Chapter 6: Probability Distributions. Section 6.1: How Can We Summarize Possible Outcomes and Their Probabilities?

Size: px
Start display at page:

Download "Chapter 6: Probability Distributions. Section 6.1: How Can We Summarize Possible Outcomes and Their Probabilities?"

Transcription

1 Chapter 6: Probability Distributions Section 6.1: How Can We Summarize Possible Outcomes and Their Probabilities? 1

2 Learning Objectives 1. Random variable 2. Probability distributions for discrete random variables 3. Mean of a probability distribution 4. Summarizing the spread of a probability distribution 5. Probability distribution for continuous random variables 2

3 Learning Objective 1: Randomness The numerical values that a variable assumes are the result of some random phenomenon: Selecting a random sample for a population or Performing a randomized experiment 3

4 Learning Objective 1: Random Variable A random variable is a numerical measurement of the outcome of a random phenomenon. 4

5 Learning Objective 1: Random Variable Use letters near the end of the alphabet, such as x, to symbolize Variables A particular value of the random variable Use a capital letter, such as X, to refer to the random variable itself. Example: Flip a coin three times X=number of heads in the 3 flips; defines the random variable x=2; represents a possible value of the random variable 5

6 Learning Objective 2: Probability Distribution The probability distribution of a random variable specifies its possible values and their probabilities. Note: It is the randomness of the variable that allows us to specify probabilities for the outcomes 6

7 Learning Objective 2: Probability Distribution of a Discrete Random Variable A discrete random variable X has separate values (such as 0,1,2, ) as its possible outcomes Its probability distribution assigns a probability P(x) to each possible value x: For each x, the probability P(x) falls between 0 and 1 The sum of the probabilities for all the possible x values equals 1 7

8 Learning Objective 2: Example What is the estimated probability of at least three home runs? P(3)+P(4)+P(5)= =0.17 8

9 Learning Objective 3: The Mean of a Discrete Probability Distribution The mean of a probability distribution for a discrete random variable is x p(x) where the sum is taken over all possible values of x. The mean of a probability distribution is denoted by the parameter, µ. The mean is a weighted average; values of x that are more likely receive greater weight P(x) 9

10 Learning Objective 3: Expected Value of X The mean of a probability distribution of a random variable X is also called the expected value of X. The expected value reflects not what we ll observe in a single observation, but rather that we expect for the average in a long run of observations. It is not unusual for the expected value of a random variable to equal a number that is NOT a possible outcome. 10

11 Learning Objective 3: Example Find the mean of this probability distribution. The mean: x p(x) = 0(0.23) + 1(0.38) + 2(0.22) + 3(0.13) + 4(0.03) + 5(0.01) =

12 Learning Objective 4: The Standard Deviation of a Probability Distribution The standard deviation of a probability distribution, denoted by the parameter, σ, measures its spread. Larger values of σ correspond to greater spread. Roughly, σ describes how far the random variable falls, on the average, from the mean of its distribution 12

13 Learning Objective 5: Continuous Random Variable A continuous random variable has an infinite continuum of possible values in an interval. Examples are: time, age and size measures such as height and weight. Continuous variables are measured in a discrete manner because of rounding. 13

14 Learning Objective 5: Probability Distribution of a Continuous Random Variable A continuous random variable has possible values that form an interval. Its probability distribution is specified by a curve. Each interval has probability between 0 and 1. The interval containing all possible values has probability equal to 1. 14

15 Chapter 6: Probability Distributions Section 6.2: How Can We Find Probabilities for Bell-Shaped Distributions? 15

16 Learning Objectives 1. Normal Distribution Rule for normal distributions 3. Z-Scores and the Standard Normal Distribution 4. The Standard Normal Table: Finding Probabilities 5. Using the TI-calculator: find probabilities 16

17 Learning Objectives 6. Using the Standard Normal Table in Reverse 7. Using the TI-calculator: find z-scores 8. Probabilities for Normally Distributed Random Variables 9. Percentiles for Normally Distributed Random Variables 10. Using Z-scores to Compare Distributions 17

18 Learning Objective 1: Normal Distribution The normal distribution is symmetric, bellshaped and characterized by its mean µ and standard deviation. The normal distribution is the most important distribution in statistics Many distributions have an approximate normal distribution Approximates many discrete distributions well when there are a large number of possible outcomes Many statistical methods use it even when the data are not bell shaped 18

19 Learning Objective 1: Normal Distribution Normal distributions are Bell shaped Symmetric around the mean The mean ( ) and the standard deviation ( ) completely describe the density curve Increasing/decreasing moves the curve along the horizontal axis Increasing/decreasing controls the spread of the curve 19

20 Learning Objective 1: Normal Distribution Within what interval do almost all of the men s heights fall? Women s height? 20

21 Learning Objective 2: Rule for Any Normal Curve 68% of the observations fall within one standard deviation of the mean 95% of the observations fall within two standard deviations of the mean 99.7% of the observations fall within three standard deviations of the mean 21

22 Learning Objective 2: Example : % Rule Heights of adult women can be approximated by a normal distribution = 65 inches; =3.5 inches Rule for women s heights 68% are between 61.5 and 68.5 inches [ µ = ] 95% are between 58 and 72 inches [ µ 2 = 65 2(3.5) = 65 7 ] 99.7% are between 54.5 and 75.5 inches [ µ 3 = 65 3(3.5) = ] 22

23 Learning Objective 2: Example : % Rule What proportion of women are less than 69 inches tall?? = 84% 16% 68% (by Rule)? (height values) 23

24 Learning Objective 3: Z-Scores and the Standard Normal Distribution The z-score for a value x of a random variable is the number of standard deviations that x falls from the mean z x A negative (positive) z-score indicates that the value is below (above) the mean z-scores can be used to calculate the probabilities of a normal random variable using the normal tables in the back of the book 24

25 Learning Objective 3: Z-Scores and the Standard Normal Distribution A standard normal distribution has mean µ=0 and standard deviation σ=1 When a random variable has a normal distribution and its values are converted to z- scores by subtracting the mean and dividing by the standard deviation, the z-scores have the standard normal distribution. 25

26 Learning Objective 4: Table A: Standard Normal Probabilities Table A enables us to find normal probabilities It tabulates the normal cumulative probabilities falling below the point +z To use the table: Find the corresponding z-score Look up the closest standardized score (z) in the table. First column gives z to the first decimal place First row gives the second decimal place of z The corresponding probability found in the body of the table gives the probability of falling below the z-score 26

27 Learning Objective 4: Example: Using Table A Find the probability that a normal random variable takes a value less than 1.43 standard deviations above µ; P(z<1.43)=.9236 TI Calculator = Normcdf(-1e99,1.43,0,1)=

28 Learning Objective 4: Example: Using Table A Find the probability that a normal random variable takes a value greater than 1.43 standard deviations above µ: P(z>1.43)= =.0764 TI Calculator = Normcdf(1.43,1e99,0,1)=

29 Learning Objective 4: Example: Find the probability that a normal random variable assumes a value within 1.43 standard deviations of µ Probability below 1.43σ =.9236 Probability below -1.43σ =.0764 ( ) P(-1.43<z<1.43) = =.8472 TI Calculator = Normcdf(-1.43,1.43,0,1)=

30 Learning Objective 5: Using the TI Calculator To calculate the cumulative probability 2 nd DISTR; 2:normalcdf(lower bound, upper bound,mean,sd) Use 1E99 for negative infinity and 1E99 for positive infinity 30

31 Learning Objective 5: Find Probabilities Using TI Calculator Find probability to the left of P(z<-1.64)=normcdf(-1e99,-1.64,0,1)=.0505 Find probability to the right of 1.56 P(z>1.56)=normcdf(1.56,1e99,0,1)=.0594 Find probability between -.50 and 2.25 P(-.5<z<2.25)=normcdf(-.5,2.25,0,1)=

32 Learning Objective 6: How Can We Find the Value of z for a Certain Cumulative Probability? To solve some of our problems, we will need to find the value of z that corresponds to a certain normal cumulative probability To do so, we use Table A in reverse Rather than finding z using the first column (value of z up to one decimal) and the first row (second decimal of z) Find the probability in the body of the table The z-score is given by the corresponding values in the first column and row 32

33 Learning Objective 6: How Can We Find the Value of z for a Certain Cumulative Probability? Example: Find the value of z for a cumulative probability of Look up the cumulative probability of in the body of Table A. A cumulative probability of corresponds to z = Thus, the probability that a normal random variable falls at least 1.96 standard deviations below the mean is

34 Learning Objective 6: How Can We Find the Value of z for a Certain Cumulative Probability? Example: Find the value of z for a cumulative probability of Look up the cumulative probability of in the body of Table A. A cumulative probability of corresponds to z = Thus, the probability that a normal random variable takes a value no more than 1.96 standard deviations above the mean is

35 Learning Objective 7: Using the TI Calculator to Find Z-Scores for a Given Probability 2 nd DISTR 3:invNorm; Enter invnorm(percentile,mean,sd) Percentile is the probability under the curve from negative infinity to the z-score Enter 35

36 Learning Objective 7: Examples The probability that a standard normal random variable assumes a value that is z is What is z? Invnorm(.975,0,1)=1.96 The probability that a standard normal random variable assumes a value that is > z is What is z? Invnorm(.975,0,1)=1.96 The probability that a standard normal random variable assumes a value that is z is What is z? Invnorm(1-.881,0,1)=-1.18 The probability that a standard normal random variable assumes a value that is < z is What is z? Invnorm(.119,0,1)=

37 Learning Objective 7: Example Find the z-score z such that the probability within z standard deviations of the mean is Invnorm(.75,0,1)=.67 Invnorm(.25,0,1)= -.67 Probability = P(-.67<Z<.67)=.5 37

38 Learning Objective 8: Finding Probabilities for Normally Distributed Random Variables 1. State the problem in terms of the observed random variable X, i.e., P(X<x) 2. Standardize X to restate the problem in terms of a standard normal variable Z P(X x) P Z z x 3. Draw a picture to show the desired probability under the standard normal curve 4. Find the area under the standard normal curve using Table A 38

39 Learning Objective 8: P(X<x) Adult systolic blood pressure is normally distributed with µ = 120 and σ = 20. What percentage of adults have systolic blood pressure less than 100? P(X<100) = P Z P(z 1.00) Normcdf(-1E99,100,120,20)= % of adults have systolic blood pressure less than

40 Learning Objective 8: P(X>x) Adult systolic blood pressure is normally distributed with µ = 120 and σ = 20. What percentage of adults have systolic blood pressure greater than 100? P(X>100) = 1 P(X<100) P(X>100)= =.8413 Normcdf(100,1e99,120,20)=.8413 P Z % of adults have systolic blood pressure greater than 100 P(Z 1.00)

41 Learning Objective 8: P(X>x) Adult systolic blood pressure is normally distributed with µ = 120 and σ = 20. What percentage of adults have systolic blood pressure greater than 133? P(X>133) = 1 P(X<133) P(X>133)= =.2578 Normcdf(133,1E99,120,20)=.2578 P Z % of adults have systolic blood pressure greater than 133 P(Z.65)

42 Learning Objective 8: P(a<X<b) Adult systolic blood pressure is normally distributed with µ = 120 and σ = 20. What percentage of adults have systolic blood pressure between 100 and 133? P(100<X<133) = P(X<133)-P(X<100) P Z P Z Normcdf(100,133,120,20)= % of adults have systolic blood pressure between 100 and P(Z.65) P(Z 1.00)

43 Learning Objective 9: Find X Value Given Area to Left Adult systolic blood pressure is normally distributed with µ = 120 and σ = 20. What is the 1 st quartile? P(X<x)=.25, find x: Look up.25 in the body of Table A to find z= Solve equation to find x: Check: x z 120 ( 0.67)* P(X<106.6) P(Z<-0.67)=0.25 TI Calculator = Invnorm(.25,120,20)=

44 Learning Objective 9: Find X Value Given Area to Right Adult systolic blood pressure is normally distributed with µ = 120 and σ = % of adults have systolic blood pressure above what level? P(X>x)=.10, find x. P(X>x)=1-P(X<x) Look up 1-0.1=0.9 in the body of Table A to find z=1.28 Solve equation to find x: x z 120 (1.28)* Check: P(X>145.6) =P(Z>1.28)=0.10 TI Calculator = Invnorm(.9,120,20)=

45 Learning Objective 10: Using Z-scores to Compare Distributions Z-scores can be used to compare observations from different normal distributions Example: You score 650 on the SAT which has =500 and =100 and 30 on the ACT which has =21.0 and =4.7. On which test did you perform better? Compare z-scores SAT: z ACT: z Since your z-score is greater for the ACT, you performed better on this exam 45

46 Chapter 6: Probability Distributions Section 6.3: How Can We Find Probabilities When Each Observation Has Two Possible Outcomes? 46

47 Learning Objectives 1. The Binomial Distribution 2. Conditions for a Binomial Distribution 3. Probabilities for a Binomial Distribution 4. Factorials 5. Examples using Binomial Distribution 6. Do the Binomial Conditions Apply? 7. Mean and Standard Deviation of the Binomial Distribution 8. Normal Approximation to the Binomial 47

48 Learning Objective 1: The Binomial Distribution Each observation is binary: it has one of two possible outcomes. Examples: Accept, or decline an offer from a bank for a credit card. Have, or do not have, health insurance. Vote yes or no on a referendum. 48

49 Learning Objective 2: Conditions for the Binomial Distribution Each of n trials has two possible outcomes: success or failure. Each trial has the same probability of success, denoted by p. The n trials are independent. The binomial random variable X is the number of successes in the n trials. 49

50 Learning Objective 3: Probabilities for a Binomial Distribution Denote the probability of success on a trial by p. For n independent trials, the probability of x successes equals: P(x) n! x!(n - x)! px (1 p) n x, x 0,1,2,...,n 50

51 Learning Objective 4: Factorials Rules for factorials: n!=n*(n-1)*(n-2) 2*1 1!=1 0!=1 For example, 4!=4*3*2*1=24 51

52 Learning Objective 5: Example: Finding Binomial Probabilities John Doe claims to possess ESP. An experiment is conducted: A person in one room picks one of the integers 1, 2, 3, 4, 5 at random. In another room, John Doe identifies the number he believes was picked. Three trials are performed for the experiment. Doe got the correct answer twice. 52

53 Learning Objective 5: Example 1 If John Doe does not actually have ESP and is actually guessing the number, what is the probability that he d make a correct guess on two of the three trials? The three ways John Doe could make two correct guesses in three trials are: SSF, SFS, and FSS. Each of these has probability: (0.2)2(0.8)= The total probability of two correct guesses is 3(0.032)=

54 Learning Objective 5: Example 1 The probability of exactly 2 correct guesses is the binomial probability with n = 3 trials, x = 2 correct guesses and p = 0.2 probability of a correct guess. P(2) 3! 2!1! (0.2)2 (0.8) 1 3(0.04)(0.8) nd Vars 0:binampdf(n,p,x) Binampdf(3,.2,2)=

55 Learning Objective 5: Binomial Example employees, 50% Female None of the 10 employees chosen for management training were female. The probability that no females are chosen is: P(0) 10! 0!10! (0.50)0 (0.50) Binompdf(10,.5,0)= E-4 It is very unlikely (one chance in a thousand) that none of the 10 selected for management training would be female if the employees were chosen randomly 55

56 Learning Objective 6: Do the Binomial Conditions Apply? Before using the binomial distribution, check that its three conditions apply: Binary data (success or failure). The same probability of success for each trial (denoted by p). Independent trials. 56

57 Learning Objective 6: Do the Binomial Conditions Apply to Example 2? The data are binary (male, female). If employees are selected randomly, the probability of selecting a female on a given trial is With random sampling of 10 employees from a large population, outcomes for one trial does not depend on the outcome of another trial 57

58 Learning Objective 7: Binomial Mean and Standard Deviation The binomial probability distribution for n trials with probability p of success on each trial has mean µ and standard deviation σ given by: np, np(1- p) 58

59 Learning Objective 7: Example: Racial Profiling? Data: 262 police car stops in Philadelphia in of the drivers stopped were African-American. In 1997, Philadelphia s population was 42.2% African-American. Does the number of African-Americans stopped suggest possible bias, being higher than we would expect (other things being equal, such as the rate of violating traffic laws)? 59

60 Learning Objective 7: Example: Racial Profiling? Assume: 262 car stops represent n = 262 trials. Successive police car stops are independent. P(driver is African-American) is p = Calculate the mean and standard deviation of this binomial distribution: 262(0.422) (0.422) (0.578) 8 60

61 Learning Objective 7: Example: Racial Profiling? Recall: Empirical Rule When a distribution is bell-shaped, close to 100% of the observations fall within 3 standard deviations of the mean. u (8) (8)

62 Learning Objective 7: Example: Racial Profiling? If there is no racial profiling, we would not be surprised if between about 87 and 135 of the 262 drivers stopped were African-American. The actual number stopped (207) is well above these values. The number of African-Americans stopped is too high, even taking into account random variation. Limitation of the analysis: Different people do different amounts of driving, so we don t really know that 42.2% of the potential stops were African- American. 62

63 Learning Objective 8: Approximating the Binomial Distribution with the Normal Distribution The binomial distribution can be well approximated by the normal distribution when the expected number of successes, np, and the expected number of failures, n(1-p) are both at least

Probability Distributions

Probability Distributions Learning Objectives Probability Distributions Section 1: How Can We Summarize Possible Outcomes and Their Probabilities? 1. Random variable 2. Probability distributions for discrete random variables 3.

More information

6 3 The Standard Normal Distribution

6 3 The Standard Normal Distribution 290 Chapter 6 The Normal Distribution Figure 6 5 Areas Under a Normal Distribution Curve 34.13% 34.13% 2.28% 13.59% 13.59% 2.28% 3 2 1 + 1 + 2 + 3 About 68% About 95% About 99.7% 6 3 The Distribution Since

More information

The Normal Distribution

The Normal Distribution Chapter 6 The Normal Distribution 6.1 The Normal Distribution 1 6.1.1 Student Learning Objectives By the end of this chapter, the student should be able to: Recognize the normal probability distribution

More information

Stats on the TI 83 and TI 84 Calculator

Stats on the TI 83 and TI 84 Calculator Stats on the TI 83 and TI 84 Calculator Entering the sample values STAT button Left bracket { Right bracket } Store (STO) List L1 Comma Enter Example: Sample data are {5, 10, 15, 20} 1. Press 2 ND and

More information

The Math. P (x) = 5! = 1 2 3 4 5 = 120.

The Math. P (x) = 5! = 1 2 3 4 5 = 120. The Math Suppose there are n experiments, and the probability that someone gets the right answer on any given experiment is p. So in the first example above, n = 5 and p = 0.2. Let X be the number of correct

More information

Ch5: Discrete Probability Distributions Section 5-1: Probability Distribution

Ch5: Discrete Probability Distributions Section 5-1: Probability Distribution Recall: Ch5: Discrete Probability Distributions Section 5-1: Probability Distribution A variable is a characteristic or attribute that can assume different values. o Various letters of the alphabet (e.g.

More information

4. Continuous Random Variables, the Pareto and Normal Distributions

4. Continuous Random Variables, the Pareto and Normal Distributions 4. Continuous Random Variables, the Pareto and Normal Distributions A continuous random variable X can take any value in a given range (e.g. height, weight, age). The distribution of a continuous random

More information

5/31/2013. 6.1 Normal Distributions. Normal Distributions. Chapter 6. Distribution. The Normal Distribution. Outline. Objectives.

5/31/2013. 6.1 Normal Distributions. Normal Distributions. Chapter 6. Distribution. The Normal Distribution. Outline. Objectives. The Normal Distribution C H 6A P T E R The Normal Distribution Outline 6 1 6 2 Applications of the Normal Distribution 6 3 The Central Limit Theorem 6 4 The Normal Approximation to the Binomial Distribution

More information

MEASURES OF VARIATION

MEASURES OF VARIATION NORMAL DISTRIBTIONS MEASURES OF VARIATION In statistics, it is important to measure the spread of data. A simple way to measure spread is to find the range. But statisticians want to know if the data are

More information

AP Statistics Solutions to Packet 2

AP Statistics Solutions to Packet 2 AP Statistics Solutions to Packet 2 The Normal Distributions Density Curves and the Normal Distribution Standard Normal Calculations HW #9 1, 2, 4, 6-8 2.1 DENSITY CURVES (a) Sketch a density curve that

More information

You flip a fair coin four times, what is the probability that you obtain three heads.

You flip a fair coin four times, what is the probability that you obtain three heads. Handout 4: Binomial Distribution Reading Assignment: Chapter 5 In the previous handout, we looked at continuous random variables and calculating probabilities and percentiles for those type of variables.

More information

Lecture 14. Chapter 7: Probability. Rule 1: Rule 2: Rule 3: Nancy Pfenning Stats 1000

Lecture 14. Chapter 7: Probability. Rule 1: Rule 2: Rule 3: Nancy Pfenning Stats 1000 Lecture 4 Nancy Pfenning Stats 000 Chapter 7: Probability Last time we established some basic definitions and rules of probability: Rule : P (A C ) = P (A). Rule 2: In general, the probability of one event

More information

Normal distribution. ) 2 /2σ. 2π σ

Normal distribution. ) 2 /2σ. 2π σ Normal distribution The normal distribution is the most widely known and used of all distributions. Because the normal distribution approximates many natural phenomena so well, it has developed into a

More information

Def: The standard normal distribution is a normal probability distribution that has a mean of 0 and a standard deviation of 1.

Def: The standard normal distribution is a normal probability distribution that has a mean of 0 and a standard deviation of 1. Lecture 6: Chapter 6: Normal Probability Distributions A normal distribution is a continuous probability distribution for a random variable x. The graph of a normal distribution is called the normal curve.

More information

Key Concept. Density Curve

Key Concept. Density Curve MAT 155 Statistical Analysis Dr. Claude Moore Cape Fear Community College Chapter 6 Normal Probability Distributions 6 1 Review and Preview 6 2 The Standard Normal Distribution 6 3 Applications of Normal

More information

Chapter 1: Looking at Data Section 1.1: Displaying Distributions with Graphs

Chapter 1: Looking at Data Section 1.1: Displaying Distributions with Graphs Types of Variables Chapter 1: Looking at Data Section 1.1: Displaying Distributions with Graphs Quantitative (numerical)variables: take numerical values for which arithmetic operations make sense (addition/averaging)

More information

6.4 Normal Distribution

6.4 Normal Distribution Contents 6.4 Normal Distribution....................... 381 6.4.1 Characteristics of the Normal Distribution....... 381 6.4.2 The Standardized Normal Distribution......... 385 6.4.3 Meaning of Areas under

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. A) 0.4987 B) 0.9987 C) 0.0010 D) 0.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. A) 0.4987 B) 0.9987 C) 0.0010 D) 0. Ch. 5 Normal Probability Distributions 5.1 Introduction to Normal Distributions and the Standard Normal Distribution 1 Find Areas Under the Standard Normal Curve 1) Find the area under the standard normal

More information

Probability. Distribution. Outline

Probability. Distribution. Outline 7 The Normal Probability Distribution Outline 7.1 Properties of the Normal Distribution 7.2 The Standard Normal Distribution 7.3 Applications of the Normal Distribution 7.4 Assessing Normality 7.5 The

More information

Density Curve. A density curve is the graph of a continuous probability distribution. It must satisfy the following properties:

Density Curve. A density curve is the graph of a continuous probability distribution. It must satisfy the following properties: Density Curve A density curve is the graph of a continuous probability distribution. It must satisfy the following properties: 1. The total area under the curve must equal 1. 2. Every point on the curve

More information

STT315 Chapter 4 Random Variables & Probability Distributions KM. Chapter 4.5, 6, 8 Probability Distributions for Continuous Random Variables

STT315 Chapter 4 Random Variables & Probability Distributions KM. Chapter 4.5, 6, 8 Probability Distributions for Continuous Random Variables Chapter 4.5, 6, 8 Probability Distributions for Continuous Random Variables Discrete vs. continuous random variables Examples of continuous distributions o Uniform o Exponential o Normal Recall: A random

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. STATISTICS/GRACEY PRACTICE TEST/EXAM 2 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Identify the given random variable as being discrete or continuous.

More information

HISTOGRAMS, CUMULATIVE FREQUENCY AND BOX PLOTS

HISTOGRAMS, CUMULATIVE FREQUENCY AND BOX PLOTS Mathematics Revision Guides Histograms, Cumulative Frequency and Box Plots Page 1 of 25 M.K. HOME TUITION Mathematics Revision Guides Level: GCSE Higher Tier HISTOGRAMS, CUMULATIVE FREQUENCY AND BOX PLOTS

More information

The Normal Distribution

The Normal Distribution The Normal Distribution Continuous Distributions A continuous random variable is a variable whose possible values form some interval of numbers. Typically, a continuous variable involves a measurement

More information

Normal Probability Distribution

Normal Probability Distribution Normal Probability Distribution The Normal Distribution functions: #1: normalpdf pdf = Probability Density Function This function returns the probability of a single value of the random variable x. Use

More information

Chapter 4. Probability and Probability Distributions

Chapter 4. Probability and Probability Distributions Chapter 4. robability and robability Distributions Importance of Knowing robability To know whether a sample is not identical to the population from which it was selected, it is necessary to assess the

More information

The normal approximation to the binomial

The normal approximation to the binomial The normal approximation to the binomial In order for a continuous distribution (like the normal) to be used to approximate a discrete one (like the binomial), a continuity correction should be used. There

More information

Probability Distributions

Probability Distributions CHAPTER 6 Probability Distributions Calculator Note 6A: Computing Expected Value, Variance, and Standard Deviation from a Probability Distribution Table Using Lists to Compute Expected Value, Variance,

More information

Normal Distribution. Definition A continuous random variable has a normal distribution if its probability density. f ( y ) = 1.

Normal Distribution. Definition A continuous random variable has a normal distribution if its probability density. f ( y ) = 1. Normal Distribution Definition A continuous random variable has a normal distribution if its probability density e -(y -µ Y ) 2 2 / 2 σ function can be written as for < y < as Y f ( y ) = 1 σ Y 2 π Notation:

More information

Important Probability Distributions OPRE 6301

Important Probability Distributions OPRE 6301 Important Probability Distributions OPRE 6301 Important Distributions... Certain probability distributions occur with such regularity in real-life applications that they have been given their own names.

More information

EXAM #1 (Example) Instructor: Ela Jackiewicz. Relax and good luck!

EXAM #1 (Example) Instructor: Ela Jackiewicz. Relax and good luck! STP 231 EXAM #1 (Example) Instructor: Ela Jackiewicz Honor Statement: I have neither given nor received information regarding this exam, and I will not do so until all exams have been graded and returned.

More information

Characteristics of Binomial Distributions

Characteristics of Binomial Distributions Lesson2 Characteristics of Binomial Distributions In the last lesson, you constructed several binomial distributions, observed their shapes, and estimated their means and standard deviations. In Investigation

More information

The normal approximation to the binomial

The normal approximation to the binomial The normal approximation to the binomial The binomial probability function is not useful for calculating probabilities when the number of trials n is large, as it involves multiplying a potentially very

More information

Chapter 5: Normal Probability Distributions - Solutions

Chapter 5: Normal Probability Distributions - Solutions Chapter 5: Normal Probability Distributions - Solutions Note: All areas and z-scores are approximate. Your answers may vary slightly. 5.2 Normal Distributions: Finding Probabilities If you are given that

More information

Week 3&4: Z tables and the Sampling Distribution of X

Week 3&4: Z tables and the Sampling Distribution of X Week 3&4: Z tables and the Sampling Distribution of X 2 / 36 The Standard Normal Distribution, or Z Distribution, is the distribution of a random variable, Z N(0, 1 2 ). The distribution of any other normal

More information

An Introduction to Basic Statistics and Probability

An Introduction to Basic Statistics and Probability An Introduction to Basic Statistics and Probability Shenek Heyward NCSU An Introduction to Basic Statistics and Probability p. 1/4 Outline Basic probability concepts Conditional probability Discrete Random

More information

Chapter 4. Probability Distributions

Chapter 4. Probability Distributions Chapter 4 Probability Distributions Lesson 4-1/4-2 Random Variable Probability Distributions This chapter will deal the construction of probability distribution. By combining the methods of descriptive

More information

Section 5 Part 2. Probability Distributions for Discrete Random Variables

Section 5 Part 2. Probability Distributions for Discrete Random Variables Section 5 Part 2 Probability Distributions for Discrete Random Variables Review and Overview So far we ve covered the following probability and probability distribution topics Probability rules Probability

More information

The Binomial Probability Distribution

The Binomial Probability Distribution The Binomial Probability Distribution MATH 130, Elements of Statistics I J. Robert Buchanan Department of Mathematics Fall 2015 Objectives After this lesson we will be able to: determine whether a probability

More information

8. THE NORMAL DISTRIBUTION

8. THE NORMAL DISTRIBUTION 8. THE NORMAL DISTRIBUTION The normal distribution with mean μ and variance σ 2 has the following density function: The normal distribution is sometimes called a Gaussian Distribution, after its inventor,

More information

. 58 58 60 62 64 66 68 70 72 74 76 78 Father s height (inches)

. 58 58 60 62 64 66 68 70 72 74 76 78 Father s height (inches) PEARSON S FATHER-SON DATA The following scatter diagram shows the heights of 1,0 fathers and their full-grown sons, in England, circa 1900 There is one dot for each father-son pair Heights of fathers and

More information

Probability Distributions

Probability Distributions CHAPTER 5 Probability Distributions CHAPTER OUTLINE 5.1 Probability Distribution of a Discrete Random Variable 5.2 Mean and Standard Deviation of a Probability Distribution 5.3 The Binomial Distribution

More information

Mind on Statistics. Chapter 8

Mind on Statistics. Chapter 8 Mind on Statistics Chapter 8 Sections 8.1-8.2 Questions 1 to 4: For each situation, decide if the random variable described is a discrete random variable or a continuous random variable. 1. Random variable

More information

Chapter 5. Random variables

Chapter 5. Random variables Random variables random variable numerical variable whose value is the outcome of some probabilistic experiment; we use uppercase letters, like X, to denote such a variable and lowercase letters, like

More information

Week 4: Standard Error and Confidence Intervals

Week 4: Standard Error and Confidence Intervals Health Sciences M.Sc. Programme Applied Biostatistics Week 4: Standard Error and Confidence Intervals Sampling Most research data come from subjects we think of as samples drawn from a larger population.

More information

MATH 103/GRACEY PRACTICE EXAM/CHAPTERS 2-3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MATH 103/GRACEY PRACTICE EXAM/CHAPTERS 2-3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. MATH 3/GRACEY PRACTICE EXAM/CHAPTERS 2-3 Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Provide an appropriate response. 1) The frequency distribution

More information

Review #2. Statistics

Review #2. Statistics Review #2 Statistics Find the mean of the given probability distribution. 1) x P(x) 0 0.19 1 0.37 2 0.16 3 0.26 4 0.02 A) 1.64 B) 1.45 C) 1.55 D) 1.74 2) The number of golf balls ordered by customers of

More information

Chapter 15 Binomial Distribution Properties

Chapter 15 Binomial Distribution Properties Chapter 15 Binomial Distribution Properties Two possible outcomes (success and failure) A fixed number of experiments (trials) The probability of success, denoted by p, is the same on every trial The trials

More information

Lecture 2: Discrete Distributions, Normal Distributions. Chapter 1

Lecture 2: Discrete Distributions, Normal Distributions. Chapter 1 Lecture 2: Discrete Distributions, Normal Distributions Chapter 1 Reminders Course website: www. stat.purdue.edu/~xuanyaoh/stat350 Office Hour: Mon 3:30-4:30, Wed 4-5 Bring a calculator, and copy Tables

More information

7. Normal Distributions

7. Normal Distributions 7. Normal Distributions A. Introduction B. History C. Areas of Normal Distributions D. Standard Normal E. Exercises Most of the statistical analyses presented in this book are based on the bell-shaped

More information

Summary of Formulas and Concepts. Descriptive Statistics (Ch. 1-4)

Summary of Formulas and Concepts. Descriptive Statistics (Ch. 1-4) Summary of Formulas and Concepts Descriptive Statistics (Ch. 1-4) Definitions Population: The complete set of numerical information on a particular quantity in which an investigator is interested. We assume

More information

Section 1.3 Exercises (Solutions)

Section 1.3 Exercises (Solutions) Section 1.3 Exercises (s) 1.109, 1.110, 1.111, 1.114*, 1.115, 1.119*, 1.122, 1.125, 1.127*, 1.128*, 1.131*, 1.133*, 1.135*, 1.137*, 1.139*, 1.145*, 1.146-148. 1.109 Sketch some normal curves. (a) Sketch

More information

Math 202-0 Quizzes Winter 2009

Math 202-0 Quizzes Winter 2009 Quiz : Basic Probability Ten Scrabble tiles are placed in a bag Four of the tiles have the letter printed on them, and there are two tiles each with the letters B, C and D on them (a) Suppose one tile

More information

CA200 Quantitative Analysis for Business Decisions. File name: CA200_Section_04A_StatisticsIntroduction

CA200 Quantitative Analysis for Business Decisions. File name: CA200_Section_04A_StatisticsIntroduction CA200 Quantitative Analysis for Business Decisions File name: CA200_Section_04A_StatisticsIntroduction Table of Contents 4. Introduction to Statistics... 1 4.1 Overview... 3 4.2 Discrete or continuous

More information

Descriptive Statistics and Measurement Scales

Descriptive Statistics and Measurement Scales Descriptive Statistics 1 Descriptive Statistics and Measurement Scales Descriptive statistics are used to describe the basic features of the data in a study. They provide simple summaries about the sample

More information

Exercise 1.12 (Pg. 22-23)

Exercise 1.12 (Pg. 22-23) Individuals: The objects that are described by a set of data. They may be people, animals, things, etc. (Also referred to as Cases or Records) Variables: The characteristics recorded about each individual.

More information

STATISTICS 8: CHAPTERS 7 TO 10, SAMPLE MULTIPLE CHOICE QUESTIONS

STATISTICS 8: CHAPTERS 7 TO 10, SAMPLE MULTIPLE CHOICE QUESTIONS STATISTICS 8: CHAPTERS 7 TO 10, SAMPLE MULTIPLE CHOICE QUESTIONS 1. If two events (both with probability greater than 0) are mutually exclusive, then: A. They also must be independent. B. They also could

More information

Introduction to the Practice of Statistics Fifth Edition Moore, McCabe

Introduction to the Practice of Statistics Fifth Edition Moore, McCabe Introduction to the Practice of Statistics Fifth Edition Moore, McCabe Section 5.1 Homework Answers 5.7 In the proofreading setting if Exercise 5.3, what is the smallest number of misses m with P(X m)

More information

Descriptive statistics Statistical inference statistical inference, statistical induction and inferential statistics

Descriptive statistics Statistical inference statistical inference, statistical induction and inferential statistics Descriptive statistics is the discipline of quantitatively describing the main features of a collection of data. Descriptive statistics are distinguished from inferential statistics (or inductive statistics),

More information

Interpreting Data in Normal Distributions

Interpreting Data in Normal Distributions Interpreting Data in Normal Distributions This curve is kind of a big deal. It shows the distribution of a set of test scores, the results of rolling a die a million times, the heights of people on Earth,

More information

DETERMINE whether the conditions for a binomial setting are met. COMPUTE and INTERPRET probabilities involving binomial random variables

DETERMINE whether the conditions for a binomial setting are met. COMPUTE and INTERPRET probabilities involving binomial random variables 1 Section 7.B Learning Objectives After this section, you should be able to DETERMINE whether the conditions for a binomial setting are met COMPUTE and INTERPRET probabilities involving binomial random

More information

3.4 The Normal Distribution

3.4 The Normal Distribution 3.4 The Normal Distribution All of the probability distributions we have found so far have been for finite random variables. (We could use rectangles in a histogram.) A probability distribution for a continuous

More information

CALCULATIONS & STATISTICS

CALCULATIONS & STATISTICS CALCULATIONS & STATISTICS CALCULATION OF SCORES Conversion of 1-5 scale to 0-100 scores When you look at your report, you will notice that the scores are reported on a 0-100 scale, even though respondents

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the mean for the given sample data. 1) Frank's Furniture employees earned the following

More information

Practice Questions Answers for Second Exam 2012

Practice Questions Answers for Second Exam 2012 Practice Questions Answers for Second Exam 2012 Formulas for the test This is NOT the formula sheet that will be provided on the exam. The parts in bold will NOT appear on the exam. Mean = np Standard

More information

Random variables, probability distributions, binomial random variable

Random variables, probability distributions, binomial random variable Week 4 lecture notes. WEEK 4 page 1 Random variables, probability distributions, binomial random variable Eample 1 : Consider the eperiment of flipping a fair coin three times. The number of tails that

More information

Chapter 5: Discrete Probability Distributions

Chapter 5: Discrete Probability Distributions Chapter 5: Discrete Probability Distributions Section 5.1: Basics of Probability Distributions As a reminder, a variable or what will be called the random variable from now on, is represented by the letter

More information

Introduction to Hypothesis Testing

Introduction to Hypothesis Testing I. Terms, Concepts. Introduction to Hypothesis Testing A. In general, we do not know the true value of population parameters - they must be estimated. However, we do have hypotheses about what the true

More information

USING A TI-83 OR TI-84 SERIES GRAPHING CALCULATOR IN AN INTRODUCTORY STATISTICS CLASS

USING A TI-83 OR TI-84 SERIES GRAPHING CALCULATOR IN AN INTRODUCTORY STATISTICS CLASS USING A TI-83 OR TI-84 SERIES GRAPHING CALCULATOR IN AN INTRODUCTORY STATISTICS CLASS W. SCOTT STREET, IV DEPARTMENT OF STATISTICAL SCIENCES & OPERATIONS RESEARCH VIRGINIA COMMONWEALTH UNIVERSITY Table

More information

Random Variables and Probability

Random Variables and Probability CHAPTER 9 Random Variables and Probability IN THIS CHAPTER Summary: We ve completed the basics of data analysis and we now begin the transition to inference. In order to do inference, we need to use the

More information

Exploratory data analysis (Chapter 2) Fall 2011

Exploratory data analysis (Chapter 2) Fall 2011 Exploratory data analysis (Chapter 2) Fall 2011 Data Examples Example 1: Survey Data 1 Data collected from a Stat 371 class in Fall 2005 2 They answered questions about their: gender, major, year in school,

More information

Chapter 3. The Normal Distribution

Chapter 3. The Normal Distribution Chapter 3. The Normal Distribution Topics covered in this chapter: Z-scores Normal Probabilities Normal Percentiles Z-scores Example 3.6: The standard normal table The Problem: What proportion of observations

More information

THE BINOMIAL DISTRIBUTION & PROBABILITY

THE BINOMIAL DISTRIBUTION & PROBABILITY REVISION SHEET STATISTICS 1 (MEI) THE BINOMIAL DISTRIBUTION & PROBABILITY The main ideas in this chapter are Probabilities based on selecting or arranging objects Probabilities based on the binomial distribution

More information

3.4. The Binomial Probability Distribution. Copyright Cengage Learning. All rights reserved.

3.4. The Binomial Probability Distribution. Copyright Cengage Learning. All rights reserved. 3.4 The Binomial Probability Distribution Copyright Cengage Learning. All rights reserved. The Binomial Probability Distribution There are many experiments that conform either exactly or approximately

More information

Normal Distribution as an Approximation to the Binomial Distribution

Normal Distribution as an Approximation to the Binomial Distribution Chapter 1 Student Lecture Notes 1-1 Normal Distribution as an Approximation to the Binomial Distribution : Goals ONE TWO THREE 2 Review Binomial Probability Distribution applies to a discrete random variable

More information

CURVE FITTING LEAST SQUARES APPROXIMATION

CURVE FITTING LEAST SQUARES APPROXIMATION CURVE FITTING LEAST SQUARES APPROXIMATION Data analysis and curve fitting: Imagine that we are studying a physical system involving two quantities: x and y Also suppose that we expect a linear relationship

More information

MATH 10: Elementary Statistics and Probability Chapter 7: The Central Limit Theorem

MATH 10: Elementary Statistics and Probability Chapter 7: The Central Limit Theorem MATH 10: Elementary Statistics and Probability Chapter 7: The Central Limit Theorem Tony Pourmohamad Department of Mathematics De Anza College Spring 2015 Objectives By the end of this set of slides, you

More information

TImath.com. Statistics. Areas in Intervals

TImath.com. Statistics. Areas in Intervals Areas in Intervals ID: 9472 TImath.com Time required 30 minutes Activity Overview In this activity, students use several methods to determine the probability of a given normally distributed value being

More information

Notes on Continuous Random Variables

Notes on Continuous Random Variables Notes on Continuous Random Variables Continuous random variables are random quantities that are measured on a continuous scale. They can usually take on any value over some interval, which distinguishes

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Ch. 4 Discrete Probability Distributions 4.1 Probability Distributions 1 Decide if a Random Variable is Discrete or Continuous 1) State whether the variable is discrete or continuous. The number of cups

More information

Lesson 7 Z-Scores and Probability

Lesson 7 Z-Scores and Probability Lesson 7 Z-Scores and Probability Outline Introduction Areas Under the Normal Curve Using the Z-table Converting Z-score to area -area less than z/area greater than z/area between two z-values Converting

More information

UNDERSTANDING THE TWO-WAY ANOVA

UNDERSTANDING THE TWO-WAY ANOVA UNDERSTANDING THE e have seen how the one-way ANOVA can be used to compare two or more sample means in studies involving a single independent variable. This can be extended to two independent variables

More information

Variables. Exploratory Data Analysis

Variables. Exploratory Data Analysis Exploratory Data Analysis Exploratory Data Analysis involves both graphical displays of data and numerical summaries of data. A common situation is for a data set to be represented as a matrix. There is

More information

Point and Interval Estimates

Point and Interval Estimates Point and Interval Estimates Suppose we want to estimate a parameter, such as p or µ, based on a finite sample of data. There are two main methods: 1. Point estimate: Summarize the sample by a single number

More information

MATH 140 Lab 4: Probability and the Standard Normal Distribution

MATH 140 Lab 4: Probability and the Standard Normal Distribution MATH 140 Lab 4: Probability and the Standard Normal Distribution Problem 1. Flipping a Coin Problem In this problem, we want to simualte the process of flipping a fair coin 1000 times. Note that the outcomes

More information

Descriptive Statistics. Purpose of descriptive statistics Frequency distributions Measures of central tendency Measures of dispersion

Descriptive Statistics. Purpose of descriptive statistics Frequency distributions Measures of central tendency Measures of dispersion Descriptive Statistics Purpose of descriptive statistics Frequency distributions Measures of central tendency Measures of dispersion Statistics as a Tool for LIS Research Importance of statistics in research

More information

Chapter 4. iclicker Question 4.4 Pre-lecture. Part 2. Binomial Distribution. J.C. Wang. iclicker Question 4.4 Pre-lecture

Chapter 4. iclicker Question 4.4 Pre-lecture. Part 2. Binomial Distribution. J.C. Wang. iclicker Question 4.4 Pre-lecture Chapter 4 Part 2. Binomial Distribution J.C. Wang iclicker Question 4.4 Pre-lecture iclicker Question 4.4 Pre-lecture Outline Computing Binomial Probabilities Properties of a Binomial Distribution Computing

More information

STATISTICS 8, FINAL EXAM. Last six digits of Student ID#: Circle your Discussion Section: 1 2 3 4

STATISTICS 8, FINAL EXAM. Last six digits of Student ID#: Circle your Discussion Section: 1 2 3 4 STATISTICS 8, FINAL EXAM NAME: KEY Seat Number: Last six digits of Student ID#: Circle your Discussion Section: 1 2 3 4 Make sure you have 8 pages. You will be provided with a table as well, as a separate

More information

Chapter 5 - Practice Problems 1

Chapter 5 - Practice Problems 1 Chapter 5 - Practice Problems 1 Identify the given random variable as being discrete or continuous. 1) The number of oil spills occurring off the Alaskan coast 1) A) Continuous B) Discrete 2) The ph level

More information

Unit 7: Normal Curves

Unit 7: Normal Curves Unit 7: Normal Curves Summary of Video Histograms of completely unrelated data often exhibit similar shapes. To focus on the overall shape of a distribution and to avoid being distracted by the irregularities

More information

Statistics 100 Sample Final Questions (Note: These are mostly multiple choice, for extra practice. Your Final Exam will NOT have any multiple choice!

Statistics 100 Sample Final Questions (Note: These are mostly multiple choice, for extra practice. Your Final Exam will NOT have any multiple choice! Statistics 100 Sample Final Questions (Note: These are mostly multiple choice, for extra practice. Your Final Exam will NOT have any multiple choice!) Part A - Multiple Choice Indicate the best choice

More information

Answer: C. The strength of a correlation does not change if units change by a linear transformation such as: Fahrenheit = 32 + (5/9) * Centigrade

Answer: C. The strength of a correlation does not change if units change by a linear transformation such as: Fahrenheit = 32 + (5/9) * Centigrade Statistics Quiz Correlation and Regression -- ANSWERS 1. Temperature and air pollution are known to be correlated. We collect data from two laboratories, in Boston and Montreal. Boston makes their measurements

More information

Mind on Statistics. Chapter 2

Mind on Statistics. Chapter 2 Mind on Statistics Chapter 2 Sections 2.1 2.3 1. Tallies and cross-tabulations are used to summarize which of these variable types? A. Quantitative B. Mathematical C. Continuous D. Categorical 2. The table

More information

UNIT I: RANDOM VARIABLES PART- A -TWO MARKS

UNIT I: RANDOM VARIABLES PART- A -TWO MARKS UNIT I: RANDOM VARIABLES PART- A -TWO MARKS 1. Given the probability density function of a continuous random variable X as follows f(x) = 6x (1-x) 0

More information

6.2 Normal distribution. Standard Normal Distribution:

6.2 Normal distribution. Standard Normal Distribution: 6.2 Normal distribution Slide Heights of Adult Men and Women Slide 2 Area= Mean = µ Standard Deviation = σ Donation: X ~ N(µ,σ 2 ) Standard Normal Distribution: Slide 3 Slide 4 a normal probability distribution

More information

Section 5-3 Binomial Probability Distributions

Section 5-3 Binomial Probability Distributions Section 5-3 Binomial Probability Distributions Key Concept This section presents a basic definition of a binomial distribution along with notation, and methods for finding probability values. Binomial

More information

Joint Exam 1/P Sample Exam 1

Joint Exam 1/P Sample Exam 1 Joint Exam 1/P Sample Exam 1 Take this practice exam under strict exam conditions: Set a timer for 3 hours; Do not stop the timer for restroom breaks; Do not look at your notes. If you believe a question

More information

Pie Charts. proportion of ice-cream flavors sold annually by a given brand. AMS-5: Statistics. Cherry. Cherry. Blueberry. Blueberry. Apple.

Pie Charts. proportion of ice-cream flavors sold annually by a given brand. AMS-5: Statistics. Cherry. Cherry. Blueberry. Blueberry. Apple. Graphical Representations of Data, Mean, Median and Standard Deviation In this class we will consider graphical representations of the distribution of a set of data. The goal is to identify the range of

More information

Midterm Review Problems

Midterm Review Problems Midterm Review Problems October 19, 2013 1. Consider the following research title: Cooperation among nursery school children under two types of instruction. In this study, what is the independent variable?

More information