# ASTRO 1050 Observing the Sky- Planetarium

Save this PDF as:

Size: px
Start display at page:

## Transcription

3 3 2. Motion of the Sky from Wyoming With the planetarium set for the latitude of Wyoming, we now want to study the apparent motions of the stars as the Earth rotates. Let s suppose you take a backpacking trip in the Wind River Range. Since the weather is nice, you lay down on your sleeping bag outside your tent and watch the night sky as it passes. First we will simulate the view looking south for about 12 hours. (a) Focus on the path of the stars (or one constellation) and sketch it. I will also show you a line marking the celestial equator and a grid marking the celestial sphere. Think of the grid as lines of longitude and latitude (as such lines are called on the Earth) projected onto the sky (where they are referred to as declination and Right Ascension ). (b) Copy this coordinate system onto your drawing below.

4 4 Now, let s simulate the view looking to the north. (a) Once again, sketch the paths of some bright stars or constellations across the sky for 12 hours. Pay particular attention to Polaris and the movement of the Big and Little Dippers. (b) Mark Polaris, then (c) sketch the Big Dipper at the beginning of the 12 hour period and at the end of the 12 hours.

5 5 3. Motion of the Sky from other Locations Now, predict how you think the motions of the stars will appear throughout the night if you were located at the Earth s North Pole. Think about where Polaris will appear to be as viewed from this location, and how the stars move relative to Polaris. (a) Draw the paths that you expect. (b) Be sure to mark Polaris and (c) the cardinal directions (East and West)! Horizon We will actually simulate the motion of the sky at the North Pole. (d) How close was your prediction?

6 6 Now try predicting how the motions of the stars would appear throughout the night if you were at a location on the Earth s Equator. (a) Draw the paths that you would expect at this latitude. (b) Be sure to mark Polaris and (c) the cardinal directions (East and West)! Horizon We will now simulate the motion of the sky at the Equator. (d) How close was your prediction?

7 7 4. Position of the Sun with Seasons in the Northern Hemisphere Now we ll position the planetarium to show the view from Wyoming again. Because of Earth s 23.5 tilt relative to its orbital plane, the Sun s height in the sky changes with the seasons. I will show you the location of the Sun at noon on June 21 st (the summer solstice). Note that the Sun is 23.5 north of the celestial equator (this might be called celestial latitude but astronomers actually call it declination ). Measure the altitude of the Sun above the southern horizon: degrees. Now use this information to find your latitude. In general, from the northern hemisphere: Latitude(degrees) = 90 + (declination of Sun) (elevation of Sun from southern horizon) Latitude = = (N or S?) Now we will watch a full day as the Earth rotates. (a) Draw where the Sun rises, (b) the path it takes across the sky, and (c) where it sets.

8 8 As seen from the northern hemisphere on the summer solstice, the Sun rises in the and sets in the. Now we will look at the location of the Sun at noon on September 21 st (the autumnal equinox) or March 21 st (the vernal equinox). Note that the Sun is at 0 north of the celestial equator (0 declination). Measure the altitude of the Sun above the southern horizon: degrees. Now use this to find your latitude. Again, from the northern hemisphere: Latitude(degrees) = 90 + (declination of Sun) (elevation of Sun from southern horizon) Latitude = = (N or S?)

9 9 I will again show you a full day as Earth rotates. (a) Draw where the Sun rises, (b) the path it takes across the sky, and (c) where it sets. As seen from the northern hemisphere on the equinoxes, the Sun rises in the and sets in the. Finally, I will show you the location of the Sun at noon on December 20 th (the winter solstice). Note that the Sun is 23.5 south of the celestial equator (-23.5 declination). Measure the altitude of the sun above the horizon: degrees. Use this to find your latitude. Again, from the northern hemisphere: Latitude(degrees) = 90 + (declination of Sun) (elevation of Sun from southern horizon) Latitude = = (N or S?)

10 10 Again, you will see a full day, and you should (a) draw where the Sun rises, (b) the path it takes across the sky, and (c) where it sets. As seen from the northern hemisphere on the winter solstice, the Sun rises in the and sets in the.

### Basic Coordinates & Seasons Student Guide

Name: Basic Coordinates & Seasons Student Guide There are three main sections to this module: terrestrial coordinates, celestial equatorial coordinates, and understanding how the ecliptic is related to

### The Celestial Sphere. Questions for Today. The Celestial Sphere 1/18/10

Lecture 3: Constellations and the Distances to the Stars Astro 2010 Prof. Tom Megeath Questions for Today How do the stars move in the sky? What causes the phases of the moon? What causes the seasons?

### Celestial Sphere. Celestial Coordinates. Lecture 3: Motions of the Sun and Moon. ecliptic (path of Sun) ecliptic (path of Sun)

Lecture 3: Motions of the and Moon ecliptic (path of ) ecliptic (path of ) The 23.5 degree tilt of Earth s spin axis relative to its orbital axis around the causes the seasons Celestial Sphere Celestial

### OBJECT: To become familiar with some of the motions of the stars, Sun, Moon and planets as seen from the surface of the Earth.

INSIDE LAB 2: Celestial Motions OBJECT: To become familiar with some of the motions of the stars, Sun, Moon and planets as seen from the surface of the Earth. DISCUSSION: As seen from a point of view centered

### CELESTIAL MOTIONS. In Charlottesville we see Polaris 38 0 above the Northern horizon. Earth. Starry Vault

CELESTIAL MOTIONS Stars appear to move counterclockwise on the surface of a huge sphere the Starry Vault, in their daily motions about Earth Polaris remains stationary. In Charlottesville we see Polaris

### 1-2. What is the name given to the path of the Sun as seen from Earth? a.) Equinox b.) Celestial equator c.) Solstice d.

Chapter 1 1-1. How long does it take the Earth to orbit the Sun? a.) one sidereal day b.) one month c.) one year X d.) one hour 1-2. What is the name given to the path of the Sun as seen from Earth? a.)

### Celestial Coordinate Systems

Celestial Coordinate Systems Craig Lage Department of Physics, New York University, csl336@nyu.edu January 6, 2014 1 Introduction This document reviews briefly some of the key ideas that you will need

### UCCS PES 1090: Astronomy Lab I Spring/Summer/Fall Celestial Sphere name:

UCCS PES 1090: Astronomy Lab I Spring/Summer/Fall Celestial Sphere name: 1. What is the celestial sphere? a. An observatory dome. b. The Sun. c. The Earth. d. The imaginary sphere in the sky, on which

### Orientation to the Sky: Apparent Motions

Chapter 2 Orientation to the Sky: Apparent Motions 2.1 Purpose The main goal of this lab is for you to gain an understanding of how the sky changes during the night and over the course of a year. We will

### Celestial Observations

Celestial Observations Earth experiences two basic motions: Rotation West-to-East spinning of Earth on its axis (v rot = 1770 km/hr) (v rot Revolution orbit of Earth around the Sun (v orb = 108,000 km/hr)

### Observational Astronomy - Lecture 1 Introduction, Distances and Angles, Coordinates

Observational Astronomy - Lecture 1 Introduction, Distances and Angles, Coordinates Craig Lage New York University - Department of Physics craig.lage@nyu.edu January 27, 2014 1 / 19 Observational Astronomy

### Introduction to the sky

Introduction to the sky On a clear, moonless night, far from city lights, the night sky is magnificent. Roughly 2000 stars are visible to the unaided eye. If you know where to look, you can see Mercury,

### FIRST GRADE 1 WEEK LESSON PLANS AND ACTIVITIES

FIRST GRADE 1 WEEK LESSON PLANS AND ACTIVITIES UNIVERSE CYCLE OVERVIEW OF FIRST GRADE UNIVERSE WEEK 1. PRE: Describing the Universe. LAB: Comparing and contrasting bodies that reflect light. POST: Exploring

### A model of the Earth and Moon

A model of the Earth and Moon Background Information This activity demonstrates the relative sizes of the Earth and Moon and the distance between them. The Moon is our nearest neighbour. It orbits the

### Solar Angles and Latitude

Solar Angles and Latitude Objectives The student will understand that the sun is not directly overhead at noon in most latitudes. The student will research and discover the latitude ir classroom and calculate

### Lab Activity on the Causes of the Seasons

Lab Activity on the Causes of the Seasons 2002 Ann Bykerk-Kauffman, Dept. of Geological and Environmental Sciences, California State University, Chico * Objectives When you have completed this lab you

### ASTR 693A Coordinate systems

ASTR 693A Coordinate systems The following notes contain the essential information you ll need to understand where astronomical sources are in the sky. Further details can be found in Textbook on Spherical

### Chapter 2 Review Clickers. The Cosmic Perspective Seventh Edition. Discovering the Universe for Yourself Pearson Education, Inc.

Review Clickers The Cosmic Perspective Seventh Edition Discovering the Universe for Yourself The sky is divided into 88 zones called a) degrees. b) tropics. c) constellations. d) signs. The sky is divided

### Lab 2: The Earth-Moon System and the Sun and Seasons

Lab 2: The Earth-Moon System and the Sun and Seasons Moon Phases We heard lectures about the moon yesterday, so here we will go through some interactive questions for lunar phases. Go to http://astro.unl.edu/naap/lps/lps.html.

### Activity 1: What is latitude and longitude?

Activity 1: What is latitude and longitude? Background information The voyages of European navigators about 500 years ago led to the establishment of shipping routes and the need for accurate maps and

### The Seasons on a Planet like Earth

The Seasons on a Planet like Earth As the Earth travels around the Sun, it moves in a giant circle 300 million kilometers across. (Well, it is actually a giant ellipse but the shape is so close to that

### Observing the Night Sky

Name(s): Date: Course/Section: Grade: Observing the Night Sky Objectives: Students will familiarize themselves with different methods for locating objects in the night sky and use star wheels, atlases,

### Earth's Revolution and its Seasons

NAME PER PART 1 - Earth's Revolution: Earth's Revolution and its Seasons Examine the Figure 1 above. Answer these questions. 1. True/False: As Earth revolves around the Sun it is always tilted toward the

### As shown in Figure 1, each hemisphere s summer is warmer than in winter because

The Reason for the Seasons The Earth s seasons are caused by the tilt of the Earth s axis, NOT the differences in distance from the Sun, which are extremely small. The Earth s axis is tilted 23.45 degrees

### Tropical Horticulture: Lecture 2

Lecture 2 Theory of the Tropics Earth & Solar Geometry, Celestial Mechanics The geometrical relationship between the earth and sun is responsible for the earth s climates. The two principal movements of

### CELESTIAL CLOCK - THE SUN, THE MOON, AND THE STARS

INTRODUCTION CELESTIAL CLOCK - THE SUN, THE MOON, AND THE STARS This is a scientific presentation to provide you with knowledge you can use to understand the sky above in relation to the earth. Before

### The Four Seasons. A Warm Up Exercise. A Warm Up Exercise. A Warm Up Exercise. The Moon s Phases

The Four Seasons A Warm Up Exercise What fraction of the Moon s surface is illuminated by the Sun (except during a lunar eclipse)? a) Between zero and one-half b) The whole surface c) Always half d) Depends

### Modeling the Seasons Students model the seasons with their own earth globes.

Modeling the Seasons Students model the seasons with their own earth globes. Materials For the whole group, you ll need: a 150 200 watt light bulb (not frosted) or a flashlight a lamp or socket for the

### 1 Astronomical Coordinate Systems... Continued

General Astronomy (29:61) Fall 2012 Lecture 4 Notes, August 27, 2012 1 Astronomical Coordinate Systems... Continued 1.1 The Equatorial Coordinate System The most basic astronomical observation is that

### Aileen A. O Donoghue Priest Associate Professor of Physics

SOAR: The Sky in Motion y Life on the Tilted Teacup Ride Phases of the Moon Aileen A. O Donoghue Priest Associate Professor of Physics Kiva December 1997 October 27, 2009 Celestial Coordinates Right Ascension

### EDMONDS COMMUNITY COLLEGE ASTRONOMY 100 Winter Quarter 2007 Sample Test # 1

Instructor: L. M. Khandro EDMONDS COMMUNITY COLLEGE ASTRONOMY 100 Winter Quarter 2007 Sample Test # 1 1. An arc second is a measure of a. time interval between oscillations of a standard clock b. time

### Reasons for Seasons. Question: TRUE OR FALSE. Question: TRUE OR FALSE? What causes the seasons? What causes the seasons?

Reasons for Seasons Question: TRUE OR FALSE? Earth is closer to the Sun in summer and farther from the Sun in winter. Question: TRUE OR FALSE? Earth is closer to the Sun in summer and farther from the

### The Reasons for the Seasons

Guiding Question: What causes the seasons on Earth? The Reasons for the Seasons Vocabulary astrolabe equinox rotate axis horizon solstice elliptical revolve (orbit) sundial Materials Exploration (per group)

### HELIOSTAT II - MEASURING THE SOLAR ROTATION

HELIOSTAT II - MEASURING THE SOLAR ROTATION SYNOPSIS: In this lab you will map sunspots, and from the movement of the spots over several days, you will determine the rotation rate of the Sun. EQUIPMENT:

### Reason for the Seasons Notes

Reason for the Seasons Notes Seasons Vocabulary Seasons - Due to the tilt of earth as it travels around the Sun, we have spring, summer, fall, and winter. Source: http://www.srh.noaa.gov/abq/features/whatcausestheseasons/summersolstice2008.php

### Seasons (Observable Patterns)

Seasons (Observable Patterns) E Q U I T A B L E S C I E N C E C U R R I C U L U M Lesson 3 i N T E G R A T I N G A R T S i n P U B L I C E D U C A T I O N NGSS Science Standard: 5-ESS1-2 Represent data

### Aim: Latitude and Longitude: The Earth s Coordinate System. Earth Science: Measuring Earth

Aim: Latitude and Longitude: The Earth s Coordinate System Earth Science: Measuring Earth Learning Objective By the end of today s class students should be able to determine and measure latitude and longitude.

### The ecliptic - Earth s orbital plane

The ecliptic - Earth s orbital plane The line of nodes descending node The Moon s orbital plane Moon s orbit inclination 5.45º ascending node celestial declination Zero longitude in the ecliptic The orbit

### Reasons for the seasons on Earth

Reasons for the seasons on Earth Background information The Earth orbits the Sun in a slightly elliptical path. This means that sometimes the Earth is slightly closer to the Sun than other times but this

### Solar energy and the Earth s seasons

Solar energy and the Earth s seasons Name: Tilt of the Earth s axis and the seasons We now understand that the tilt of Earth s axis makes it possible for different parts of the Earth to experience different

### Today FIRST HOMEWORK DUE NEXT TIME. Seasons/Precession Recap. Phases of the Moon. Eclipses. Lunar, Solar. Ancient Astronomy

Today FIRST HOMEWORK DUE NEXT TIME Seasons/Precession Recap Phases of the Moon Eclipses Lunar, Solar Ancient Astronomy How do we mark the progression of the seasons? We define four special points: summer

### Today. Solstices & Equinoxes Precession Phases of the Moon Eclipses. Ancient Astronomy. Lunar, Solar FIRST HOMEWORK DUE NEXT TIME

Today Solstices & Equinoxes Precession Phases of the Moon Eclipses Lunar, Solar Ancient Astronomy FIRST HOMEWORK DUE NEXT TIME The Reason for Seasons Hypothesis check: How would seasons in the northern

### The following words and their definitions should be addressed before completion of the reading:

Seasons Vocabulary: The following words and their definitions should be addressed before completion of the reading: sphere any round object that has a surface that is the same distance from its center

### ASTRONOMY 161. Introduction to Solar System Astronomy

ASTRONOMY 161 Introduction to Solar System Astronomy Seasons & Calendars Monday, January 8 Season & Calendars: Key Concepts (1) The cause of the seasons is the tilt of the Earth s rotation axis relative

### Relationship Between the Earth, Moon and Sun

Relationship Between the Earth, Moon and Sun Rotation A body turning on its axis The Earth rotates once every 24 hours in a counterclockwise direction. Revolution A body traveling around another The Earth

### Lesson 4 The Seasons. There are 5 major zones on the earth.

In this lesson I will talk about what causes our four seasons, spring, summer, fall, and winter. I will cover this by telling some of the myths about what many think are the cause of our seasons and then

### Celestial Coordinates I

Equipment: Star Charts, Planisphere. Celestial Coordinates I Objective: To become acquainted with basic navigation of the night sky. Discussion: From our vantage point on Earth, the night sky has the appearance

### Use WITH Investigation 4, Part 2, Step 2

INVESTIGATION 4 : The Sundial Project Use WITH Investigation 4, Part 2, Step 2 EALR 4: Earth and Space Science Big Idea: Earth in Space (ES1) Projects: Tether Ball Pole Sundial Globe and a Light Indoors

### Unit 2 - Quiz 2 2-D Models

2-D Models 1. If an observer on Earth views Polaris on the horizon, the observer is located at the A) Tropic of Cancer (23.5 N) B) North Pole (90 N) C) equator (0 ) D) Tropic of Capricorn (23.5 S) 2. At

### Kinesthetic Astronomy: Longer Days, Shorter Nights

GRADE LEVEL 3 rd -8 th ; California Content Standards for 3 rd, 5 th, 6 th 8 th SUBJECTS Earth & Space Science, Using Models DURATION Preparation: 20 minutes Activity: 60 minutes SETTING Classroom Objectives

### AST101: Our Corner of the Universe Lab 2: The Sun and Phases of The Moon

AST101: Our Corner of the Universe Lab 2: The Sun and Phases of The Moon Name: NetID (your SU email address, without the @syr.edu): Lab section number: 1 Introduction Objectives The first part of this

### Aphelion The point in the orbit of a planet or other celestial body where it is furthest from the Sun.

SKYTRACK Glossary of Terms Angular distance The angular separation between two objects in the sky as perceived by an observer, measured in angles. The angular separation between two celestial objects in

### Plan For Today. Finish up from last time: expanding universe. Earth s orbits: solstice, equinox, seasons. Begin Phases of the moon if time permits

Plan For Today Finish up from last time: expanding universe Earth s orbits: solstice, equinox, seasons Begin Phases of the moon if time permits Homework 2 due on Tuesday How Big is Big? On a 1:10,000,000,000

### ASTR 1030 Astronomy Lab 65 Celestial Motions CELESTIAL MOTIONS

ASTR 1030 Astronomy Lab 65 Celestial Motions CELESTIAL MOTIONS SYNOPSIS: The objective of this lab is to become familiar with the apparent motions of the Sun, Moon, and stars in the Boulder sky. EQUIPMENT:

### MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Which of the following statements about the celestial equator is true at all latitudes? A) It extends

### Sun Earth Relationships

1 ESCI-61 Introduction to Photovoltaic Technology Sun Earth Relationships Ridha Hamidi, Ph.D. Spring (sun aims directly at equator) Winter (northern hemisphere tilts away from sun) 23.5 2 Solar radiation

### The Reasons for the Seasons

The Reasons for the Seasons (The Active Learning Approach) Materials: 4 Globes, One light on stand with soft white bulb, 4 flashlights, Four sets of "Seasons" Cards, Four laminated black cards with 1 inch

### Astronomy Review. Use the following four pictures to answer questions 1-4.

Astronomy Review Use the following four pictures to answer questions 1-4. 1. Put an X through the pictures that are NOT possible. 2. Circle the picture that could be a lunar eclipse. 3. Triangle the picture

### Stellar, solar, and lunar demonstrators

Stellar, solar, and lunar demonstrators Rosa M. Ros, Francis Berthomieu International Astronomical Union, Technical University of Catalonia (Barcelona, España), CLEA (Nice, France) Summary This worksheet

### Where on Earth are the daily solar altitudes higher and lower than Endicott?

Where on Earth are the daily solar altitudes higher and lower than Endicott? In your notebooks, write RELATIONSHIPS between variables we tested CAUSE FIRST EFFECT SECOND EVIDENCE As you increase the time

### Seasons on Earth LESSON

LESSON 4 Seasons on Earth On Earth, orange and red autumn leaves stand out against the blue sky. NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION (NOAA) PHOTO LIBRARY/NOAA CENTRAL LIBRARY INTRODUCTION Nearly

### Chapter 8, Astronomy

Chapter 8, Astronomy Model some of the ways in which scientists observe the planets. Relate evidence that Earth rotates and define revolution. Scientists use many tools to observe and study the universe.

### 1. In the diagram below, the direct rays of the Sun are striking the Earth's surface at 23 º N. What is the date shown in the diagram?

1. In the diagram below, the direct rays of the Sun are striking the Earth's surface at 23 º N. What is the date shown in the diagram? 5. During how many days of a calendar year is the Sun directly overhead

### Finding Stars and Constellations Earth & Sky

Finding Stars and Constellations Earth & Sky Name: Introduction If you carefully watched the night sky over a period of time, you would notice that it s not always the same. There are certain changes that

### Shadows, Angles, and the Seasons

Shadows, Angles, and the Seasons If it's cold in winter, why is Earth closer to the Sun? This activity shows the relationship between Earth-Sun positions and the seasons. From The WSU Fairmount Center

### Coordinate Systems. Orbits and Rotation

Coordinate Systems Orbits and Rotation Earth orbit. The earth s orbit around the sun is nearly circular but not quite. It s actually an ellipse whose average distance from the sun is one AU (150 million

### Earth-Sun Relationships. The Reasons for the Seasons

Earth-Sun Relationships The Reasons for the Seasons Solar Radiation The earth intercepts less than one two-billionth of the energy given off by the sun. However, the radiation is sufficient to provide

### Seasons ASTR 103 9/19/2016

Seasons ASTR 103 9/19/2016 1 What causes the seasons? Perihelion: closest to Sun Around Janury 4 th Northern Summer Southern Winter 147 million km 152 million km Aphelion (farthest to Sun) around July

### Lesson 1: Phases of the Moon

Lesson 1: Phases of the Moon The moon takes 29.5 days to revolve around the earth. During this time, the moon you see in the sky appears to change shape. These apparent changes, which are called phases,

### Stellarium a valuable resource for teaching astronomy in the classroom and beyond

Stellarium 1 Stellarium a valuable resource for teaching astronomy in the classroom and beyond Stephen Hughes Department of Physical and Chemical Sciences, Queensland University of Technology, Gardens

### THE STARRY SKY AST MESA COMMUNITY COLLEGE

NAME: DATE: INTRODUCTION This lab exercise introduces the arrangement and motions of the stars, constellations, and other objects of the night sky. LEARNING GOALS Describe the motions of stars during a

### Astronomy 1140 Quiz 1 Review

Astronomy 1140 Quiz 1 Review Prof. Pradhan September 15, 2015 What is Science? 1. Explain the difference between astronomy and astrology. (a) Astrology: nonscience using zodiac sign to predict the future/personality

### Douglas Adams The Hitchhikers Guide to the Galaxy

There is a theory which states that if ever anybody discovers exactly what the Universe is for and why it is here, it will instantly disappear and be replaced by something even more bizarre and inexplicable.

### GoSkyWatch User's Guide

Home GoSkyWatch About User's Guide FAQs Releases Support GoSkyWatch User's Guide Version 8.0 October 26, 2015 Print Friendly Version GoSkyWatchUsersGuide.pdf Contents Display Target Information Finder

### Maybe you know about the Energy House.

Plans and experiments for the Energy House can be found at Design Coalition s website at www.designcoalition.org Maybe you know about the Energy House. Here are some more ideas for leaning about the sun

### Measuring Your Latitude from the Angle of the Sun at Noon

Measuring Your Latitude from the Angle of the Sun at Noon Background: You can measure your latitude in earth's northern hemisphere by finding out the altitude of the celestial equator from the southern

### Project Telling time by the stars Due April 28

Project Telling time by the stars Due April 28 1 As discussed in class, a useful celestial coordinate system for observers on the Earth is that of equatorial stellar coordinates. The two coordinates are

### Pre and post-visit activities - Navigating by the stars

Pre and post-visit activities - Navigating by the stars Vocabulary List Adult Education at Scienceworks Pre-visit Activity 1: What is longitude and latitude? Activity 2: Using the Southern Cross to find

### 01) The Sun s rays strike the surface of the Earth at 90 degrees at the on December 22.

Package Title: Testbank Course Title: Introducing Physical Geography 6e Chapter Number: 01 Question Type: Multiple Choice 01) The Sun s rays strike the surface of the Earth at 90 degrees at the on December

### .11 THE DAY. S it crosses the meridian at apparent noon. Before (ante) noon is thus a.m., while after (post) noon is p.m. FIGURE 7.

Confirming Pages UNIT 7 PA RT I The Time of Day From before recorded history, people have used events in the heavens to mark the passage of time. The day was the time interval from sunrise to sunrise,

### The Analemma for Latitudinally-Challenged People

The Analemma for Latitudinally-Challenged People Teo Shin Yeow An academic exercise presented in partial fulfillment for the degree of Bachelor of Science with Honours in Mathematics Supervisor : Associate

### Answers. Sun, Earth, Moon. Year 7 Science Chapter 10

Answers Sun, Earth, Moon Year 7 Science Chapter 10 p216 1 Geocentric indicates a model in which Earth is the centre of the universe. 2 Pythagoras reasoning was that the sphere is the perfect shape and

### Field of View of a Small Telescope Observational Astronomy

Field of View of a Small Telescope Observational Astronomy Name: Introduction How much can you see? This question could be interpreted in several ways. An astronomer might answer in terms of the faintest

### Motions of Earth LEARNING GOALS

2 Patterns in the Sky Motions of Earth The stars first found a special place in legend and mythology as the realm of gods and goddesses, holding sway over the lives of humankind. From these legends and

### Solar System. 1. The diagram below represents a simple geocentric model. Which object is represented by the letter X?

Solar System 1. The diagram below represents a simple geocentric model. Which object is represented by the letter X? A) Earth B) Sun C) Moon D) Polaris 2. Which object orbits Earth in both the Earth-centered

### Noon Sun Angle = 90 Zenith Angle

Noon Sun Angle Worksheet Name Name Date Subsolar Point (Latitude where the sun is overhead at noon) Equinox March 22 nd 0 o Equinox September 22 nd 0 o Solstice June 22 nd 23.5 N Solstice December 22 nd

### Motions of Earth, Moon, and Sun

Motions of Earth, Moon, and Sun Apparent Motions of Celestial Objects An apparent motion is a motion that an object appears to make. Apparent motions can be real or illusions. When you see a person spinning

### PHSC 3033: Meteorology Seasons

PHSC 3033: Meteorology Seasons Changing Aspect Angle Direct Sunlight is more intense and concentrated. Solar Incidence Angle is Latitude and Time/Date Dependent Daily and Seasonal Variation Zenith There

### Measuring Size from Images: A wrangle with angles and image scale

Measuring Size from Images: A wrangle with angles and image scale Purpose: To learn how to make measurements of angular size on images from MicroObservatory telescopes. While we can't take a measuring

### EDUCATIONAL ACTIVITY 2.

EDUCATIONAL ACTIVITY 2. Calculating the Latitude of the observation site from images of the Midnight Sun. Mr. Miguel Ángel Pío Jiménez. Astronomer Instituto de Astrofísica de Canarias, Tenerife. Dr. Miquel

### Newton s Law of Gravity

Gravitational Potential Energy On Earth, depends on: object s mass (m) strength of gravity (g) distance object could potentially fall Gravitational Potential Energy In space, an object or gas cloud has

### Earth In Space Chapter 3

Earth In Space Chapter 3 Shape of the Earth Ancient Greeks Earth casts a circular shadow on the moon during a lunar eclipse Shape of the Earth Ancient Greeks Ships were observed to disappear below the

### Earth, Sun and Moon is a set of interactives designed to support the teaching of the QCA primary science scheme of work 5e - 'Earth, Sun and Moon'.

is a set of interactives designed to support the teaching of the QCA primary science scheme of work 5e - ''. Learning Connections Primary Science Interactives are teaching tools which have been created

Project ATMOSPHERE This guide is one of a series produced by Project ATMOSPHERE, an initiative of the American Meteorological Society. Project ATMOSPHERE has created and trained a network of resource agents

### Seasons and Phases Grade 8 Pre-Visit Materials Howard B. Owens Science Center

Seasons and Phases Grade 8 Pre-Visit Materials Howard B. Owens Science Center Prince George s County Public Schools Upper Marlboro, Md. 20772 Seasons and Phases (8 th grade) Program Description: Beyond

### DETERMINING SOLAR ALTITUDE USING THE GNOMON. How does the altitude change during the day or from day to day?

Name Partner(s) Section Date DETERMINING SOLAR ALTITUDE USING THE GNOMON Does the Sun ever occur directly overhead in Maryland? If it does, how would you determine or know it was directly overhead? How

### SPACE Section 8-STARS- OBSERVING CONSTELLATIONS From Hands on Elementary School Science, Linda Poore 2003

SPACE Section 8-STARS- OBSERVING CONSTELLATIONS From Hands on Elementary School Science, Linda Poore 2003 Westminster College SAFETY: Standards: Students know the patterns of stars stay the same, although

### not to be republished NCERT MOTIONS OF THE EARTH

3 Let s Do Take a ball to represent the earth and a lighted candle to represent the sun. Mark a point on the ball to represent a town X. Place the ball in such a way that the town X is in darkness. Now