Chapter 6: Random Variables and the Normal Distribution. 6.1 Discrete Random Variables. 6.2 Binomial Probability Distribution

Size: px
Start display at page:

Download "Chapter 6: Random Variables and the Normal Distribution. 6.1 Discrete Random Variables. 6.2 Binomial Probability Distribution"

Transcription

1 Chapter 6: Random Variables and the Normal Distribution 6.1 Discrete Random Variables 6.2 Binomial Probability Distribution 6.3 Continuous Random Variables and the Normal Probability Distribution

2 6.1 Discrete Random Variables Objectives: By the end of this section, I will be able to 1) Identify random variables. 2) Explain what a discrete probability distribution is and construct probability distribution tables and graphs. 3) Calculate the mean, variance, and standard deviation of a discrete random variable.

3 Random Variables A variable whose values are determined by chance Chance in the definition of a random variable is crucial

4 Example Notation for random variables Suppose our experiment is to toss a single fair die, and we are interested in the number rolled. We define our random variable X to be the outcome of a single die roll. a. Why is the variable X a random variable? b. What are the possible values that the random variable X can take? c. What is the notation used for rolling a 5? d. Use random variable notation to express the probability of rolling a 5.

5 Example 6.2 continued Solution a) We don t know the value of X before we toss the die, which introduces an element of chance into the experiment b) Possible values for X: 1, 2, 3, 4, 5, and 6. c) When a 5 is rolled, then X equals the outcome 5, or X = 5. d) Probability of rolling a 5 for a fair die is 1/6, thus P(X = 5) = 1/6.

6 Types of Random Variables Discrete random variable - either a finite number of values or countable number of values, where countable refers to the fact that there might be infinitely many values, but they result from a counting process Continuous random variable infinitely many values, and those values can be associated with measurements on a continuous scale without gaps or interruptions

7 Example Identify each as a discrete or continuous random variable. (a) Total amount in ounces of soft drinks you consumed in the past year. (b) The number of cans of soft drinks that you consumed in the past year.

8 ANSWER: (a) continuous (b) discrete Example

9 Example Identify each as a discrete or continuous random variable. (a) The number of movies currently playing in U.S. theaters. (b) The running time of a randomly selected movie (c) The cost of making a randomly selected movie.

10 ANSWER (a) discrete (b) continuous (c) continuous Example

11 Discrete Probability Distributions Provides all the possible values that the random variable can assume Together with the probability associated with each value Can take the form of a table, graph, or formula Describe populations, not samples

12 Example Table 6.2 in your textbook The probability distribution table of the number of heads observed when tossing a fair coin twice

13 Probability Distribution of a Discrete Random Variable The sum of the probabilities of all the possible values of a discrete random variable must equal 1. That is, ΣP(X) = 1. The probability of each value of X must be between 0 and 1, inclusive. That is, 0 P(X ) 1.

14 Example Let the random variable x represent the number of girls in a family of four children. Construct a table describing the probability distribution.

15 Example Determine the outcomes with a tree diagram:

16 Example Total number of outcomes is 16 Total number of ways to have 0 girls is 1 P(0 girls) 1/ Total number of ways to have 1 girl is 4 P(1girl) 4/ Total number of ways to have 2 girls is 6 P(2 girls) 6/

17 Example Total number of ways to have 3 girls is 4 P(3 girls) 4/ Total number of ways to have 4 girls is 1 P(4 girls) 1/

18 Example Distribution is: x P(x) NOTE: P(x) 1

19 Mean of a Discrete Random Variable The mean μ of a discrete random variable represents the mean result when the experiment is repeated an indefinitely large number of times Also called the expected value or expectation of the random variable X. Denoted as E(X ) Holds for discrete and continuous random variables

20 Finding the Mean of a Discrete Random Variable Multiply each possible value of X by its probability. Add the resulting products. X P X

21 Variability of a Discrete Random Variable Formulas for the Variance and Standard Deviation of a Discrete Random Variable Definition Formulas 2 X 2 P X X 2 P X Computational Formulas X P X X P X 2 2

22 Example x P(x) x P(x) 2 2 x x P( x) xp(x) 2.0

23 Example x P(x) x P(x) 2 2 x x P( x) x 2 P( x)

24 Discrete Probability Distribution as a Graph Graphs show all the information contained in probability distribution tables Identify patterns more quickly FIGURE 6.1 Graph of probability distribution for Kristin s financial gain.

25 Page 270 Example

26 Example Probability distribution (table) x P(x) Omit graph

27 Page 270 Example

28 ANSWER Example X number of goals scored (a) Probability X is fewer than 3 P( X 0 X 1 X 2) P( X 0) P( X 1) P( X 2)

29 Example ANSWER (b) The most likely number of goals is the expected value (or mean) of X x P(x) x P(x) xp(x) She will most likely score one goal

30 Example ANSWER (c) Probability X is at least one P( X 1 X 2 X 3) P( X 1) P( X 2) P( X 3)

31 Summary Section 6.1 introduces the idea of random variables, a crucial concept that we will use to assess the behavior of variable processes for the remainder of the text. Random variables are variables whose value is determined at least partly by chance. Discrete random variables take values that are either finite or countable and may be put in a list. Continuous random variables take an infinite number of possible values, represented by an interval on the number line.

32 Summary Discrete random variables can be described using a probability distribution, which specifies the probability of observing each value of the random variable. Such a distribution can take the form of a table, graph or formula. Probability distributions describe populations, not samples. We can find the mean μ, standard deviation σ, and variance σ 2 of a discrete random variable using formulas.

33 6.2 Binomial Probability Distribution

34 6.2 Binomial Probability Distribution Objectives: By the end of this section, I will be able to 1) Explain what constitutes a binomial experiment. 2) Compute probabilities using the binomial probability formula. 3) Find probabilities using the binomial tables. 4) Calculate and interpret the mean, variance, and standard deviation of the binomial random variable.

35 Factorial symbol For any integer n 0, the factorial symbol n! is defined as follows: 0! = 1 1! = 1 n! = n(n - 1)(n - 2) 3 2 1

36 Example Find each of the following 1. 4! 2. 7!

37 Example ANSWER 1. 4! !

38 Factorial on Calculator Calculator 7 MATH PRB 4:! which is 7! Enter gives the result 5040

39 Combinations An arrangement of items in which r items are chosen from n distinct items. repetition of items is not allowed (each item is distinct). the order of the items is not important.

40 Example of a Combination The number of different possible 5 card poker hands. Verify this is a combination by checking each of the three properties. Identify r and n.

41 Example Five cards will be drawn at random from a deck of cards is depicted below

42 Example An arrangement of items in which 5 cards are chosen from 52 distinct items. repetition of cards is not allowed (each card is distinct). the order of the cards is not important.

43 Combination Formula The number of combinations of r items chosen from n different items is denoted as n C r and given by the formula: n C r n! r! n r!

44 Example Find the value of 7C 4

45 Example ANSWER: 7C 4 7! 4!(7 4)! 7! 4!3! 7 6 ( ) 3 ( )

46 Combinations on Calculator Calculator 7 MATH PRB 3:nCr 4 To get: 7C 4 Then Enter gives 35

47 Example of a Combination Determine the number of different possible 5 card poker hands.

48 Example ANSWER: 52C 5 2,598,960

49 Motivational Example Genetics In mice an allele A for agouti (gray-brown, grizzled fur) is dominant over the allele a, which determines a non-agouti color. Suppose each parent has the genotype Aa and 4 offspring are produced. What is the probability that exactly 3 of these have agouti fur?

50 Motivational Example A single offspring has genotypes: A a A AA Aa Sample Space { AA, Aa, aa, aa} a aa aa

51 Motivational Example Agouti genotype is dominant Event that offspring is agouti: { AA, Aa, aa} Therefore, for any one birth: P(agouti genotype) 3/ 4 P(not agouti genotype) 1/ 4

52 Motivational Example Let G represent the event of an agouti offspring and N represent the event of a non-agouti Exactly three agouti offspring may occur in four different ways (in order of birth): NGGG, GNGG, GGNG, GGGN

53 Motivational Example Consecutive events (birth of a mouse) are independent and using multiplication rule: ) ( ) ( ) ( ) ( ) ( G P G P G P N P G G G N P ) ( ) ( ) ( ) ( ) ( G P G P N P G P G G N G P

54 Motivational Example ) ( ) ( ) ( ) ( ) ( G P N P G P G P G N G G P ) ( ) ( ) ( ) ( ) ( N P G P G P G P N G G G P

55 Motivational Example P(exactly 3 offspring has agouti fur) birth N OR secondbirth N OR third birth N OR fourth birth N) (first 3 P

56 Binomial Experiment Agouti fur example may be considered a binomial experiment

57 Binomial Experiment Four Requirements: 1) Each trial of the experiment has only two possible outcomes (success or failure) 2) Fixed number of trials 3) Experimental outcomes are independent of each other 4) Probability of observing a success remains the same from trial to trial

58 Binomial Experiment Agouti fur example may be considered a binomial experiment 1) Each trial of the experiment has only two possible outcomes (success=agouti fur or failure=non-agouti fur) 2) Fixed number of trials (4 births) 3) Experimental outcomes are independent of each other 4) Probability of observing a success remains the same from trial to trial (¾)

59 Binomial Probability Distribution When a binomial experiment is performed, the set of all of possible numbers of successful outcomes of the experiment together with their associated probabilities makes a binomial probability distribution.

60 Binomial Probability Distribution Formula For a binomial experiment, the probability of observing exactly X successes in n trials where the probability of success for any one trial is p is X n P ( X ) ncx p (1 p) X where n C X X! n! n X!

61 Binomial Probability Distribution Formula Let q=1-p P ( X ) n C X p X q n X

62 Rationale for the Binomial Probability Formula P(x) = n! (n x )!x! p x q n-x The number of outcomes with exactly x successes among n trials

63 Binomial Probability Formula P(x) = n! (n x )!x! p x q n-x Number of outcomes with exactly x successes among n trials The probability of x successes among n trials for any one particular order

64 Agouti Fur Genotype Example X event of a birth with agouti fur P( X ) (4 4! 3)!3!

65 Binomial Probability Distribution Formula: Calculator 2 ND VARS A:binompdf(4,.75, 3) n, p, x Enter gives the result

66 Binomial Distribution Tables n is the number of trials X is the number of successes p is the probability of observing a success See Example 6.16 on page 278 for more information FIGURE 6.7 Excerpt from the binomial tables.

67 Page 284 Example

68 Example ANSWER X number of heads P( X 5) 20C 5 (0.5) 5 15,504 (0.5) (0.5) 5 20 (0.5) 5 15

69 Binomial Mean, Variance, and Standard Deviation Mean (or expected value): μ = n p Variance: 2 np(1 p) Use q 1 p, then 2 npq Standard deviation: np (1 p) npq

70 Example 20 coin tosses The expected number of heads: np (20)(0.50) 10 Variance and standard deviation: 2 npq (20)(0.50)(0.50)

71 Page 284 Example

72 Is this a Binomial Distribution? Four Requirements: 1) Each trial of the experiment has only two possible outcomes (makes the basket or does not make the basket) 2) Fixed number of trials (50) 3) Experimental outcomes are independent of each other 4) Probability of observing a success remains the same from trial to trial (assumed to be 58.4%=0.584)

73 Example ANSWER (a) X number of baskets P( X 25) 50 C (0.584) 25 (0.416) 25

74 Example ANSWER (b) The expected value of X np (50)(0.584) 29.2 The most likely number of baskets is 29

75 Example ANSWER (c) In a random sample of 50 of O Neal s shots he is expected to make 29.2 of them.

76 Page 285 Example

77 Is this a Binomial Distribution? Four Requirements: 1) Each trial of the experiment has only two possible outcomes (contracted AIDS through injected drug use or did not) 2) Fixed number of trials (120) 3) Experimental outcomes are independent of each other 4) Probability of observing a success remains the same from trial to trial (assumed to be 11%=0.11)

78 Example ANSWER (a) X=number of white males who contracted AIDS through injected drug use P( X 10) 120 C (0.11) 10 (0.89) 110

79 Example ANSWER (b) At most 3 men is the same as less than or equal to 3 men: P( X 3) P( X 0) P( X 1) P( X 2) P( X 3) Why do probabilities add?

80 Example Use TI-83+ calculator 2 ND VARS to get A:binompdf(n, p, X) P( X 0) P( X 1) P( X 2) P( X 3) = binompdf(120,.11, 0) + binompdf(120,.11, 1) + binompdf(120,.11, 2) + binompdf(120,.11,3) E

81 Example ANSWER (c) Most likely number of white males is the expected value of X np (120)(0.11) 13.2

82 Example ANSWER (d) In a random sample of 120 white males with AIDS, it is expected that approximately 13 of them will have contracted AIDS by injected drug use

83 Page 286 Example

84 Example ANSWER (a) 2 npq (120)(0.11)(0.89)

85 RECALL: Outliers and z Scores Data values are not unusual if 2 z -score 2 Otherwise, they are moderately unusual or an outlier (see page 131)

86 Z score Formulas Sample Population z x x z x s

87 Z-score for 20 white males who contracted AIDS through injected drug use: z Example It would not be unusual to find 20 white males who contracted AIDS through injected drug use in a random sample of 120 white males with AIDS.

88 Summary The most important discrete distribution is the binomial distribution, where there are two possible outcomes, each with probability of success p, and n independent trials. The probability of observing a particular number of successes can be calculated using the binomial probability distribution formula.

89 Summary Binomial probabilities can also be found using the binomial tables or using technology. There are formulas for finding the mean, variance, and standard deviation of a binomial random variable.

90 6.3 Continuous Random Variables and the Normal Probability Distribution Objectives: By the end of this section, I will be able to 1) Identify a continuous probability distribution. 2) Explain the properties of the normal probability distribution.

91 FIGURE Histograms (a) Relatively small sample (n = 100) with large class widths (0.5 lb). (b) Large sample (n = 200) with smaller class widths (0.2 lb).

92 Figure 6.15 continued (c) Very large sample (n = 400) with very small class widths (0.1 lb). (d) Eventually, theoretical histogram of entire population becomes smooth curve with class widths arbitrarily small.

93 Continuous Probability Distributions A graph that indicates on the horizontal axis the range of values that the continuous random variable X can take Density curve is drawn above the horizontal axis Must follow the Requirements for the Probability Distribution of a Continuous Random Variable

94 Requirements for Probability Distribution of a Continuous Random Variable 1) The total area under the density curve must equal 1 (this is the Law of Total Probability for Continuous Random Variables). 2) The vertical height of the density curve can never be negative. That is, the density curve never goes below the horizontal axis.

95 Probability for a Continuous Random Variable Probability for Continuous Distributions is represented by area under the curve above an interval.

96 The Normal Probability Distribution Most important probability distribution in the world Population is said to be normally distributed, the data values follow a normal probability distribution population mean is μ population standard deviation is σ μ and σ are parameters of the normal distribution

97 FIGURE 6.19 The normal distribution is symmetric about its mean μ (bell-shaped).

98 Properties of the Normal Density Curve (Normal Curve) 1) It is symmetric about the mean μ. 2) The highest point occurs at X = μ, because symmetry implies that the mean equals the median, which equals the mode of the distribution. 3) It has inflection points at μ-σ and μ+σ. 4) The total area under the curve equals 1.

99 Properties of the Normal Density Curve (Normal Curve) continued 5) Symmetry also implies that the area under the curve to the left of μ and the area under the curve to the right of μ are both equal to 0.5 (Figure 6.19). 6) The normal distribution is defined for values of X extending indefinitely in both the positive and negative directions. As X moves farther from the mean, the density curve approaches but never quite touches the horizontal axis.

100 The Empirical Rule For data sets having a distribution that is approximately bell shaped, the following properties apply: About 68% of all values fall within 1 standard deviation of the mean. About 95% of all values fall within 2 standard deviations of the mean. About 99.7% of all values fall within 3 standard deviations of the mean.

101 FIGURE 6.23 The Empirical Rule.

102 Drawing a Graph to Solve Normal Probability Problems 1. Draw a generic bell-shaped curve, with a horizontal number line under it that is labeled as the random variable X. Insert the mean μ in the center of the number line.

103 Steps in Drawing a Graph to Help You Solve Normal Probability Problems 2) Mark on the number line the value of X indicated in the problem. Shade in the desired area under the normal curve. This part will depend on what values of X the problem is asking about. 3) Proceed to find the desired area or probability using the empirical rule.

104 Page 295 Example

105 ANSWER Example

106 Page 296 Example

107 ANSWER Example

108 Page 296 Example

109 ANSWER Example

110 Summary Continuous random variables assume infinitely many possible values, with no gap between the values. Probability for continuous random variables consists of area above an interval on the number line and under the distribution curve.

111 Summary The normal distribution is the most important continuous probability distribution. It is symmetric about its mean μ and has standard deviation σ. One should always sketch a picture of a normal probability problem to help solve it.

6.4 Normal Distribution

6.4 Normal Distribution Contents 6.4 Normal Distribution....................... 381 6.4.1 Characteristics of the Normal Distribution....... 381 6.4.2 The Standardized Normal Distribution......... 385 6.4.3 Meaning of Areas under

More information

Normal distribution. ) 2 /2σ. 2π σ

Normal distribution. ) 2 /2σ. 2π σ Normal distribution The normal distribution is the most widely known and used of all distributions. Because the normal distribution approximates many natural phenomena so well, it has developed into a

More information

Chapter 5. Discrete Probability Distributions

Chapter 5. Discrete Probability Distributions Chapter 5. Discrete Probability Distributions Chapter Problem: Did Mendel s result from plant hybridization experiments contradicts his theory? 1. Mendel s theory says that when there are two inheritable

More information

Chapter 4. Probability Distributions

Chapter 4. Probability Distributions Chapter 4 Probability Distributions Lesson 4-1/4-2 Random Variable Probability Distributions This chapter will deal the construction of probability distribution. By combining the methods of descriptive

More information

Ch5: Discrete Probability Distributions Section 5-1: Probability Distribution

Ch5: Discrete Probability Distributions Section 5-1: Probability Distribution Recall: Ch5: Discrete Probability Distributions Section 5-1: Probability Distribution A variable is a characteristic or attribute that can assume different values. o Various letters of the alphabet (e.g.

More information

Probability Distributions

Probability Distributions Learning Objectives Probability Distributions Section 1: How Can We Summarize Possible Outcomes and Their Probabilities? 1. Random variable 2. Probability distributions for discrete random variables 3.

More information

Probability Distributions

Probability Distributions CHAPTER 6 Probability Distributions Calculator Note 6A: Computing Expected Value, Variance, and Standard Deviation from a Probability Distribution Table Using Lists to Compute Expected Value, Variance,

More information

4. Continuous Random Variables, the Pareto and Normal Distributions

4. Continuous Random Variables, the Pareto and Normal Distributions 4. Continuous Random Variables, the Pareto and Normal Distributions A continuous random variable X can take any value in a given range (e.g. height, weight, age). The distribution of a continuous random

More information

You flip a fair coin four times, what is the probability that you obtain three heads.

You flip a fair coin four times, what is the probability that you obtain three heads. Handout 4: Binomial Distribution Reading Assignment: Chapter 5 In the previous handout, we looked at continuous random variables and calculating probabilities and percentiles for those type of variables.

More information

MEASURES OF VARIATION

MEASURES OF VARIATION NORMAL DISTRIBTIONS MEASURES OF VARIATION In statistics, it is important to measure the spread of data. A simple way to measure spread is to find the range. But statisticians want to know if the data are

More information

Section 6.1 Discrete Random variables Probability Distribution

Section 6.1 Discrete Random variables Probability Distribution Section 6.1 Discrete Random variables Probability Distribution Definitions a) Random variable is a variable whose values are determined by chance. b) Discrete Probability distribution consists of the values

More information

8. THE NORMAL DISTRIBUTION

8. THE NORMAL DISTRIBUTION 8. THE NORMAL DISTRIBUTION The normal distribution with mean μ and variance σ 2 has the following density function: The normal distribution is sometimes called a Gaussian Distribution, after its inventor,

More information

DETERMINE whether the conditions for a binomial setting are met. COMPUTE and INTERPRET probabilities involving binomial random variables

DETERMINE whether the conditions for a binomial setting are met. COMPUTE and INTERPRET probabilities involving binomial random variables 1 Section 7.B Learning Objectives After this section, you should be able to DETERMINE whether the conditions for a binomial setting are met COMPUTE and INTERPRET probabilities involving binomial random

More information

Density Curve. A density curve is the graph of a continuous probability distribution. It must satisfy the following properties:

Density Curve. A density curve is the graph of a continuous probability distribution. It must satisfy the following properties: Density Curve A density curve is the graph of a continuous probability distribution. It must satisfy the following properties: 1. The total area under the curve must equal 1. 2. Every point on the curve

More information

5/31/2013. 6.1 Normal Distributions. Normal Distributions. Chapter 6. Distribution. The Normal Distribution. Outline. Objectives.

5/31/2013. 6.1 Normal Distributions. Normal Distributions. Chapter 6. Distribution. The Normal Distribution. Outline. Objectives. The Normal Distribution C H 6A P T E R The Normal Distribution Outline 6 1 6 2 Applications of the Normal Distribution 6 3 The Central Limit Theorem 6 4 The Normal Approximation to the Binomial Distribution

More information

Normal Distribution as an Approximation to the Binomial Distribution

Normal Distribution as an Approximation to the Binomial Distribution Chapter 1 Student Lecture Notes 1-1 Normal Distribution as an Approximation to the Binomial Distribution : Goals ONE TWO THREE 2 Review Binomial Probability Distribution applies to a discrete random variable

More information

The Normal Distribution

The Normal Distribution The Normal Distribution Continuous Distributions A continuous random variable is a variable whose possible values form some interval of numbers. Typically, a continuous variable involves a measurement

More information

Stats on the TI 83 and TI 84 Calculator

Stats on the TI 83 and TI 84 Calculator Stats on the TI 83 and TI 84 Calculator Entering the sample values STAT button Left bracket { Right bracket } Store (STO) List L1 Comma Enter Example: Sample data are {5, 10, 15, 20} 1. Press 2 ND and

More information

WEEK #23: Statistics for Spread; Binomial Distribution

WEEK #23: Statistics for Spread; Binomial Distribution WEEK #23: Statistics for Spread; Binomial Distribution Goals: Study measures of central spread, such interquartile range, variance, and standard deviation. Introduce standard distributions, including the

More information

An Introduction to Basic Statistics and Probability

An Introduction to Basic Statistics and Probability An Introduction to Basic Statistics and Probability Shenek Heyward NCSU An Introduction to Basic Statistics and Probability p. 1/4 Outline Basic probability concepts Conditional probability Discrete Random

More information

The Binomial Probability Distribution

The Binomial Probability Distribution The Binomial Probability Distribution MATH 130, Elements of Statistics I J. Robert Buchanan Department of Mathematics Fall 2015 Objectives After this lesson we will be able to: determine whether a probability

More information

Chapter 5. Random variables

Chapter 5. Random variables Random variables random variable numerical variable whose value is the outcome of some probabilistic experiment; we use uppercase letters, like X, to denote such a variable and lowercase letters, like

More information

4.1 4.2 Probability Distribution for Discrete Random Variables

4.1 4.2 Probability Distribution for Discrete Random Variables 4.1 4.2 Probability Distribution for Discrete Random Variables Key concepts: discrete random variable, probability distribution, expected value, variance, and standard deviation of a discrete random variable.

More information

TEACHER NOTES MATH NSPIRED

TEACHER NOTES MATH NSPIRED Math Objectives Students will understand that normal distributions can be used to approximate binomial distributions whenever both np and n(1 p) are sufficiently large. Students will understand that when

More information

WHERE DOES THE 10% CONDITION COME FROM?

WHERE DOES THE 10% CONDITION COME FROM? 1 WHERE DOES THE 10% CONDITION COME FROM? The text has mentioned The 10% Condition (at least) twice so far: p. 407 Bernoulli trials must be independent. If that assumption is violated, it is still okay

More information

The Normal Distribution

The Normal Distribution Chapter 6 The Normal Distribution 6.1 The Normal Distribution 1 6.1.1 Student Learning Objectives By the end of this chapter, the student should be able to: Recognize the normal probability distribution

More information

Chapter 4. Probability and Probability Distributions

Chapter 4. Probability and Probability Distributions Chapter 4. robability and robability Distributions Importance of Knowing robability To know whether a sample is not identical to the population from which it was selected, it is necessary to assess the

More information

Probability. Distribution. Outline

Probability. Distribution. Outline 7 The Normal Probability Distribution Outline 7.1 Properties of the Normal Distribution 7.2 The Standard Normal Distribution 7.3 Applications of the Normal Distribution 7.4 Assessing Normality 7.5 The

More information

REPEATED TRIALS. The probability of winning those k chosen times and losing the other times is then p k q n k.

REPEATED TRIALS. The probability of winning those k chosen times and losing the other times is then p k q n k. REPEATED TRIALS Suppose you toss a fair coin one time. Let E be the event that the coin lands heads. We know from basic counting that p(e) = 1 since n(e) = 1 and 2 n(s) = 2. Now suppose we play a game

More information

Math 202-0 Quizzes Winter 2009

Math 202-0 Quizzes Winter 2009 Quiz : Basic Probability Ten Scrabble tiles are placed in a bag Four of the tiles have the letter printed on them, and there are two tiles each with the letters B, C and D on them (a) Suppose one tile

More information

Interpreting Data in Normal Distributions

Interpreting Data in Normal Distributions Interpreting Data in Normal Distributions This curve is kind of a big deal. It shows the distribution of a set of test scores, the results of rolling a die a million times, the heights of people on Earth,

More information

Def: The standard normal distribution is a normal probability distribution that has a mean of 0 and a standard deviation of 1.

Def: The standard normal distribution is a normal probability distribution that has a mean of 0 and a standard deviation of 1. Lecture 6: Chapter 6: Normal Probability Distributions A normal distribution is a continuous probability distribution for a random variable x. The graph of a normal distribution is called the normal curve.

More information

STT315 Chapter 4 Random Variables & Probability Distributions KM. Chapter 4.5, 6, 8 Probability Distributions for Continuous Random Variables

STT315 Chapter 4 Random Variables & Probability Distributions KM. Chapter 4.5, 6, 8 Probability Distributions for Continuous Random Variables Chapter 4.5, 6, 8 Probability Distributions for Continuous Random Variables Discrete vs. continuous random variables Examples of continuous distributions o Uniform o Exponential o Normal Recall: A random

More information

Descriptive statistics Statistical inference statistical inference, statistical induction and inferential statistics

Descriptive statistics Statistical inference statistical inference, statistical induction and inferential statistics Descriptive statistics is the discipline of quantitatively describing the main features of a collection of data. Descriptive statistics are distinguished from inferential statistics (or inductive statistics),

More information

Section 5-3 Binomial Probability Distributions

Section 5-3 Binomial Probability Distributions Section 5-3 Binomial Probability Distributions Key Concept This section presents a basic definition of a binomial distribution along with notation, and methods for finding probability values. Binomial

More information

Sample Questions for Mastery #5

Sample Questions for Mastery #5 Name: Class: Date: Sample Questions for Mastery #5 Multiple Choice Identify the choice that best completes the statement or answers the question.. For which of the following binomial experiments could

More information

Characteristics of Binomial Distributions

Characteristics of Binomial Distributions Lesson2 Characteristics of Binomial Distributions In the last lesson, you constructed several binomial distributions, observed their shapes, and estimated their means and standard deviations. In Investigation

More information

Without data, all you are is just another person with an opinion.

Without data, all you are is just another person with an opinion. OCR Statistics Module Revision Sheet The S exam is hour 30 minutes long. You are allowed a graphics calculator. Before you go into the exam make sureyou are fully aware of the contents of theformula booklet

More information

AP Statistics Solutions to Packet 2

AP Statistics Solutions to Packet 2 AP Statistics Solutions to Packet 2 The Normal Distributions Density Curves and the Normal Distribution Standard Normal Calculations HW #9 1, 2, 4, 6-8 2.1 DENSITY CURVES (a) Sketch a density curve that

More information

Random variables, probability distributions, binomial random variable

Random variables, probability distributions, binomial random variable Week 4 lecture notes. WEEK 4 page 1 Random variables, probability distributions, binomial random variable Eample 1 : Consider the eperiment of flipping a fair coin three times. The number of tails that

More information

Chapter 4 Lecture Notes

Chapter 4 Lecture Notes Chapter 4 Lecture Notes Random Variables October 27, 2015 1 Section 4.1 Random Variables A random variable is typically a real-valued function defined on the sample space of some experiment. For instance,

More information

Chapter 3: DISCRETE RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS. Part 3: Discrete Uniform Distribution Binomial Distribution

Chapter 3: DISCRETE RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS. Part 3: Discrete Uniform Distribution Binomial Distribution Chapter 3: DISCRETE RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS Part 3: Discrete Uniform Distribution Binomial Distribution Sections 3-5, 3-6 Special discrete random variable distributions we will cover

More information

The normal approximation to the binomial

The normal approximation to the binomial The normal approximation to the binomial The binomial probability function is not useful for calculating probabilities when the number of trials n is large, as it involves multiplying a potentially very

More information

3.4. The Binomial Probability Distribution. Copyright Cengage Learning. All rights reserved.

3.4. The Binomial Probability Distribution. Copyright Cengage Learning. All rights reserved. 3.4 The Binomial Probability Distribution Copyright Cengage Learning. All rights reserved. The Binomial Probability Distribution There are many experiments that conform either exactly or approximately

More information

AP STATISTICS REVIEW (YMS Chapters 1-8)

AP STATISTICS REVIEW (YMS Chapters 1-8) AP STATISTICS REVIEW (YMS Chapters 1-8) Exploring Data (Chapter 1) Categorical Data nominal scale, names e.g. male/female or eye color or breeds of dogs Quantitative Data rational scale (can +,,, with

More information

6 3 The Standard Normal Distribution

6 3 The Standard Normal Distribution 290 Chapter 6 The Normal Distribution Figure 6 5 Areas Under a Normal Distribution Curve 34.13% 34.13% 2.28% 13.59% 13.59% 2.28% 3 2 1 + 1 + 2 + 3 About 68% About 95% About 99.7% 6 3 The Distribution Since

More information

Section 5 Part 2. Probability Distributions for Discrete Random Variables

Section 5 Part 2. Probability Distributions for Discrete Random Variables Section 5 Part 2 Probability Distributions for Discrete Random Variables Review and Overview So far we ve covered the following probability and probability distribution topics Probability rules Probability

More information

Question: What is the probability that a five-card poker hand contains a flush, that is, five cards of the same suit?

Question: What is the probability that a five-card poker hand contains a flush, that is, five cards of the same suit? ECS20 Discrete Mathematics Quarter: Spring 2007 Instructor: John Steinberger Assistant: Sophie Engle (prepared by Sophie Engle) Homework 8 Hints Due Wednesday June 6 th 2007 Section 6.1 #16 What is the

More information

Exploratory Data Analysis

Exploratory Data Analysis Exploratory Data Analysis Johannes Schauer johannes.schauer@tugraz.at Institute of Statistics Graz University of Technology Steyrergasse 17/IV, 8010 Graz www.statistics.tugraz.at February 12, 2008 Introduction

More information

The right edge of the box is the third quartile, Q 3, which is the median of the data values above the median. Maximum Median

The right edge of the box is the third quartile, Q 3, which is the median of the data values above the median. Maximum Median CONDENSED LESSON 2.1 Box Plots In this lesson you will create and interpret box plots for sets of data use the interquartile range (IQR) to identify potential outliers and graph them on a modified box

More information

Probabilistic Strategies: Solutions

Probabilistic Strategies: Solutions Probability Victor Xu Probabilistic Strategies: Solutions Western PA ARML Practice April 3, 2016 1 Problems 1. You roll two 6-sided dice. What s the probability of rolling at least one 6? There is a 1

More information

MATH 10: Elementary Statistics and Probability Chapter 5: Continuous Random Variables

MATH 10: Elementary Statistics and Probability Chapter 5: Continuous Random Variables MATH 10: Elementary Statistics and Probability Chapter 5: Continuous Random Variables Tony Pourmohamad Department of Mathematics De Anza College Spring 2015 Objectives By the end of this set of slides,

More information

Continuous Random Variables

Continuous Random Variables Chapter 5 Continuous Random Variables 5.1 Continuous Random Variables 1 5.1.1 Student Learning Objectives By the end of this chapter, the student should be able to: Recognize and understand continuous

More information

Chapter 1: Looking at Data Section 1.1: Displaying Distributions with Graphs

Chapter 1: Looking at Data Section 1.1: Displaying Distributions with Graphs Types of Variables Chapter 1: Looking at Data Section 1.1: Displaying Distributions with Graphs Quantitative (numerical)variables: take numerical values for which arithmetic operations make sense (addition/averaging)

More information

Lab 11. Simulations. The Concept

Lab 11. Simulations. The Concept Lab 11 Simulations In this lab you ll learn how to create simulations to provide approximate answers to probability questions. We ll make use of a particular kind of structure, called a box model, that

More information

Lecture 14. Chapter 7: Probability. Rule 1: Rule 2: Rule 3: Nancy Pfenning Stats 1000

Lecture 14. Chapter 7: Probability. Rule 1: Rule 2: Rule 3: Nancy Pfenning Stats 1000 Lecture 4 Nancy Pfenning Stats 000 Chapter 7: Probability Last time we established some basic definitions and rules of probability: Rule : P (A C ) = P (A). Rule 2: In general, the probability of one event

More information

The Procedures of Monte Carlo Simulation (and Resampling)

The Procedures of Monte Carlo Simulation (and Resampling) 154 Resampling: The New Statistics CHAPTER 10 The Procedures of Monte Carlo Simulation (and Resampling) A Definition and General Procedure for Monte Carlo Simulation Summary Until now, the steps to follow

More information

Section 6-5 Sample Spaces and Probability

Section 6-5 Sample Spaces and Probability 492 6 SEQUENCES, SERIES, AND PROBABILITY 52. How many committees of 4 people are possible from a group of 9 people if (A) There are no restrictions? (B) Both Juan and Mary must be on the committee? (C)

More information

Key Concept. Density Curve

Key Concept. Density Curve MAT 155 Statistical Analysis Dr. Claude Moore Cape Fear Community College Chapter 6 Normal Probability Distributions 6 1 Review and Preview 6 2 The Standard Normal Distribution 6 3 Applications of Normal

More information

Summary of Formulas and Concepts. Descriptive Statistics (Ch. 1-4)

Summary of Formulas and Concepts. Descriptive Statistics (Ch. 1-4) Summary of Formulas and Concepts Descriptive Statistics (Ch. 1-4) Definitions Population: The complete set of numerical information on a particular quantity in which an investigator is interested. We assume

More information

6.3 Conditional Probability and Independence

6.3 Conditional Probability and Independence 222 CHAPTER 6. PROBABILITY 6.3 Conditional Probability and Independence Conditional Probability Two cubical dice each have a triangle painted on one side, a circle painted on two sides and a square painted

More information

Unit 7: Normal Curves

Unit 7: Normal Curves Unit 7: Normal Curves Summary of Video Histograms of completely unrelated data often exhibit similar shapes. To focus on the overall shape of a distribution and to avoid being distracted by the irregularities

More information

ST 371 (IV): Discrete Random Variables

ST 371 (IV): Discrete Random Variables ST 371 (IV): Discrete Random Variables 1 Random Variables A random variable (rv) is a function that is defined on the sample space of the experiment and that assigns a numerical variable to each possible

More information

Statistics Revision Sheet Question 6 of Paper 2

Statistics Revision Sheet Question 6 of Paper 2 Statistics Revision Sheet Question 6 of Paper The Statistics question is concerned mainly with the following terms. The Mean and the Median and are two ways of measuring the average. sumof values no. of

More information

EXAM #1 (Example) Instructor: Ela Jackiewicz. Relax and good luck!

EXAM #1 (Example) Instructor: Ela Jackiewicz. Relax and good luck! STP 231 EXAM #1 (Example) Instructor: Ela Jackiewicz Honor Statement: I have neither given nor received information regarding this exam, and I will not do so until all exams have been graded and returned.

More information

SOLUTIONS: 4.1 Probability Distributions and 4.2 Binomial Distributions

SOLUTIONS: 4.1 Probability Distributions and 4.2 Binomial Distributions SOLUTIONS: 4.1 Probability Distributions and 4.2 Binomial Distributions 1. The following table contains a probability distribution for a random variable X. a. Find the expected value (mean) of X. x 1 2

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. STATISTICS/GRACEY PRACTICE TEST/EXAM 2 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Identify the given random variable as being discrete or continuous.

More information

16. THE NORMAL APPROXIMATION TO THE BINOMIAL DISTRIBUTION

16. THE NORMAL APPROXIMATION TO THE BINOMIAL DISTRIBUTION 6. THE NORMAL APPROXIMATION TO THE BINOMIAL DISTRIBUTION It is sometimes difficult to directly compute probabilities for a binomial (n, p) random variable, X. We need a different table for each value of

More information

Probability Distributions

Probability Distributions CHAPTER 5 Probability Distributions CHAPTER OUTLINE 5.1 Probability Distribution of a Discrete Random Variable 5.2 Mean and Standard Deviation of a Probability Distribution 5.3 The Binomial Distribution

More information

Chapter 5: Discrete Probability Distributions

Chapter 5: Discrete Probability Distributions Chapter 5: Discrete Probability Distributions Section 5.1: Basics of Probability Distributions As a reminder, a variable or what will be called the random variable from now on, is represented by the letter

More information

Section 6.2 Definition of Probability

Section 6.2 Definition of Probability Section 6.2 Definition of Probability Probability is a measure of the likelihood that an event occurs. For example, if there is a 20% chance of rain tomorrow, that means that the probability that it will

More information

CA200 Quantitative Analysis for Business Decisions. File name: CA200_Section_04A_StatisticsIntroduction

CA200 Quantitative Analysis for Business Decisions. File name: CA200_Section_04A_StatisticsIntroduction CA200 Quantitative Analysis for Business Decisions File name: CA200_Section_04A_StatisticsIntroduction Table of Contents 4. Introduction to Statistics... 1 4.1 Overview... 3 4.2 Discrete or continuous

More information

UNIT I: RANDOM VARIABLES PART- A -TWO MARKS

UNIT I: RANDOM VARIABLES PART- A -TWO MARKS UNIT I: RANDOM VARIABLES PART- A -TWO MARKS 1. Given the probability density function of a continuous random variable X as follows f(x) = 6x (1-x) 0

More information

The Binomial Distribution

The Binomial Distribution The Binomial Distribution James H. Steiger November 10, 00 1 Topics for this Module 1. The Binomial Process. The Binomial Random Variable. The Binomial Distribution (a) Computing the Binomial pdf (b) Computing

More information

9. Sampling Distributions

9. Sampling Distributions 9. Sampling Distributions Prerequisites none A. Introduction B. Sampling Distribution of the Mean C. Sampling Distribution of Difference Between Means D. Sampling Distribution of Pearson's r E. Sampling

More information

Introduction to Statistics for Psychology. Quantitative Methods for Human Sciences

Introduction to Statistics for Psychology. Quantitative Methods for Human Sciences Introduction to Statistics for Psychology and Quantitative Methods for Human Sciences Jonathan Marchini Course Information There is website devoted to the course at http://www.stats.ox.ac.uk/ marchini/phs.html

More information

What Does the Normal Distribution Sound Like?

What Does the Normal Distribution Sound Like? What Does the Normal Distribution Sound Like? Ananda Jayawardhana Pittsburg State University ananda@pittstate.edu Published: June 2013 Overview of Lesson In this activity, students conduct an investigation

More information

Solution. Solution. (a) Sum of probabilities = 1 (Verify) (b) (see graph) Chapter 4 (Sections 4.3-4.4) Homework Solutions. Section 4.

Solution. Solution. (a) Sum of probabilities = 1 (Verify) (b) (see graph) Chapter 4 (Sections 4.3-4.4) Homework Solutions. Section 4. Math 115 N. Psomas Chapter 4 (Sections 4.3-4.4) Homework s Section 4.3 4.53 Discrete or continuous. In each of the following situations decide if the random variable is discrete or continuous and give

More information

Lecture 5 : The Poisson Distribution

Lecture 5 : The Poisson Distribution Lecture 5 : The Poisson Distribution Jonathan Marchini November 10, 2008 1 Introduction Many experimental situations occur in which we observe the counts of events within a set unit of time, area, volume,

More information

BINOMIAL DISTRIBUTION

BINOMIAL DISTRIBUTION MODULE IV BINOMIAL DISTRIBUTION A random variable X is said to follow binomial distribution with parameters n & p if P ( X ) = nc x p x q n x where x = 0, 1,2,3..n, p is the probability of success & q

More information

PROBABILITY AND SAMPLING DISTRIBUTIONS

PROBABILITY AND SAMPLING DISTRIBUTIONS PROBABILITY AND SAMPLING DISTRIBUTIONS SEEMA JAGGI AND P.K. BATRA Indian Agricultural Statistics Research Institute Library Avenue, New Delhi - 0 0 seema@iasri.res.in. Introduction The concept of probability

More information

HISTOGRAMS, CUMULATIVE FREQUENCY AND BOX PLOTS

HISTOGRAMS, CUMULATIVE FREQUENCY AND BOX PLOTS Mathematics Revision Guides Histograms, Cumulative Frequency and Box Plots Page 1 of 25 M.K. HOME TUITION Mathematics Revision Guides Level: GCSE Higher Tier HISTOGRAMS, CUMULATIVE FREQUENCY AND BOX PLOTS

More information

Probability and Statistics Vocabulary List (Definitions for Middle School Teachers)

Probability and Statistics Vocabulary List (Definitions for Middle School Teachers) Probability and Statistics Vocabulary List (Definitions for Middle School Teachers) B Bar graph a diagram representing the frequency distribution for nominal or discrete data. It consists of a sequence

More information

MAS108 Probability I

MAS108 Probability I 1 QUEEN MARY UNIVERSITY OF LONDON 2:30 pm, Thursday 3 May, 2007 Duration: 2 hours MAS108 Probability I Do not start reading the question paper until you are instructed to by the invigilators. The paper

More information

Math/Stats 425 Introduction to Probability. 1. Uncertainty and the axioms of probability

Math/Stats 425 Introduction to Probability. 1. Uncertainty and the axioms of probability Math/Stats 425 Introduction to Probability 1. Uncertainty and the axioms of probability Processes in the real world are random if outcomes cannot be predicted with certainty. Example: coin tossing, stock

More information

MBA 611 STATISTICS AND QUANTITATIVE METHODS

MBA 611 STATISTICS AND QUANTITATIVE METHODS MBA 611 STATISTICS AND QUANTITATIVE METHODS Part I. Review of Basic Statistics (Chapters 1-11) A. Introduction (Chapter 1) Uncertainty: Decisions are often based on incomplete information from uncertain

More information

Fundamentals of Probability

Fundamentals of Probability Fundamentals of Probability Introduction Probability is the likelihood that an event will occur under a set of given conditions. The probability of an event occurring has a value between 0 and 1. An impossible

More information

Chapter 4: Probability and Counting Rules

Chapter 4: Probability and Counting Rules Chapter 4: Probability and Counting Rules Learning Objectives Upon successful completion of Chapter 4, you will be able to: Determine sample spaces and find the probability of an event using classical

More information

2 Binomial, Poisson, Normal Distribution

2 Binomial, Poisson, Normal Distribution 2 Binomial, Poisson, Normal Distribution Binomial Distribution ): We are interested in the number of times an event A occurs in n independent trials. In each trial the event A has the same probability

More information

Probability and Statistics Prof. Dr. Somesh Kumar Department of Mathematics Indian Institute of Technology, Kharagpur

Probability and Statistics Prof. Dr. Somesh Kumar Department of Mathematics Indian Institute of Technology, Kharagpur Probability and Statistics Prof. Dr. Somesh Kumar Department of Mathematics Indian Institute of Technology, Kharagpur Module No. #01 Lecture No. #15 Special Distributions-VI Today, I am going to introduce

More information

Simple Random Sampling

Simple Random Sampling Source: Frerichs, R.R. Rapid Surveys (unpublished), 2008. NOT FOR COMMERCIAL DISTRIBUTION 3 Simple Random Sampling 3.1 INTRODUCTION Everyone mentions simple random sampling, but few use this method for

More information

Basic Probability Concepts

Basic Probability Concepts page 1 Chapter 1 Basic Probability Concepts 1.1 Sample and Event Spaces 1.1.1 Sample Space A probabilistic (or statistical) experiment has the following characteristics: (a) the set of all possible outcomes

More information

Normal Probability Distribution

Normal Probability Distribution Normal Probability Distribution The Normal Distribution functions: #1: normalpdf pdf = Probability Density Function This function returns the probability of a single value of the random variable x. Use

More information

Important Probability Distributions OPRE 6301

Important Probability Distributions OPRE 6301 Important Probability Distributions OPRE 6301 Important Distributions... Certain probability distributions occur with such regularity in real-life applications that they have been given their own names.

More information

MATH 103/GRACEY PRACTICE EXAM/CHAPTERS 2-3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MATH 103/GRACEY PRACTICE EXAM/CHAPTERS 2-3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. MATH 3/GRACEY PRACTICE EXAM/CHAPTERS 2-3 Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Provide an appropriate response. 1) The frequency distribution

More information

Binomial Probability Distribution

Binomial Probability Distribution Binomial Probability Distribution In a binomial setting, we can compute probabilities of certain outcomes. This used to be done with tables, but with graphing calculator technology, these problems are

More information

5. Continuous Random Variables

5. Continuous Random Variables 5. Continuous Random Variables Continuous random variables can take any value in an interval. They are used to model physical characteristics such as time, length, position, etc. Examples (i) Let X be

More information

3.4 The Normal Distribution

3.4 The Normal Distribution 3.4 The Normal Distribution All of the probability distributions we have found so far have been for finite random variables. (We could use rectangles in a histogram.) A probability distribution for a continuous

More information

The Math. P (x) = 5! = 1 2 3 4 5 = 120.

The Math. P (x) = 5! = 1 2 3 4 5 = 120. The Math Suppose there are n experiments, and the probability that someone gets the right answer on any given experiment is p. So in the first example above, n = 5 and p = 0.2. Let X be the number of correct

More information

Fairfield Public Schools

Fairfield Public Schools Mathematics Fairfield Public Schools AP Statistics AP Statistics BOE Approved 04/08/2014 1 AP STATISTICS Critical Areas of Focus AP Statistics is a rigorous course that offers advanced students an opportunity

More information