -hr-r 4 = Relative effectiveness factor of the tube bank = Cold plane area of the tube bank, ft 2 = Exchange factor = Effective gas temperature in firebox, R = Average tube wall temperature, R B. Heat Balance In The Radiant Section: There are four primary sources of heat input as well as four sources of heat output to the radiant section. We can now set up the heat balance equation as follows: = heat liberated by fuel, (LHV) = sensible heat of combustion air, = sensible heat of steam used for oil atomization, = sensible heat of recirculated flue gases, = heat absorbed by radiant tubes, = Radiant heat to shield tubes, = heat loss in firebox through furnace walls, bridgewall, casing, etc., = heat of flue gases leaving the radiant section, C. Total Heat Transfer in Radiant Section (if Shield Section is present): The total heat transfer in firebox when shield section is present will be as follows: 61

2 = Convective heat transfer to radiant tubes, = Convective heat transfer to shield tubes, Where the Reynolds number is, III. CONVECTION SECTION DESIGN A. Overall Heat Transfer Coefficient, : = Overall heat transfer coefficient, = Total outside thermal resistance, hr-ft 2 -F/Btu = Outside thermal resistance, hr-ft 2 -F/Btu = Tube wall thermal resistance, hr-ft 2 -F/Btu = Inside thermal resistance, hr-ft 2 -F/Btu And the resistances are computed as, And the Prandtl number is, = Heat transfer coefficient, liquid phase, ft 2 - F = Thermal conductivity, -ft- F = Inside diameter of tube, ft = Absolute viscosity at bulk temperature, lb/ft-hr = Absolute viscosity at wall temperature, lb/ft-hr = Heat transfer coefficient, vapor phase, ft 2 - F = Bulk temperature of vapor, R = Wall Temperature of vapor, R = Mass flow of fluid, lb/hr-ft 2 = Heat capacity of fluid at bulk temperature, Btu/lb- F For two-phase flow, = Effective outside heat transfer coefficient, = Inside film heat transfer coefficient, -ft 2 - F = Tube-wall thickness, ft = Tube wall thermal conductivity, -ft-f = Outside tube surface area, ft 2 /ft = Mean area of tube wall, ft 2 /ft = Inside tube surface area, ft 2 /ft = Inside fouling resistance, hr-ft 2 -F/Btu B. Inside film heat transfer coefficient, : The inside film coefficient needed for the thermal calculations may be estimated by several different methods. The API RP530, Appendix C provides the following methods, For liquid flow with 10,000, And for vapor flow with 15,000, = Heat transfer coefficient, two-phase, -ft 2 - F = Weight fraction of liquid = Weight fraction of vapor C. Effective outside heat transfer coefficient ( for Fin tubes: = Average outside heat transfer coefficient, = Fin efficiency = Total outside surface area, ft 2 /ft = Fin outside surface area, ft 2 /ft = Outside tube surface area, ft 2 /ft i. Average outside heat transfer coefficient, : = Outside heat transfer coefficient, = Outside radiation heat transfer coefficient, = Outside fouling resistance, hr-ft 2 -F/Btu 62

3 ii. Outside film heat transfer coefficient, : = Colburn heat transfer factor = Mass velocity based on net free area, lb/hr-ft 2 = Heat capacity, Btu/lb-F = Gas thermal conductivity, -ft-f = Gas dynamic viscosity, lb/hr-ft iii. Colburn heat transfer factor, : = Reynolds number correction = Geometry correction = Non-equilateral & row correction = Outside diameter of fin, in = Outside diameter of tube, in = Average gas temperature, F = Average fin temperature, F Reynolds number correction, : Inline pattern, iv. Mass Velocity, : Net Free Area, : = Number of tube rows = Longitudinal tube pitch, in = Transverse tube pitch, in = Mass flow rate of gas, lb/hr = Net free area, ft 2 = Cross sectional area of box, ft 2 = Fin tube cross sectional area/ft, ft 2 /ft = Effective tube length, ft = Number tubes wide = Reynolds number = Geometry correction, : For segmented fin tubes arranged in, a staggered pattern, an inline pattern, For solid fin tubes arranged in, a staggered pattern, an inline pattern, = Fin height, in = Fin spacing, in Non-equilateral & row correction, : For fin tubes arranged in, Staggered pattern, = Fin height, ft = Outside diameter of tube, ft = Transverse tube pitch, ft = fin thickness, ft = number of fins, fins/ft v. Surface Area Calculations: For the prime tube, And for segmented fins, ( ) = Outside diameter of tube, ft = number of fins, fins/ft = fin thickness, ft = Fin height, ft = Width of fin segment, ft 63

4 And then, vi. Fin Efficiency, : For segmented fins, For segmented fins, vii. Fin Tip Temperature, : The average fin tip temperature is calculated as follows, IV. = Gas Temperature, F = Tube Wall Temperature, F EXCEL PROGRAMMING Design of different sections of fired heater has been performed using Microsoft Excel Programming. For the calculation purpose, different calculation methods and equations are used in the programming. Table I Radiant Section Design Tube OD, in (d o ) thickness, in (t w ) No of tubes (N t ) 40 (Radiant) No of tubes (N t ) 12 (Shield) Effective length, ft (L e ) (Radiant) Effective length, ft (L e ) (Shield) Tube spacing, in 16 (CC) (Radiant) No of tubes per row 4 (N t/r ) (Shield) Transverse pitch, in 16 (P t ) (Shield) Combustion Fraction excess air 0.15 Firebox Diameter, ft (D) Process fluid Mean wall temperature, (T t ), ⁰R Flue gas Flue gas temperature (T g ), ⁰R α (Radiant) (-) α (Shield) Assumed (-) 1 A cp (Radiant) ft A cp (Shield) ft αa cp (Radiant) ft αa cp (Shield) ft (αa cp ) r +(αa cp ) s ft A R / A T, ft ((αa cp ) r +(αa cp ) s ) Area of Shield Section, ft 2 (A s ) A R, ft A R / 0.17 ((αa cp ) r +(αa cp ) s ) Partial pressure atm (P) Mean beam length ft P*l atm-ft Emissivity E Exchange factor F Radiantion 3.37*10^7 Heat Transfer MM Kcal/hr

5 Table II Convection Section Design Fin Height, in (l f ) 1 Thickness, in (t f ) No of fins, fins/ft 60 (n f ) Ther. Cond., ft-⁰f (k f ) Tube OD, in (d o ) Thickness, in (t w ) 0.5 No of rows (N r ) 5 No of tubes per row 4 (N w ) Effective tube length, ft (L e ) Pitch, in (P t ) 16 Wall temp, ⁰F (T w ) 959 Wall Ther. Cond., ft-⁰f (k w ) Process Fluid Inlet temp, ⁰F (t 1 ) Outlet temp, ⁰F (t 2 ) Ther. Cond., (Liq), ft-⁰f (k l ) Ther. Cond. (Vap), ft-⁰f (k v ) Sp. Heat (Liq), Btu/lb-⁰F (c p,l ) Sp. Heat (Vap), Btu/lb-⁰F (c p,v ) Viscosity (Liq), lb/hr-ft (µ l ) Viscosity (Vap), lb/hr-ft (µ v ) Mass flow rate, lb/hr Wt fraction (Liq) 0.7 (W l ) Wt fraction (Vap) 0.3 (W v ) Fouling factor,hrft ⁰F/Btu (R fi ) Flue Gas Inlet temp, ⁰F (t 1 ) 1472 Outlet temp, ⁰F (t 2 ) 788 Mass flow rate, lb/hr (W g ) Ther. Cond., ft-⁰f (k g ) Sp. Heat, Btu/lb-⁰F (c p,g ) Viscosity, lb/hr-ft (µ g ) Inside Film HT co- h i, -ft 2 -⁰F efficient Mass Velocity of G n, lb/hr-ft Flue Gas Colburn HT Factor j Outside Film HT h c, -ft 2 -⁰F co-efficient Average Outside HT h o, -ft 2 -⁰F co-efficient Fin Efficiency E Effective Outside h e, -ft 2 -⁰F HT co-efficient Overall HT coefficient Uo, -ft 2 -⁰F LMTD ⁰F HT Area ft Convection Heat 8.4*10^6 Transfer MM Kcal/hr Table III Heat Balance Assumed amount of % 80 Radiant HT Assumed amount of % 20 Convection HT Thermal Efficiency % (given) 90.7 Total Heat Input (Q fuel ) MM Kcal/hr Total Heat Transferred MM Kcal/hr (Q ht ) (given) Radiant HT (Q r ) MM Kcal/hr Convection HT (Q c ) MM Kcal/hr Heat Loss (Q loss ) MM Kcal/hr (2.5% of Q fuel ) Heat out from HT area to stack (Q stack ) MM Kcal/hr (=Q fuel -Q ht -Q loss ) V. CONCLUSION Using Microsoft Excel Programming software, a design module has been prepared which can be used for different data values and gives satisfactory results. In present case, the design module gives required radiant heat transfer and convective heat transfer in the fired heater. REFERENCES [1] Process Heat Transfer by Donald Q. Kern, [2] [3] API 560, Fired Heaters for General Refinery Service, 4 th edition, August 2007, [4] Chemical Process Equipment: Selection and Design by Stanley M. Walas, [5] Paper by Asutosh Garg, Optimized Fired Heater saves Money.

Fired Heater Design and Simulation

Fired Heater Design and Simulation Fired Heater Design and Simulation Mahesh N. Jethva 1, C. G. Bhagchandani 2 1 M.E. Chemical Engineering Department, L.D. College of Engineering, Ahmedabad-380 015 2 Associate Professor, Chemical Engineering

More information

www.klmtechgroup.com FURNACE (ENGINEERING DESIGN GUIDELINE)

www.klmtechgroup.com FURNACE (ENGINEERING DESIGN GUIDELINE) Page : 1 of 80 Guidelines for Processing Plant www.klmtechgroup.com May 2010 KLM Technology #03-12 Block Aronia, Jalan Sri Perkasa 2 Taman Tampoi Utama 81200 Johor Bahru (ENGINEERING DESIGN GUIDELINE)

More information

5.2. Vaporizers - Types and Usage

5.2. Vaporizers - Types and Usage 5.2. Vaporizers - Types and Usage 5.2.1. General Vaporizers are constructed in numerous designs and operated in many modes. Depending upon the service application the design, construction, inspection,

More information

Sulfur Tail Gas Thermal Oxidizer Systems By Peter Pickard

Sulfur Tail Gas Thermal Oxidizer Systems By Peter Pickard Sulfur Tail Gas Thermal Oxidizer Systems By Peter Pickard Introduction SRU s (Sulfur Recovery Units) are critical pieces of equipment in refineries and gas plants. SRUs remove sulfur compounds from certain

More information

DIRECT-FIRED HEATERS: OPERATOR TRAINING. Intensive 2-Day Training Course for Facility Operators

DIRECT-FIRED HEATERS: OPERATOR TRAINING. Intensive 2-Day Training Course for Facility Operators DIRECT-FIRED HEATERS: OPERATOR TRAINING Intensive 2-Day Training Course for Facility Operators COURSE FACILITATOR Roger Newnham President OnQuest Canada ULC C. Eng., F.I.Mech.E., Eur. Ing. REPRESENTATIVE

More information

HEAT TRANSFER IM0245 3 LECTURE HOURS PER WEEK THERMODYNAMICS - IM0237 2014_1

HEAT TRANSFER IM0245 3 LECTURE HOURS PER WEEK THERMODYNAMICS - IM0237 2014_1 COURSE CODE INTENSITY PRE-REQUISITE CO-REQUISITE CREDITS ACTUALIZATION DATE HEAT TRANSFER IM05 LECTURE HOURS PER WEEK 8 HOURS CLASSROOM ON 6 WEEKS, HOURS LABORATORY, HOURS OF INDEPENDENT WORK THERMODYNAMICS

More information

FIRED HEATER OPTIMIZATION

FIRED HEATER OPTIMIZATION FIRED HEATER OPTIMIZATION Francis Wildy Technical Sales Support Manager AMETEK Process Instruments 150 Freeport Road Pittsburgh, PA 15044 KEYWORDS Process Optimization, Fuel Efficiency, Fired Heater, Oxygen,

More information

Performance of the Boiler and To Improving the Boiler Efficiency Using Cfd Modeling

Performance of the Boiler and To Improving the Boiler Efficiency Using Cfd Modeling IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) e-issn: 2278-1684,p-ISSN: 2320-334X, Volume 8, Issue 6 (Sep. - Oct. 2013), PP 25-29 Performance of the Boiler and To Improving the Boiler Efficiency

More information

The soot and scale problems

The soot and scale problems Dr. Albrecht Kaupp Page 1 The soot and scale problems Issue Soot and scale do not only increase energy consumption but are as well a major cause of tube failure. Learning Objectives Understanding the implications

More information

Design of heat exchangers

Design of heat exchangers Design of heat exchangers Exchanger Design Methodology The problem of heat exchanger design is complex and multidisciplinary. The major design considerations for a new heat exchanger include: process/design

More information

Calculate Available Heat for Natural Gas Fuel For Industrial Heating Equipment and Boilers

Calculate Available Heat for Natural Gas Fuel For Industrial Heating Equipment and Boilers For Industrial Heating Equipment and Boilers Prepared for California Energy Commission (CEC) Prepared By: Southern California Gas Company (A Sempra Energy Utility) E3M Inc. May 2012 i Disclaimer The CEC

More information

Control Device Requirements Charts For Oil and Gas Handling and Production Facilities

Control Device Requirements Charts For Oil and Gas Handling and Production Facilities Device Charts For Oil and Gas Handling and Production Facilities Purpose/Scope: The purpose of this document is to provide standardized guidance for use by the regulated community and air permit reviewers,

More information

Fired process heaters 327

Fired process heaters 327 Fired process heaters 327 16 X Fired process heaters Hassan Al-Haj Ibrahim Al-Baath University Syria 1. Introduction Furnaces are a versatile class of equipment where heat is liberated and transferred

More information

Review on Experimental Analysis and Performance Characteristic of Heat Transfer In Shell and Twisted Tube Heat Exchanger

Review on Experimental Analysis and Performance Characteristic of Heat Transfer In Shell and Twisted Tube Heat Exchanger Review on Experimental Analysis and Performance Characteristic of Heat Transfer In Shell and Twisted Tube Heat Exchanger Nitesh B. Dahare Student, M.Tech (Heat power Engg.) Ballarpur Institute of Technology,

More information

HEAT TRANSFER ANALYSIS IN A 3D SQUARE CHANNEL LAMINAR FLOW WITH USING BAFFLES 1 Vikram Bishnoi

HEAT TRANSFER ANALYSIS IN A 3D SQUARE CHANNEL LAMINAR FLOW WITH USING BAFFLES 1 Vikram Bishnoi HEAT TRANSFER ANALYSIS IN A 3D SQUARE CHANNEL LAMINAR FLOW WITH USING BAFFLES 1 Vikram Bishnoi 2 Rajesh Dudi 1 Scholar and 2 Assistant Professor,Department of Mechanical Engineering, OITM, Hisar (Haryana)

More information

SULFUR RECOVERY UNIT. Thermal Oxidizer

SULFUR RECOVERY UNIT. Thermal Oxidizer SULFUR RECOVERY UNIT Thermal Oxidizer BURNERS FLARES INCINERATORS PARTS & SERVICE SULFUR RECOVERY UNIT Thermal Oxidizer Tail Gas Thermal Oxidizer designed and built to GOST-R requirements. Zeeco can meet

More information

Module 5: Combustion Technology. Lecture 34: Calculation of calorific value of fuels

Module 5: Combustion Technology. Lecture 34: Calculation of calorific value of fuels 1 P age Module 5: Combustion Technology Lecture 34: Calculation of calorific value of fuels 2 P age Keywords : Gross calorific value, Net calorific value, enthalpy change, bomb calorimeter 5.3 Calculation

More information

Study on performance and methods to optimize thermal oil boiler efficiency in cement industry

Study on performance and methods to optimize thermal oil boiler efficiency in cement industry energyequipsys/ Vol 4/No1/June 016/ 53-64 Energy Equipment and Systems http://energyequipsys.ut.ac.ir www.energyeuquipsys.com Study on performance and methods to optimize thermal oil boiler efficiency

More information

Condensing Boiler Efficiency

Condensing Boiler Efficiency Condensing Boiler Efficiency Date: July 17, 2012 PRES E NT ED BY DO N L E O NA RDI LE O N A RD I I NC. HV AC T RAI N I N G & C ON SU LT IN G Concepts 1 The current state of evolution in boiler design 2

More information

Indirect fired heaters

Indirect fired heaters Indirect fired heaters Indirect Fired Heaters General INDIRECT BATH HEATERS have a wide variety of successful applications in the oil and gas production, processing and transmission industry. Some of the

More information

International Journal of Latest Research in Science and Technology Volume 4, Issue 2: Page No.161-166, March-April 2015

International Journal of Latest Research in Science and Technology Volume 4, Issue 2: Page No.161-166, March-April 2015 International Journal of Latest Research in Science and Technology Volume 4, Issue 2: Page No.161-166, March-April 2015 http://www.mnkjournals.com/ijlrst.htm ISSN (Online):2278-5299 EXPERIMENTAL STUDY

More information

Process burners (1) operate in heaters and furnaces in

Process burners (1) operate in heaters and furnaces in Process Burners 101 Erwin Platvoet Charles Baukal, P.E. John Zink Hamworthy Combustion Process burners may be classified based on flame shape, emissions, fuel type, and other characteristics. Here s what

More information

Coker Furnace On-Line Spalling

Coker Furnace On-Line Spalling Coker Furnace On-Line Spalling - Safe, Clean, Proven, & Profitable By: Jack Adams, Adams Project Managers, Inc. (APMI.Jack@Gmail.com) Gary C. Hughes, Bechtel Hydrocarbon Technology Solutions, Inc. (GHughes1@Bechtel.com)

More information

COKE PRODUCTION FOR BLAST FURNACE IRONMAKING

COKE PRODUCTION FOR BLAST FURNACE IRONMAKING COKE PRODUCTION FOR BLAST FURNACE IRONMAKING By Hardarshan S. Valia, Scientist, Ispat Inland Inc INTRODUCTION A world class blast furnace operation demands the highest quality of raw materials, operation,

More information

HEAT TRANSFER ENHANCEMENT IN FIN AND TUBE HEAT EXCHANGER - A REVIEW

HEAT TRANSFER ENHANCEMENT IN FIN AND TUBE HEAT EXCHANGER - A REVIEW HEAT TRANSFER ENHANCEMENT IN FIN AND TUBE HEAT EXCHANGER - A REVIEW Praful Date 1 and V. W. Khond 2 1 M. Tech. Heat Power Engineering, G.H Raisoni College of Engineering, Nagpur, Maharashtra, India 2 Department

More information

Heat Transfer Prof. Dr. Ale Kumar Ghosal Department of Chemical Engineering Indian Institute of Technology, Guwahati

Heat Transfer Prof. Dr. Ale Kumar Ghosal Department of Chemical Engineering Indian Institute of Technology, Guwahati Heat Transfer Prof. Dr. Ale Kumar Ghosal Department of Chemical Engineering Indian Institute of Technology, Guwahati Module No. # 04 Convective Heat Transfer Lecture No. # 03 Heat Transfer Correlation

More information

Heat Exchangers. Heat Exchanger Types. Heat Exchanger Types. Applied Heat Transfer Part Two. Topics of This chapter

Heat Exchangers. Heat Exchanger Types. Heat Exchanger Types. Applied Heat Transfer Part Two. Topics of This chapter Applied Heat Transfer Part Two Heat Excangers Dr. Amad RAMAZANI S.A. Associate Professor Sarif University of Tecnology انتقال حرارت کاربردی احمد رمضانی سعادت ا بادی Autumn, 1385 (2006) Ramazani, Heat Excangers

More information

OilonChooser Operating Instructions

OilonChooser Operating Instructions OilonChooser Operating Instructions 1. Menu display and structure OilonChooser s menu display shows the data input field in the central area. The navigation bar is located in the left column. It shows

More information

High Flux Steam Reforming

High Flux Steam Reforming High Flux Steam Reforming by Thomas Rostrup-Nielsen Haldor Topsoe A/S, Lyngby, Denmark Abstract Topsøe has introduced the High Flux Steam Reformer (HFR), with lower cost than conventional side fired reformers.

More information

Syngas Furnace Tubeskin Temperature Measurement

Syngas Furnace Tubeskin Temperature Measurement Temperature measurement through out the Syngas plants is critical to safe operations and start up. It can also be an important tool in troubleshooting, debottlenecking and optimizing the plant s operations.

More information

Module 1 : Conduction. Lecture 5 : 1D conduction example problems. 2D conduction

Module 1 : Conduction. Lecture 5 : 1D conduction example problems. 2D conduction Module 1 : Conduction Lecture 5 : 1D conduction example problems. 2D conduction Objectives In this class: An example of optimization for insulation thickness is solved. The 1D conduction is considered

More information

Quantifying Savings From Improved Boiler Operation

Quantifying Savings From Improved Boiler Operation Quantifying Savings From Improved Boiler Operation Kevin Carpenter Kelly Kissock Graduate Research Assistant Associate Professor Department of Mechanical and Aerospace Engineering University of Dayton

More information

Low Emission - Low Maintenance Burner Design

Low Emission - Low Maintenance Burner Design Reliability & Maintenance Conference & Exhibition May 24-27, 2005 Ernest N. Morial Convention Center New Orleans, Louisiana Low Emission - Low Maintenance Burner Design Presented By: Scott D. Reed Vice

More information

The Three Heat Transfer Modes in Reflow Soldering

The Three Heat Transfer Modes in Reflow Soldering Section 5: Reflow Oven Heat Transfer The Three Heat Transfer Modes in Reflow Soldering There are three different heating modes involved with most SMT reflow processes: conduction, convection, and infrared

More information

STEAM TURBINE 1 CONTENT. Chapter Description Page. V. Steam Process in Steam Turbine 6. VI. Exhaust Steam Conditions, Extraction and Admission 7

STEAM TURBINE 1 CONTENT. Chapter Description Page. V. Steam Process in Steam Turbine 6. VI. Exhaust Steam Conditions, Extraction and Admission 7 STEAM TURBINE 1 CONTENT Chapter Description Page I Purpose 2 II Steam Turbine Types 2 2.1. Impulse Turbine 2 2.2. Reaction Turbine 2 III Steam Turbine Operating Range 2 3.1. Curtis 2 3.2. Rateau 2 3.3.

More information

TANKJKT. Heat Transfer Calculations for Jacketed Tanks SCREEN SHOTS. Copyright 2015. By chemengsoftware.com

TANKJKT. Heat Transfer Calculations for Jacketed Tanks SCREEN SHOTS. Copyright 2015. By chemengsoftware.com TANKJKT Heat Transfer Calculations for Jacketed Tanks SCREEN SHOTS Copyright 2015 By chemengsoftware.com Visit http://www.pipesizingsoftware.com/ for further information and ordering The following page

More information

Waste to Energy. Anders Damgaard. Thanks to Jiri Hyks and Thomas H Christensen DTU for some slides

Waste to Energy. Anders Damgaard. Thanks to Jiri Hyks and Thomas H Christensen DTU for some slides Denmark (Thomas Astrup) Denmark (COWI) Waste to Energy Anders Damgaard Austria (CEWEP) Thanks to Jiri Hyks and Thomas H Christensen DTU for some slides Copyright Anders Damgaard & Morton A. Barlaz, NC

More information

Hot Water Boilers and Controls Why Condensing Boilers are Different. Presented Oct. 14, 2008 Long Island Chapter, ASHRAE

Hot Water Boilers and Controls Why Condensing Boilers are Different. Presented Oct. 14, 2008 Long Island Chapter, ASHRAE Hot Water Boilers and Controls Why Condensing Boilers are Different Presented Oct. 14, 2008 Long Island Chapter, ASHRAE H.W. Boilers and Controls Major types of boilers Advantages and disadvantages Resistance

More information

NAWTEC18-3541 CONCEPTS AND EXPERIENCES FOR HIGHER PLANT EFFICIENCY WITH MODERN ADVANCED BOILER AND INCINERATION TECHNOLOGY

NAWTEC18-3541 CONCEPTS AND EXPERIENCES FOR HIGHER PLANT EFFICIENCY WITH MODERN ADVANCED BOILER AND INCINERATION TECHNOLOGY Proceedings of the 18th Annual North American Waste-to-Energy Conference NAWTEC18 May 11-13, 2010, Orlando, Florida, USA NAWTEC18-3541 CONCEPTS AND EXPERIENCES FOR HIGHER PLANT EFFICIENCY WITH MODERN ADVANCED

More information

Energy Efficient Process Heating: Insulation and Thermal Mass

Energy Efficient Process Heating: Insulation and Thermal Mass Energy Efficient Process Heating: Insulation and Thermal Mass Kevin Carpenter and Kelly Kissock Department of Mechanical and Aerospace Engineering University of Dayton 300 College Park Dayton, OH 45469-0210

More information

Introduction to Computational Fluid Dynamics (CFD) for Combustion. www.reaction-eng.com (801) 364-6925

Introduction to Computational Fluid Dynamics (CFD) for Combustion. www.reaction-eng.com (801) 364-6925 Introduction to Computational Fluid Dynamics (CFD) for Combustion www.reaction-eng.com (801) 364-6925 What is CFD? CFD stands for Computational Fluid Dynamics CFD uses computers to represent (or model)

More information

WATER WALL BOILER FOR AIR AND OXYGEN FIRED CLAUS SULPHUR RECOVERY UNITS

WATER WALL BOILER FOR AIR AND OXYGEN FIRED CLAUS SULPHUR RECOVERY UNITS WATER WALL BOILER FOR AIR AND OXYGEN FIRED CLAUS SULPHUR RECOVERY UNITS Abstract Mahin RAMESHNI, P.E. Technical Director, Sulphur Technology Mahin.Rameshni@worleyparsons.com WorleyParsons 125 West Huntington

More information

Heat Transfer Analysis of Cylindrical Perforated Fins in Staggered Arrangement

Heat Transfer Analysis of Cylindrical Perforated Fins in Staggered Arrangement International Journal of Innovative Technology and Exploring Engineering (IJITEE) ISSN: 2278-3075, Volume-2, Issue-5, April 203 Heat Transfer Analysis of Cylindrical Fins in Staggered Arrangement Amol

More information

Specific Volume of Liquid (Column 7). The volume per unit of mass in cubic feet per pound.

Specific Volume of Liquid (Column 7). The volume per unit of mass in cubic feet per pound. Steam Tables What They Are How to Use Them The heat quantities and temperature/ pressure relationships referred to in this Handbook are taken from the Properties of Saturated Steam table. Definitions of

More information

CONTENTS. ZVU Engineering a.s., Member of ZVU Group, WASTE HEAT BOILERS Page 2

CONTENTS. ZVU Engineering a.s., Member of ZVU Group, WASTE HEAT BOILERS Page 2 WASTE HEAT BOILERS CONTENTS 1 INTRODUCTION... 3 2 CONCEPTION OF WASTE HEAT BOILERS... 4 2.1 Complex Solution...4 2.2 Kind of Heat Exchange...5 2.3 Heat Recovery Units and Their Usage...5 2.4 Materials

More information

Biomass Boiler House Best Practices. Irene Coyle & Fernando Preto CanmetENERGY

Biomass Boiler House Best Practices. Irene Coyle & Fernando Preto CanmetENERGY Biomass Boiler House Best Practices Irene Coyle & Fernando Preto CanmetENERGY Growing the Margins London, Ontario March 2010 The Biomass & Renewables Group of Industrial Innovation Group (IIG) of CanmetENERGY

More information

(This report is endorsed) Industrivej 20, 9900 Frederikshavn, Danmark

(This report is endorsed) Industrivej 20, 9900 Frederikshavn, Danmark Spectrum Laboratories Ltd is accredited by International Accreditation New Zealand (formerly Telarc). The tests reported herein have been performed in accordance with the terms of our accreditation. This

More information

Steam Generator Boilers Compact Steam Boilers. Rapid Start-Up Safe in Operation

Steam Generator Boilers Compact Steam Boilers. Rapid Start-Up Safe in Operation Steam Generator Boilers Compact Steam Boilers Rapid Start-Up Safe in Operation AB&CO TT BOILERS The boiler maker AB&CO TT BOILERS LTD. have since the middle sixties produced industrial boilers and heaters

More information

Natural Convection. Buoyancy force

Natural Convection. Buoyancy force Natural Convection In natural convection, the fluid motion occurs by natural means such as buoyancy. Since the fluid velocity associated with natural convection is relatively low, the heat transfer coefficient

More information

AN EXPERIMENTAL STUDY OF EXERGY IN A CORRUGATED PLATE HEAT EXCHANGER

AN EXPERIMENTAL STUDY OF EXERGY IN A CORRUGATED PLATE HEAT EXCHANGER International Journal of Mechanical Engineering and Technology (IJMET) Volume 6, Issue 11, Nov 2015, pp. 16-22, Article ID: IJMET_06_11_002 Available online at http://www.iaeme.com/ijmet/issues.asp?jtype=ijmet&vtype=6&itype=11

More information

By K.K.Parthiban / Boiler specialist / Venus Energy Audit System

By K.K.Parthiban / Boiler specialist / Venus Energy Audit System FINE TUNING EXPERIENCE OF A CFBC BOILER By K.K.Parthiban / Boiler specialist / Venus Energy Audit System Introduction The Industrial boilers have been seeing a growth in capacity in the recent years. Current

More information

I. STEAM GENERATION, BOILER TYPES

I. STEAM GENERATION, BOILER TYPES I. STEAM GENERATION, BOILER TYPES and BOILER PLANT SYSTEMS 1 Steam Generation Water s Unique Properties: High Thermal Capacity (Specific Heat) High Critical Temperature Ideal Medium for Heat Delivery High

More information

Chapter. Flares and Stacks. Flares (FLR)... 16-3. Stacks (STK)... 16-9. G2 ICARUS Corporation, 1998.

Chapter. Flares and Stacks. Flares (FLR)... 16-3. Stacks (STK)... 16-9. G2 ICARUS Corporation, 1998. Chapter 16 Flares and Stacks Flares (FLR)... 16-3 Stacks (STK)... 16-9 G2 ICARUS Corporation, 1998. 16-2 ICARUS Reference ICARUS Corporation, 1998. G2 Chapter 16: Flares and Stacks 16-3 Flares (FLR) A

More information

Recover Heat from Boiler Blowdown Water

Recover Heat from Boiler Blowdown Water Prepared for California Energy Commission (CEC) Prepared By: Southern California Gas Company (A Sempra Energy Utility) E3M Inc. May 2012 i Disclaimer The CEC and its contractor, Southern California Gas

More information

1. A belt pulley is 3 ft. in diameter and rotates at 250 rpm. The belt which is 5 ins. wide makes an angle of contact of 190 over the pulley.

1. A belt pulley is 3 ft. in diameter and rotates at 250 rpm. The belt which is 5 ins. wide makes an angle of contact of 190 over the pulley. Sample Questions REVISED FIRST CLASS PARTS A1, A2, AND A3 (NOTE: these questions are intended as representations of the style of questions that may appear on examinations. They are not intended as study

More information

Process Heater Burners, Flare Systems, Thermal Oxidizers and Catalyst Systems. Combustion Technology

Process Heater Burners, Flare Systems, Thermal Oxidizers and Catalyst Systems. Combustion Technology Combustion Technology INNOVATIVE SOLUTIONS FOR COMBUSTION AND EMISSIONS CHALLENGES Process Heater Burners, Flare Systems, Thermal Oxidizers and Catalyst Systems Callidus Technologies by Honeywell - Experie

More information

Carbon Dioxide Membrane Separation for Carbon Capture using Direct FuelCell Systems

Carbon Dioxide Membrane Separation for Carbon Capture using Direct FuelCell Systems Carbon Dioxide Membrane Separation for Carbon Capture using Direct FuelCell Systems DFC Technology Used as Electrochemical Membrane for CO 2 Purification and Capture during Power Generation FCE s Direct

More information

Simplified Solar Heating Model

Simplified Solar Heating Model Simplified Solar Heating Model For SolarAttic PCS1 Pool Heater Prepared from notes of the 1994 Scoping Analysis as performed by Professor Ephraim M. Sparrow, University of Minnesota, Minneapolis, MN. Heat

More information

HVAC Calculations and Duct Sizing

HVAC Calculations and Duct Sizing PDH Course M199 HVAC Calculations and Duct Sizing Gary D. Beckfeld, M.S.E., P.E. 2007 PDH Center 2410 Dakota Lakes Drive Herndon, VA 20171-2995 Phone: 703-478-6833 Fax: 703-481-9535 www.pdhcenter.com An

More information

Unsteady State Relief Valve Evaluation. External Pool Fire Scenario

Unsteady State Relief Valve Evaluation. External Pool Fire Scenario Unsteady State Relief Valve Evaluation External Pool Fire Scenario By Rame Sulaiman Process Engineer Process Engineering Associates, LLC Copyright 2009 Process Engineering Associates, LLC. All rights reserved.

More information

Webpage: www.ijaret.org Volume 3, Issue IV, April 2015 ISSN 2320-6802

Webpage: www.ijaret.org Volume 3, Issue IV, April 2015 ISSN 2320-6802 Efficiency Assessment and Improvement of at Super Thermal Power Station Vikram Singh Meena 1, Dr. M.P Singh 2 1 M.Tech in Production Engineering, Jagannath University, Jaipur, Rajasthan, India Vikrammeena134@gmail.com

More information

Energy Efficiency in Steam Systems

Energy Efficiency in Steam Systems Energy Efficiency in Steam Systems Fundamentals of Energy Efficiency: An Introductory Workshop April 2008 John S. Raschko, Ph.D. Mass. Office of Technical Assistance www.mass.gov/envir/ota (617) 626-1093

More information

Technical Information

Technical Information Determining Energy Requirements - & Gas Heating & Gas Heating and gas heating applications can be divided into two conditions, air or gas at normal atmospheric pressure and air or gas under low to high

More information

POROUS BURNER - A New Approach to Infrared

POROUS BURNER - A New Approach to Infrared Page: 1 POROUS BURNER - A New Approach to Infrared 1. Preface There are several possibilities to produce infrared radiation in the technical sense. Regarding the source of energy you can distinguish between

More information

R&D on Oil-Burning, Environment-Friendly, High-Efficiency Boiler

R&D on Oil-Burning, Environment-Friendly, High-Efficiency Boiler [N.2.1.1] R&D on Oil-Burning, Environment-Friendly, High-Efficiency Boiler (Environment-Friendly, High-Efficiency Boiler Group) Takashi Murakawa, Yasuhiro Kotani, Kazuhiro Kamijo, Koichi Tsujimoto, Hiroshi

More information

Boiler efficiency measurement. Department of Energy Engineering

Boiler efficiency measurement. Department of Energy Engineering Boiler efficiency measurement Department of Energy Engineering Contents Heat balance on boilers Efficiency determination Loss categories Fluegas condensation principals Seasonal efficiency Emission evaluation

More information

Forms of Energy. Freshman Seminar

Forms of Energy. Freshman Seminar Forms of Energy Freshman Seminar Energy Energy The ability & capacity to do work Energy can take many different forms Energy can be quantified Law of Conservation of energy In any change from one form

More information

Maximizing Boiler Plant Efficiency. Presenter: Dan Watkins, LEED BD+C Sales Engineer Bornquist, Inc.

Maximizing Boiler Plant Efficiency. Presenter: Dan Watkins, LEED BD+C Sales Engineer Bornquist, Inc. Maximizing Boiler Plant Efficiency Presenter: Dan Watkins, LEED BD+C Sales Engineer Bornquist, Inc. Efficient Boiler Design Boiler Types Efficiency Definition Non-Condensing Condensing Maximizing Efficiency

More information

POLYCITY. Technical measures and experiences at a 6 MW cogeneration plant with wood chip furnace POLYCITY

POLYCITY. Technical measures and experiences at a 6 MW cogeneration plant with wood chip furnace POLYCITY Technical measures and experiences at a 6 MW cogeneration plant with wood chip furnace Content 1. Technical overview cogeneration plant and heating network 2. Investment of the facility 3. Experiences

More information

Hydrogen Production via Steam Reforming with CO 2 Capture

Hydrogen Production via Steam Reforming with CO 2 Capture Hydrogen Production via Steam Reforming with CO 2 Capture Guido Collodi Foster Wheeler Via Caboto 1, 20094 Corsico Milan - Italy Hydrogen demand in refineries is increasing vigorously due to the stringent

More information

Hybrid Modeling and Control of a Power Plant using State Flow Technique with Application

Hybrid Modeling and Control of a Power Plant using State Flow Technique with Application Hybrid Modeling and Control of a Power Plant using State Flow Technique with Application Marwa M. Abdulmoneim 1, Magdy A. S. Aboelela 2, Hassen T. Dorrah 3 1 Master Degree Student, Cairo University, Faculty

More information

steam centre of excellence Steam Boiler System Optimization

steam centre of excellence Steam Boiler System Optimization Steam Boiler System Optimization Introduction Gas Cost Metering Fluids Fuel, Water, Steam Steam Costs Boiler House Stack Losses Boiler Waterside Surfaces Blowdown Current Natural Gas Cost Projected Cost

More information

DIRECT STEAM INJECTION HOT WATER SYSTEMS FOR JACKETED HEATING

DIRECT STEAM INJECTION HOT WATER SYSTEMS FOR JACKETED HEATING By Philip Sutter Pick Heaters, Inc. DIRECT STEAM INJECTION HOT WATER SYSTEMS FOR JACKETED HEATING INTRODUCTION Many process plants currently use steam or hot water to heat jacketed devices such as tanks,

More information

INTEC Engineering GmbH Heating Solutions for the Marine Industry

INTEC Engineering GmbH Heating Solutions for the Marine Industry INTEC Engineering GmbH Heating Solutions for the Marine Industry Thermal Oil Heaters Heating Solutions for the Marine Industry Compared to conventional plants using hot water or steam, thermal oil as a

More information

Natural convection in a room with two opposite heated vertical walls

Natural convection in a room with two opposite heated vertical walls INTERNATIONAL JOURNAL OF ENERGY AND ENVIRONMENT Volume 6, Issue 1, 2015 pp.81-86 Journal homepage: www.ijee.ieefoundation.org Natural convection in a room with two opposite heated vertical walls Ameer

More information

Performance Rating of Commercial Space Heating Boilers

Performance Rating of Commercial Space Heating Boilers ANSI/AHRI Standard 1500 2015 Standard for Performance Rating of Commercial Space Heating Boilers Approved by ANSI on 28 November 2014 IMPORTANT SAFETY DISCLAIMER AHRI does not set safety standards and

More information

Selecting TEMA Type Heat Exchangers

Selecting TEMA Type Heat Exchangers Selecting TEMA Type Heat Exchangers TEMA is a set of standards developed by leading heat exchanger manufacturers that defines the heat exchanger style and the machining and assembly tolerances to be employed

More information

LESSON 1. HEAT EXCHANGERS

LESSON 1. HEAT EXCHANGERS LESSON 1. HEAT EXCHANGERS 1 Contents (I) Definition. Classification. Regenerators. Mixers or direct contact heat exchangers. Packed bed heat exchangers (Intercambiadores de lecho compacto). Direct flame

More information

Boiler Calculations. Helsinki University of Technology Department of Mechanical Engineering. Sebastian Teir, Antto Kulla

Boiler Calculations. Helsinki University of Technology Department of Mechanical Engineering. Sebastian Teir, Antto Kulla Helsinki University of Technology Department of Mechanical Engineering Energy Engineering and Environmental Protection Publications Steam Boiler Technology ebook Espoo 2002 Boiler Calculations Sebastian

More information

HEAT EXCHANGERS. Prepared by Bob Heaslip KESCO

HEAT EXCHANGERS. Prepared by Bob Heaslip KESCO Prepared by Bob Heaslip KESCO For Queens University CHEE 470 Fall 2007 CONTENTS 1 INTRODUCTION TO... 1 2 TYPES... 2 2.1 DOUBLE PIPE... 3 2.2 HAIRPIN... 4 2.3 PLATE & FRAME... 5 2.4 SPIRAL PLATE... 7 2.5

More information

Tank Heating Solutions. For Oil Spill Response Vessels

Tank Heating Solutions. For Oil Spill Response Vessels Heating Solutions For Oil Spill Response Vessels A chain is only as strong as its weakest link Oil spill incidents are unplanned and unwanted events that can have dire consequences for the environment

More information

TRIAL CHEMICAL CLEANING OF FOULED APH BASKETS

TRIAL CHEMICAL CLEANING OF FOULED APH BASKETS TRIAL CHEMICAL CLEANING OF FOULED APH BASKETS Dr. Abhay Kumar Sahay, AGM(CC OS) Bijay Manjul, AGM( Operation) Kahalgaon Boiler has three inputs Steam generator 1. WATER 2. COAL 3. AIR Burner Air preheater

More information

COMPARISON OF PROCESS FLOWS: FLUID BED COMBUSTOR AND GLASSPACK

COMPARISON OF PROCESS FLOWS: FLUID BED COMBUSTOR AND GLASSPACK COMPARISON OF PROCESS FLOWS: FLUID BED COMBUSTOR AND GLASSPACK PURPOSE The purpose of this document is to present the assumptions and calculations used to prepare Minergy Drawing 100-0204-PP00 (attached).

More information

Efficiency on a large scale CFB Steam Boilers

Efficiency on a large scale CFB Steam Boilers Efficiency on a large scale CFB Steam Boilers Circulating Fluidized Bed Steam Boiler The Circulating Fluidized Bed Steam Boiler is an offering from Bosch Thermotechnology a member of the worldwide Bosch

More information

HEAT RECOVERY OPTIONS FOR DRYERS AND OXIDIZERS

HEAT RECOVERY OPTIONS FOR DRYERS AND OXIDIZERS HEAT RECOVERY OPTIONS FOR DRYERS AND OXIDIZERS William K. Scullion, Application Engineering Leader, MEGTEC Systems, De Pere, WI Introduction Competitive pressures continuously motivate us to examine our

More information

Boiler Efficiency Workshop

Boiler Efficiency Workshop Boiler Efficiency Workshop May 30, 2013 Presented by: Aqeel Zaidi, P.Eng., CEM, CMVP Energy Solutions Manager Questions and follow-up should be directed to: Aqeel.Zaidi@enbridge.com 416.495.6531 Safety

More information

Cooling Systems 2/18/2014. Cooling Water Systems. Jim Lukanich, CWT ChemCal, Inc. Grapevine, TX

Cooling Systems 2/18/2014. Cooling Water Systems. Jim Lukanich, CWT ChemCal, Inc. Grapevine, TX Cooling Systems Jim Lukanich, CWT ChemCal, Inc. Grapevine, TX Cooling Water Systems Water is used for cooling because of its capacity to remove and store heat and availability. Cooling water is used in

More information

Presentation Outline. Background

Presentation Outline. Background Introduction ENVIRONMENTAL SYSTEMS, INC. Innovative Air Pollution Control Solutions Air Pollution Abatement Technologies for the Oil and Natural Gas Processing Industries. Jeff Kudronowicz / Application

More information

Practical Examples of Heat Regenerative System at Steelmaking Works

Practical Examples of Heat Regenerative System at Steelmaking Works 2nd India-Japan Energy Forum Practical Examples of Heat Regenerative System at Steelmaking Works On Monday 4 February 2008 in Delhi Nisshin Steel Co., Ltd. Yukio Tomita 1 Structure of the Regenerative

More information

EFFICIENCY WITH DIFFERENT GCV OF COAL AND EFFICIENCY IMPROVEMENT OPPORTUNITY IN BOILER

EFFICIENCY WITH DIFFERENT GCV OF COAL AND EFFICIENCY IMPROVEMENT OPPORTUNITY IN BOILER EFFICIENCY WITH DIFFERENT GCV OF COAL AND EFFICIENCY IMPROVEMENT OPPORTUNITY IN BOILER Chetan T. Patel 1, Dr.Bhavesh K. patel 2, Vijay K. Patel 3 M.E. in Energy Engineering 4 th sem, Government Engineering

More information

Experimental Study On Heat Transfer Enhancement In A Circular Tube Fitted With U -Cut And V -Cut Twisted Tape Insert

Experimental Study On Heat Transfer Enhancement In A Circular Tube Fitted With U -Cut And V -Cut Twisted Tape Insert Experimental Study On Heat Transfer Enhancement In A Circular Tube Fitted With U -Cut And V -Cut Twisted Tape Insert Premkumar M Abstract Experimental investigation of heat transfer and Reynolds number

More information

Glossary of Heating, Ventilation and Air Conditioning Terms

Glossary of Heating, Ventilation and Air Conditioning Terms Glossary of Heating, Ventilation and Air Conditioning Terms Air Change: Unlike re-circulated air, this is the total air required to completely replace the air in a room or building. Air Conditioner: Equipment

More information

Hydrogen from Natural Gas via Steam Methane Reforming (SMR)

Hydrogen from Natural Gas via Steam Methane Reforming (SMR) Hydrogen from Natural Gas via Steam Methane Reforming (SMR) John Jechura jjechura@mines.edu Updated: January 4, 2015 Energy efficiency of hydrogen from natural gas Definition of energy efficiency From

More information

Originators of the Flexible Water Tube design

Originators of the Flexible Water Tube design BRYAN FLEXIBLE WATER TUBE AB SERIES STEAM AND WATER BOILER 900,000 TO 3,000,000 BTUH FORCED DRAFT GAS, OIL OR DUAL FUEL FIRED Water Boiler AB120-W-FDGO Steam Boiler AB250-S-150-FDG Originators of the Flexible

More information

Petroleum Refinery Hydrogen Production Unit: Exergy and Production Cost Evaluation

Petroleum Refinery Hydrogen Production Unit: Exergy and Production Cost Evaluation Int. J. of Thermodynamics ISSN 1301-9724 Vol. 11 (No. 4), pp. 187-193, December 2008 Petroleum Refinery Hydrogen Production Unit: and Production Cost Evaluation Flávio E. Cruz 1 and Silvio de Oliveira

More information

FREESTUDY HEAT TRANSFER TUTORIAL 3 ADVANCED STUDIES

FREESTUDY HEAT TRANSFER TUTORIAL 3 ADVANCED STUDIES FREESTUDY HEAT TRANSFER TUTORIAL ADVANCED STUDIES This is the third tutorial in the series on heat transfer and covers some of the advanced theory of convection. The tutorials are designed to bring the

More information

Engine Heat Transfer. Engine Heat Transfer

Engine Heat Transfer. Engine Heat Transfer Engine Heat Transfer 1. Impact of heat transfer on engine operation 2. Heat transfer environment 3. Energy flow in an engine 4. Engine heat transfer Fundamentals Spark-ignition engine heat transfer Diesel

More information

Mathematical Modelling and Design of an Advanced Once-Through Heat Recovery Steam Generator

Mathematical Modelling and Design of an Advanced Once-Through Heat Recovery Steam Generator Mathematical Modelling and Design of an Advanced Once-Through Heat Recovery Steam Generator Abstract Marie-Noëlle Dumont, Georges Heyen LASSC, University of Liège, Sart Tilman B6A, B-4000 Liège (Belgium)

More information

HEAT AND MASS TRANSFER

HEAT AND MASS TRANSFER MEL242 HEAT AND MASS TRANSFER Prabal Talukdar Associate Professor Department of Mechanical Engineering g IIT Delhi prabal@mech.iitd.ac.in MECH/IITD Course Coordinator: Dr. Prabal Talukdar Room No: III,

More information

1 DESCRIPTION OF THE APPLIANCE

1 DESCRIPTION OF THE APPLIANCE 1 DESCRIPTION OF THE APPLIANCE 1.1 INTRODUCTION The cast iron SF boilers are a valid solution for the present energetic problems, since they can run with solid fuels: wood and coal. These series of boilers

More information