3.3 Easy ILP problems and totally unimodular matrices


 Lilian Griffin
 1 years ago
 Views:
Transcription
1 3.3 Easy ILP problems and totally unimodular matrices Consider a generic ILP problem expressed in standard form where A Z m n with n m, and b Z m. min{c t x : Ax = b, x Z n +} (1) P(b) = {x R n : Ax = b, x 0 } is the polyhedron of the feasible solutions of the linear relaxation of (1). Assumption: A is of full rank (since n m, rank(a)=m), i.e, there are no redundant constraints. In general, optimal solutions of the linear relaxation are fractional and far away from optimal solutions of the ILP problem (1). If all the extreme points of P(b) are integer, the formulation is ideal and the ILP problem can be solved by just solving its linear relaxation. Edoardo Amaldi (PoliMI) Optimization A.Y / 14
2 According to Linear Programming theory: Any linear program min{c t x : Ax = b, x 0} with a finite optimal solution has an optimal extreme point. To each extreme point of P(b) corresponds (at least) one basic feasible solution x = (x B, x N ) = (B 1 b, 0), where B is a basis of A, i.e., an m m non singular submatrix of A. Consider any basis B. By partitioning the columns of A in basic and non basic columns, the system Ax = b, x 0 can be written as and can be expressed in canonical form: Bx B + Nx N = b with x B 0 and x N 0, x B = B 1 b B 1 Nx N with x B 0 and x N 0, which emphasizes the basic feasible solution (x B, x N ) = (B 1 b, 0). Edoardo Amaldi (PoliMI) Optimization A.Y / 14
3 Observation: If an optimal basis B has det(b) = ±1, the optimal solution of the linear relaxation of (1) is integer and hence is also an optimal solution for the ILP problem (1). Proof: We know that x B = B 1 b and B 1 = 1 det(b) C t, where C is the matrix of cofactors α ij = ( 1) i+j det(b ij ) with B ij the squared submatrix obtained from B by deleting the ith row and the jth column. If all the components of B are integer, all the cofactors α ij are integer. If det(b) = ±1, B 1 is integer and therefore, since b is integer, also the basic feasible solution (x B, x N ) = (B 1 b, 0) is integer. Since B 1 b is integer also if det(b) = 2 and all components of b are even integers, det(b) = ±1 is only a sufficient condition for the integrality of (x B, x N ) = (B 1 b, 0). Edoardo Amaldi (PoliMI) Optimization A.Y / 14
4 3.3.1 Totally unimodular matrices and optimal integer solutions Definition: An m n matrix A with integer coefficients is totally unimodular (TU) if every squared submatrix has a determinant 1, 0 or 1. Clearly, if A is TU, a ij { 1, 0, 1} for all i and j. Examples of matrices that are TU and not TU: Recall: The Laplace expansion of the determinant of an m m matrix B along any row i, with 1 i m, is given by det(b) = m j=1 b ijα ij, where α ij = ( 1) i+j det(b ij ) are the cofactors of B. Analogously the expansion along any column j, with 1 j m, is det(b) = m i=1 a ijα ij. Proposition: A is TU if and only if A t is TU. A is TU if and only if (A I m) is TU. The matrix A obtained from A by permuting and/or changing the sign of some columns and/or rows is TU if and only if A is TU. Edoardo Amaldi (PoliMI) Optimization A.Y / 14
5 Theorem 1: Consider an m n TU matrix A and an integer vector b such that P(b) = {x R n : Ax = b, x 0} =, then all the extreme points (vertices) of the polyhedron P(b) are integer. Proof: As for the previous observation. The result also holds for ILP problems in inequality form. Edoardo Amaldi (PoliMI) Optimization A.Y / 14
6 Corollary: Consider an m n TU matrix A and an integer vector b such that P(b) = {x R n : Ax b, x 0} =, then all the extreme points of the polyhedron P(b) are integer. Proof: Let x be any arbitrary extreme point of P(b). First we show that ( x, s) with s := A x b is an extreme of P (b) := {(x, s) R n+m : Ax s = b, (x, s) 0}. If it were false, there would exist two distinct points (x 1, s 1 ) and (x 2, s 2 ) of P (b) such that ( x, s) = α(x 1, s 1 ) + (1 α)(x 2, s 2 ) for some α with 0 < α < 1. Since s 1 = Ax 1 b 0 and s 2 = Ax 2 b 0, x 1 and x 2 belong to P(b). Moreover, (x 1, s 1 ) (x 2, s 2 ) would imply x 1 x 2 and hence x = αx 1 + (1 α)x 2 could not be a vertex of P(b). Since A is TU, also (A I m) is TU. According to Theorem 1 for P (b), ( x, s) is integer, hence also x is integer. Edoardo Amaldi (PoliMI) Optimization A.Y / 14
7 Sufficient conditions for a matrix to be TU Proposition: An m n matrix A with integer coefficients is TU if i) a ij { 1, 0, +1} for all i and j, ii) each column of A contains at most two nonzero coefficients, iii) the set I of the indices of the rows of A can be partitioned into two subsets I 1 and I 2 such that, for each column j with two nonzero coefficients, we have i I 1 a ij i I 2 a ij = 0. N.B.: If a column has two nonzero coefficients of the same (different) sign, their rows must belong to different subsets (same subset) of indices I 1 and I 2. Proof: Suppose A is not TU, and let Q be a smallest squared submatrix of A among those with det(q) / { 1, 0, 1}. Q cannot contain a column with a single nonzero coefficient, otherwise Q would not be minimal. Thus, each column of Q contains exactly two nonzero coefficients. According to (iii), i I 1 a ij i I 2 a ij = 0 and hence, since a ij = 0 for every column j of Q and every row i not in Q, we would have det(q) = 0, which is a contradiction. Examples of TU matrices (not) satisfying these conditions: Edoardo Amaldi (PoliMI) Optimization A.Y / 14
8 Characterization of TU matrices Theorem 2: An m n matrix A with integer coefficients is TU if and only if each subset I I = {1,..., m} of indices of the rows of A can be partitioned into two subsets I 1 and I 2 such that the sum of the rows in I 1 minus the sum of the rows in I 2 is a vector with all components in { 1, 0, 1}, that is i I 1 a ij i I 2 a ij 1 for every column j. From the ILP point of view, when the matrix A is TU it suffices to solve the linear relaxation. In some sense also the converse is true: Proposition: The linear program min{c t x : Ax = b, x R n +} has an optimal integer solution for any integer vector b for which it admits a finite optimal solution if and only if A is TU. It can be shown that, given A and a basis B with det(b) 1, there always exists a LP min{c t x : Ax = b, x R n +}, for appropriate c and b, with a fractional optimal solution. Edoardo Amaldi (PoliMI) Optimization A.Y / 14
9 3.3.2 Examples of natural formulations that are ideal 1) Assignment problem Given n jobs and n machines with costs c ij for all i, j {1,..., n}, decide which job to assign to which machine so as to minimize the total cost to complete all the jobs. ILP formulation: min n i=1 n j=1 c ijx ij n i=1 x ij = 1 j (2) n j=1 x ij = 1 i (3) x ij {0, 1} i, j where x ij = 1 if ith job is assigned to jth machine, with 1 i, j n. N.B.: In the linear relaxation, x ij 0 i, j suffice, because (2)(3) imply x ij 1 i, j. Property: The matrix of constraints (2)(3) is TU. In the sufficient conditions for TU, just take I 1 = {1,..., n} and I 2 = {n + 1,..., 2n}. Consequence: Each extreme point of the feasible region of the linear relaxation is integer, and the formulation is ideal. Edoardo Amaldi (PoliMI) Optimization A.Y / 14
10 2) Transportation problem Suppose there is a single type of product. Given m production plants (1 i m) n clients (1 j n) c ij = transportation cost of one unit of product from plant i to client j p i = maximum amount that can be produced (capacity) at plant i d j = demand of client j q ij = maximum amount that can be transported from plant i to client j determine a transportation plan so as to minimize total transportation costs while satisfying all client demands and all the plant capacity constraints. Assumption: m i=1 p i n j=1 d j (to guarantee feasibility) Without loss of generality, we can assume that m i=1 p i = n j=1 d j. Edoardo Amaldi (PoliMI) Optimization A.Y / 14
11 Natural ILP formulation: Decision variables: x ij = amount of product transported from plant i to client j, with 1 i m and 1 j n min m i=1 n j=1 c ijx ij n j=1 x ij p i i (4) m i=1 x ij d j j (5) x ij q ij i, j (6) x ij 0 integer i, j Property: The matrix of constraints (4)(6) is TU. Proof: Put the problem in consistent inequality form by multiplying all constraints (4) and (6) by 1. Since the matrix of the demand and capacity constraints is TU, we just apply the Corollary. Consequence: If all p i, d j and q ij are integer, every extreme point of the feasible region of the linear relaxation is integer and, hence, the formulation is ideal. Edoardo Amaldi (PoliMI) Optimization A.Y / 14
12 3) Minimum cost flow problem Given a directed graph G = (V, A) with a capacity u ij and a unit cost c ij for each arc (i, j) A, and a demand/availability b i for each node i V (b i < 0 for sources, b i > 0 for destinations, and i V b i = 0), determine a feasible flow of minimum total cost which satisfies all the demands. Natutal ILP formulation: min (i,j) A c ijx ij (h,i) δ (i) x hi (i,j) δ + (i) x ij = b i i V (7) x ij u ij (i, j) A (8) x ij 0 integer (i, j) A where δ + (i) = {(i, j) A : j V } and δ (i) = {(h, i) A : h V }. Property: The matrix of constraints (7)(8) is TU. Proof: The n A nodearc incidence matrix of the directed graph is TU since it contains exactly one 1 and one 1 per column (take I 1 = I and I 2 = ). The matrix obtained by juxtaposing to A the identity matrix I A A of the capacity constraints (8) is also TU. Edoardo Amaldi (PoliMI) Optimization A.Y / 14
13 Consequence: If the demands/availabilities b i and the capacities u ij are integer, every extreme point is integer and, thus, the formulation is ideal. Exercise: Show that the following wellknown combinatorial optimization problems are special cases of the Min cost flow problem.  Shortest path: Given a directed graph G = (V, A) with a cost c ij associated to each arc (i, j) A, and two prescribed nodes s and t, determine a minimum cost path from s to t.  Maximum flow: Given a directed graph G = (V, A) with a capacity u ij associated to each arc (i, j) A, a source s and a sink t, determine a feasible flow of maximum value from s to t. Edoardo Amaldi (PoliMI) Optimization A.Y / 14
14 Rounding optimal solutions of the linear relaxation In general, when the constraint matrix of an ILP is not TU, the optimal solution x PL of its linear relaxation is fractional. As a first attempt to derive a suboptimal solution of the ILP, we may try to round each fractional component of x PL to the closest integer value. However the rounded solution are often infeasible for the ILP, even if the rounded solution is feasible for the ILP, the error with respect to an optimal ILP solution may be arbitrarily large. In general, by rounding x PL we obtain a good approximation of the optimal solution only when the components of x PL have large values. Illustration of the different cases: Edoardo Amaldi (PoliMI) Optimization A.Y / 14
5 INTEGER LINEAR PROGRAMMING (ILP) E. Amaldi Fondamenti di R.O. Politecnico di Milano 1
5 INTEGER LINEAR PROGRAMMING (ILP) E. Amaldi Fondamenti di R.O. Politecnico di Milano 1 General Integer Linear Program: (ILP) min c T x Ax b x 0 integer Assumption: A, b integer The integrality condition
More information. P. 4.3 Basic feasible solutions and vertices of polyhedra. x 1. x 2
4. Basic feasible solutions and vertices of polyhedra Due to the fundamental theorem of Linear Programming, to solve any LP it suffices to consider the vertices (finitely many) of the polyhedron P of the
More informationWeek 5 Integral Polyhedra
Week 5 Integral Polyhedra We have seen some examples 1 of linear programming formulation that are integral, meaning that every basic feasible solution is an integral vector. This week we develop a theory
More informationLecture 3: Linear Programming Relaxations and Rounding
Lecture 3: Linear Programming Relaxations and Rounding 1 Approximation Algorithms and Linear Relaxations For the time being, suppose we have a minimization problem. Many times, the problem at hand can
More information3. Linear Programming and Polyhedral Combinatorics
Massachusetts Institute of Technology Handout 6 18.433: Combinatorial Optimization February 20th, 2009 Michel X. Goemans 3. Linear Programming and Polyhedral Combinatorics Summary of what was seen in the
More information10. Graph Matrices Incidence Matrix
10 Graph Matrices Since a graph is completely determined by specifying either its adjacency structure or its incidence structure, these specifications provide far more efficient ways of representing a
More informationDeterminants. Dr. Doreen De Leon Math 152, Fall 2015
Determinants Dr. Doreen De Leon Math 52, Fall 205 Determinant of a Matrix Elementary Matrices We will first discuss matrices that can be used to produce an elementary row operation on a given matrix A.
More informationMinimally Infeasible Set Partitioning Problems with Balanced Constraints
Minimally Infeasible Set Partitioning Problems with alanced Constraints Michele Conforti, Marco Di Summa, Giacomo Zambelli January, 2005 Revised February, 2006 Abstract We study properties of systems of
More informationMATRIX ALGEBRA AND SYSTEMS OF EQUATIONS. + + x 2. x n. a 11 a 12 a 1n b 1 a 21 a 22 a 2n b 2 a 31 a 32 a 3n b 3. a m1 a m2 a mn b m
MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS 1. SYSTEMS OF EQUATIONS AND MATRICES 1.1. Representation of a linear system. The general system of m equations in n unknowns can be written a 11 x 1 + a 12 x 2 +
More information1 Determinants. Definition 1
Determinants The determinant of a square matrix is a value in R assigned to the matrix, it characterizes matrices which are invertible (det 0) and is related to the volume of a parallelpiped described
More informationMinimize subject to. x S R
Chapter 12 Lagrangian Relaxation This chapter is mostly inspired by Chapter 16 of [1]. In the previous chapters, we have succeeded to find efficient algorithms to solve several important problems such
More informationMATRIX ALGEBRA AND SYSTEMS OF EQUATIONS
MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS Systems of Equations and Matrices Representation of a linear system The general system of m equations in n unknowns can be written a x + a 2 x 2 + + a n x n b a
More information4.6 Linear Programming duality
4.6 Linear Programming duality To any minimization (maximization) LP we can associate a closely related maximization (minimization) LP. Different spaces and objective functions but in general same optimal
More informationApproximation Algorithms: LP Relaxation, Rounding, and Randomized Rounding Techniques. My T. Thai
Approximation Algorithms: LP Relaxation, Rounding, and Randomized Rounding Techniques My T. Thai 1 Overview An overview of LP relaxation and rounding method is as follows: 1. Formulate an optimization
More informationPermutation Betting Markets: Singleton Betting with Extra Information
Permutation Betting Markets: Singleton Betting with Extra Information Mohammad Ghodsi Sharif University of Technology ghodsi@sharif.edu Hamid Mahini Sharif University of Technology mahini@ce.sharif.edu
More information(a) The transpose of a lower triangular matrix is upper triangular, and the transpose of an upper triangular matrix is lower triangular.
Theorem.7.: (Properties of Triangular Matrices) (a) The transpose of a lower triangular matrix is upper triangular, and the transpose of an upper triangular matrix is lower triangular. (b) The product
More informationApproximation Algorithms
Approximation Algorithms or: How I Learned to Stop Worrying and Deal with NPCompleteness Ong Jit Sheng, Jonathan (A0073924B) March, 2012 Overview Key Results (I) General techniques: Greedy algorithms
More information2.3 Convex Constrained Optimization Problems
42 CHAPTER 2. FUNDAMENTAL CONCEPTS IN CONVEX OPTIMIZATION Theorem 15 Let f : R n R and h : R R. Consider g(x) = h(f(x)) for all x R n. The function g is convex if either of the following two conditions
More informationLecture 3: Finding integer solutions to systems of linear equations
Lecture 3: Finding integer solutions to systems of linear equations Algorithmic Number Theory (Fall 2014) Rutgers University Swastik Kopparty Scribe: Abhishek Bhrushundi 1 Overview The goal of this lecture
More informationApplied Algorithm Design Lecture 5
Applied Algorithm Design Lecture 5 Pietro Michiardi Eurecom Pietro Michiardi (Eurecom) Applied Algorithm Design Lecture 5 1 / 86 Approximation Algorithms Pietro Michiardi (Eurecom) Applied Algorithm Design
More informationPractical Guide to the Simplex Method of Linear Programming
Practical Guide to the Simplex Method of Linear Programming Marcel Oliver Revised: April, 0 The basic steps of the simplex algorithm Step : Write the linear programming problem in standard form Linear
More informationNotes on Determinant
ENGG2012B Advanced Engineering Mathematics Notes on Determinant Lecturer: Kenneth Shum Lecture 918/02/2013 The determinant of a system of linear equations determines whether the solution is unique, without
More informationSolution. Area(OABC) = Area(OAB) + Area(OBC) = 1 2 det( [ 5 2 1 2. Question 2. Let A = (a) Calculate the nullspace of the matrix A.
Solutions to Math 30 Takehome prelim Question. Find the area of the quadrilateral OABC on the figure below, coordinates given in brackets. [See pp. 60 63 of the book.] y C(, 4) B(, ) A(5, ) O x Area(OABC)
More informationLinear Programming. March 14, 2014
Linear Programming March 1, 01 Parts of this introduction to linear programming were adapted from Chapter 9 of Introduction to Algorithms, Second Edition, by Cormen, Leiserson, Rivest and Stein [1]. 1
More informationScheduling and (Integer) Linear Programming
Scheduling and (Integer) Linear Programming Christian Artigues LAAS  CNRS & Université de Toulouse, France artigues@laas.fr Master Class CPAIOR 2012  Nantes Christian Artigues Scheduling and (Integer)
More informationSystems of Linear Equations
Systems of Linear Equations Beifang Chen Systems of linear equations Linear systems A linear equation in variables x, x,, x n is an equation of the form a x + a x + + a n x n = b, where a, a,, a n and
More information2.1: Determinants by Cofactor Expansion. Math 214 Chapter 2 Notes and Homework. Evaluate a Determinant by Expanding by Cofactors
2.1: Determinants by Cofactor Expansion Math 214 Chapter 2 Notes and Homework Determinants The minor M ij of the entry a ij is the determinant of the submatrix obtained from deleting the i th row and the
More informationDETERMINANTS. b 2. x 2
DETERMINANTS 1 Systems of two equations in two unknowns A system of two equations in two unknowns has the form a 11 x 1 + a 12 x 2 = b 1 a 21 x 1 + a 22 x 2 = b 2 This can be written more concisely in
More informationLecture 7: Approximation via Randomized Rounding
Lecture 7: Approximation via Randomized Rounding Often LPs return a fractional solution where the solution x, which is supposed to be in {0, } n, is in [0, ] n instead. There is a generic way of obtaining
More informationUNIT 2 MATRICES  I 2.0 INTRODUCTION. Structure
UNIT 2 MATRICES  I Matrices  I Structure 2.0 Introduction 2.1 Objectives 2.2 Matrices 2.3 Operation on Matrices 2.4 Invertible Matrices 2.5 Systems of Linear Equations 2.6 Answers to Check Your Progress
More informationLecture 11. Shuanglin Shao. October 2nd and 7th, 2013
Lecture 11 Shuanglin Shao October 2nd and 7th, 2013 Matrix determinants: addition. Determinants: multiplication. Adjoint of a matrix. Cramer s rule to solve a linear system. Recall that from the previous
More informationSukGeun Hwang and JinWoo Park
Bull. Korean Math. Soc. 43 (2006), No. 3, pp. 471 478 A NOTE ON PARTIAL SIGNSOLVABILITY SukGeun Hwang and JinWoo Park Abstract. In this paper we prove that if Ax = b is a partial signsolvable linear
More informationDiscuss the size of the instance for the minimum spanning tree problem.
3.1 Algorithm complexity The algorithms A, B are given. The former has complexity O(n 2 ), the latter O(2 n ), where n is the size of the instance. Let n A 0 be the size of the largest instance that can
More information2.5 Elementary Row Operations and the Determinant
2.5 Elementary Row Operations and the Determinant Recall: Let A be a 2 2 matrtix : A = a b. The determinant of A, denoted by det(a) c d or A, is the number ad bc. So for example if A = 2 4, det(a) = 2(5)
More informationMatrix Algebra 2.3 CHARACTERIZATIONS OF INVERTIBLE MATRICES Pearson Education, Inc.
2 Matrix Algebra 2.3 CHARACTERIZATIONS OF INVERTIBLE MATRICES Theorem 8: Let A be a square matrix. Then the following statements are equivalent. That is, for a given A, the statements are either all true
More informationLinear Algebra Notes
Linear Algebra Notes Chapter 19 KERNEL AND IMAGE OF A MATRIX Take an n m matrix a 11 a 12 a 1m a 21 a 22 a 2m a n1 a n2 a nm and think of it as a function A : R m R n The kernel of A is defined as Note
More informationInverse Optimization by James Orlin
Inverse Optimization by James Orlin based on research that is joint with Ravi Ahuja Jeopardy 000  the Math Programming Edition The category is linear objective functions The answer: When you maximize
More informationMath 115A HW4 Solutions University of California, Los Angeles. 5 2i 6 + 4i. (5 2i)7i (6 + 4i)( 3 + i) = 35i + 14 ( 22 6i) = 36 + 41i.
Math 5A HW4 Solutions September 5, 202 University of California, Los Angeles Problem 4..3b Calculate the determinant, 5 2i 6 + 4i 3 + i 7i Solution: The textbook s instructions give us, (5 2i)7i (6 + 4i)(
More informationMATH36001 Background Material 2015
MATH3600 Background Material 205 Matrix Algebra Matrices and Vectors An ordered array of mn elements a ij (i =,, m; j =,, n) written in the form a a 2 a n A = a 2 a 22 a 2n a m a m2 a mn is said to be
More informationCofactor Expansion: Cramer s Rule
Cofactor Expansion: Cramer s Rule MATH 322, Linear Algebra I J. Robert Buchanan Department of Mathematics Spring 2015 Introduction Today we will focus on developing: an efficient method for calculating
More informationVector Spaces II: Finite Dimensional Linear Algebra 1
John Nachbar September 2, 2014 Vector Spaces II: Finite Dimensional Linear Algebra 1 1 Definitions and Basic Theorems. For basic properties and notation for R N, see the notes Vector Spaces I. Definition
More informationPermutation Betting Markets: Singleton Betting with Extra Information
Permutation Betting Markets: Singleton Betting with Extra Information Mohammad Ghodsi Sharif University of Technology ghodsi@sharif.edu Hamid Mahini Sharif University of Technology mahini@ce.sharif.edu
More information1 Orthogonal projections and the approximation
Math 1512 Fall 2010 Notes on least squares approximation Given n data points (x 1, y 1 ),..., (x n, y n ), we would like to find the line L, with an equation of the form y = mx + b, which is the best fit
More informationMATH 304 Linear Algebra Lecture 18: Rank and nullity of a matrix.
MATH 304 Linear Algebra Lecture 18: Rank and nullity of a matrix. Nullspace Let A = (a ij ) be an m n matrix. Definition. The nullspace of the matrix A, denoted N(A), is the set of all ndimensional column
More informationInverses and powers: Rules of Matrix Arithmetic
Contents 1 Inverses and powers: Rules of Matrix Arithmetic 1.1 What about division of matrices? 1.2 Properties of the Inverse of a Matrix 1.2.1 Theorem (Uniqueness of Inverse) 1.2.2 Inverse Test 1.2.3
More informationTransportation Polytopes: a Twenty year Update
Transportation Polytopes: a Twenty year Update Jesús Antonio De Loera University of California, Davis Based on various papers joint with R. Hemmecke, E.Kim, F. Liu, U. Rothblum, F. Santos, S. Onn, R. Yoshida,
More informationGRAPH THEORY and APPLICATIONS. Trees
GRAPH THEORY and APPLICATIONS Trees Properties Tree: a connected graph with no cycle (acyclic) Forest: a graph with no cycle Paths are trees. Star: A tree consisting of one vertex adjacent to all the others.
More informationCOMBINATORIAL PROPERTIES OF THE HIGMANSIMS GRAPH. 1. Introduction
COMBINATORIAL PROPERTIES OF THE HIGMANSIMS GRAPH ZACHARY ABEL 1. Introduction In this survey we discuss properties of the HigmanSims graph, which has 100 vertices, 1100 edges, and is 22 regular. In fact
More information2.3 Scheduling jobs on identical parallel machines
2.3 Scheduling jobs on identical parallel machines There are jobs to be processed, and there are identical machines (running in parallel) to which each job may be assigned Each job = 1,,, must be processed
More informationNotes on Matrix Multiplication and the Transitive Closure
ICS 6D Due: Wednesday, February 25, 2015 Instructor: Sandy Irani Notes on Matrix Multiplication and the Transitive Closure An n m matrix over a set S is an array of elements from S with n rows and m columns.
More informationLinear Codes. In the V[n,q] setting, the terms word and vector are interchangeable.
Linear Codes Linear Codes In the V[n,q] setting, an important class of codes are the linear codes, these codes are the ones whose code words form a subvector space of V[n,q]. If the subspace of V[n,q]
More informationMATH 240 Fall, Chapter 1: Linear Equations and Matrices
MATH 240 Fall, 2007 Chapter Summaries for Kolman / Hill, Elementary Linear Algebra, 9th Ed. written by Prof. J. Beachy Sections 1.1 1.5, 2.1 2.3, 4.2 4.9, 3.1 3.5, 5.3 5.5, 6.1 6.3, 6.5, 7.1 7.3 DEFINITIONS
More informationAPPLICATIONS OF MATRICES. Adj A is nothing but the transpose of the cofactor matrix [A ij ] of A.
APPLICATIONS OF MATRICES ADJOINT: Let A = [a ij ] be a square matrix of order n. Let Aij be the cofactor of a ij. Then the n th order matrix [A ij ] T is called the adjoint of A. It is denoted by adj
More informationDefinition of a Linear Program
Definition of a Linear Program Definition: A function f(x 1, x,..., x n ) of x 1, x,..., x n is a linear function if and only if for some set of constants c 1, c,..., c n, f(x 1, x,..., x n ) = c 1 x 1
More informationUniversity of Lille I PC first year list of exercises n 7. Review
University of Lille I PC first year list of exercises n 7 Review Exercise Solve the following systems in 4 different ways (by substitution, by the Gauss method, by inverting the matrix of coefficients
More informationTopic 1: Matrices and Systems of Linear Equations.
Topic 1: Matrices and Systems of Linear Equations Let us start with a review of some linear algebra concepts we have already learned, such as matrices, determinants, etc Also, we shall review the method
More informationWhat is Linear Programming?
Chapter 1 What is Linear Programming? An optimization problem usually has three essential ingredients: a variable vector x consisting of a set of unknowns to be determined, an objective function of x to
More informationUnit 18 Determinants
Unit 18 Determinants Every square matrix has a number associated with it, called its determinant. In this section, we determine how to calculate this number, and also look at some of the properties of
More informationContinued Fractions and the Euclidean Algorithm
Continued Fractions and the Euclidean Algorithm Lecture notes prepared for MATH 326, Spring 997 Department of Mathematics and Statistics University at Albany William F Hammond Table of Contents Introduction
More information1 Introduction. Linear Programming. Questions. A general optimization problem is of the form: choose x to. max f(x) subject to x S. where.
Introduction Linear Programming Neil Laws TT 00 A general optimization problem is of the form: choose x to maximise f(x) subject to x S where x = (x,..., x n ) T, f : R n R is the objective function, S
More informationThe Dirichlet Unit Theorem
Chapter 6 The Dirichlet Unit Theorem As usual, we will be working in the ring B of algebraic integers of a number field L. Two factorizations of an element of B are regarded as essentially the same if
More informationLinear Algebra Test 2 Review by JC McNamara
Linear Algebra Test 2 Review by JC McNamara 2.3 Properties of determinants: det(a T ) = det(a) det(ka) = k n det(a) det(a + B) det(a) + det(b) (In some cases this is true but not always) A is invertible
More informationMathematics Course 111: Algebra I Part IV: Vector Spaces
Mathematics Course 111: Algebra I Part IV: Vector Spaces D. R. Wilkins Academic Year 19967 9 Vector Spaces A vector space over some field K is an algebraic structure consisting of a set V on which are
More informationChapter 11. 11.1 Load Balancing. Approximation Algorithms. Load Balancing. Load Balancing on 2 Machines. Load Balancing: Greedy Scheduling
Approximation Algorithms Chapter Approximation Algorithms Q. Suppose I need to solve an NPhard problem. What should I do? A. Theory says you're unlikely to find a polytime algorithm. Must sacrifice one
More informationChapter 4. Trees. 4.1 Basics
Chapter 4 Trees 4.1 Basics A tree is a connected graph with no cycles. A forest is a collection of trees. A vertex of degree one, particularly in a tree, is called a leaf. Trees arise in a variety of applications.
More informationThe Graphical Simplex Method: An Example
The Graphical Simplex Method: An Example Consider the following linear program: Max 4x 1 +3x Subject to: x 1 +3x 6 (1) 3x 1 +x 3 () x 5 (3) x 1 +x 4 (4) x 1, x 0. Goal: produce a pair of x 1 and x that
More informationCHAPTER 9. Integer Programming
CHAPTER 9 Integer Programming An integer linear program (ILP) is, by definition, a linear program with the additional constraint that all variables take integer values: (9.1) max c T x s t Ax b and x integral
More informationINTEGER PROGRAMMING. Integer Programming. Prototype example. BIP model. BIP models
Integer Programming INTEGER PROGRAMMING In many problems the decision variables must have integer values. Example: assign people, machines, and vehicles to activities in integer quantities. If this is
More informationLinear Dependence Tests
Linear Dependence Tests The book omits a few key tests for checking the linear dependence of vectors. These short notes discuss these tests, as well as the reasoning behind them. Our first test checks
More informationTheorem A graph T is a tree if, and only if, every two distinct vertices of T are joined by a unique path.
Chapter 3 Trees Section 3. Fundamental Properties of Trees Suppose your city is planning to construct a rapid rail system. They want to construct the most economical system possible that will meet the
More informationAlgorithm Design and Analysis
Algorithm Design and Analysis LECTURE 27 Approximation Algorithms Load Balancing Weighted Vertex Cover Reminder: Fill out SRTEs online Don t forget to click submit Sofya Raskhodnikova 12/6/2011 S. Raskhodnikova;
More information! Solve problem to optimality. ! Solve problem in polytime. ! Solve arbitrary instances of the problem. #approximation algorithm.
Approximation Algorithms 11 Approximation Algorithms Q Suppose I need to solve an NPhard problem What should I do? A Theory says you're unlikely to find a polytime algorithm Must sacrifice one of three
More information5.3 Determinants and Cramer s Rule
290 5.3 Determinants and Cramer s Rule Unique Solution of a 2 2 System The 2 2 system (1) ax + by = e, cx + dy = f, has a unique solution provided = ad bc is nonzero, in which case the solution is given
More informationAu = = = 3u. Aw = = = 2w. so the action of A on u and w is very easy to picture: it simply amounts to a stretching by 3 and 2, respectively.
Chapter 7 Eigenvalues and Eigenvectors In this last chapter of our exploration of Linear Algebra we will revisit eigenvalues and eigenvectors of matrices, concepts that were already introduced in Geometry
More informationMath 4707: Introduction to Combinatorics and Graph Theory
Math 4707: Introduction to Combinatorics and Graph Theory Lecture Addendum, November 3rd and 8th, 200 Counting Closed Walks and Spanning Trees in Graphs via Linear Algebra and Matrices Adjacency Matrices
More informationMatrix Norms. Tom Lyche. September 28, Centre of Mathematics for Applications, Department of Informatics, University of Oslo
Matrix Norms Tom Lyche Centre of Mathematics for Applications, Department of Informatics, University of Oslo September 28, 2009 Matrix Norms We consider matrix norms on (C m,n, C). All results holds for
More informationScheduling Shop Scheduling. Tim Nieberg
Scheduling Shop Scheduling Tim Nieberg Shop models: General Introduction Remark: Consider non preemptive problems with regular objectives Notation Shop Problems: m machines, n jobs 1,..., n operations
More informationMatrix Inverse and Determinants
DM554 Linear and Integer Programming Lecture 5 and Marco Chiarandini Department of Mathematics & Computer Science University of Southern Denmark Outline 1 2 3 4 and Cramer s rule 2 Outline 1 2 3 4 and
More informationMath 315: Linear Algebra Solutions to Midterm Exam I
Math 35: Linear Algebra s to Midterm Exam I # Consider the following two systems of linear equations (I) ax + by = k cx + dy = l (II) ax + by = 0 cx + dy = 0 (a) Prove: If x = x, y = y and x = x 2, y =
More informationORDERS OF ELEMENTS IN A GROUP
ORDERS OF ELEMENTS IN A GROUP KEITH CONRAD 1. Introduction Let G be a group and g G. We say g has finite order if g n = e for some positive integer n. For example, 1 and i have finite order in C, since
More informationPartitioning edgecoloured complete graphs into monochromatic cycles and paths
arxiv:1205.5492v1 [math.co] 24 May 2012 Partitioning edgecoloured complete graphs into monochromatic cycles and paths Alexey Pokrovskiy Departement of Mathematics, London School of Economics and Political
More informationMATH 304 Linear Algebra Lecture 8: Inverse matrix (continued). Elementary matrices. Transpose of a matrix.
MATH 304 Linear Algebra Lecture 8: Inverse matrix (continued). Elementary matrices. Transpose of a matrix. Inverse matrix Definition. Let A be an n n matrix. The inverse of A is an n n matrix, denoted
More informationHomework MA 725 Spring, 2012 C. Huneke SELECTED ANSWERS
Homework MA 725 Spring, 2012 C. Huneke SELECTED ANSWERS 1.1.25 Prove that the Petersen graph has no cycle of length 7. Solution: There are 10 vertices in the Petersen graph G. Assume there is a cycle C
More informationMATHEMATICS (CLASSES XI XII)
MATHEMATICS (CLASSES XI XII) General Guidelines (i) All concepts/identities must be illustrated by situational examples. (ii) The language of word problems must be clear, simple and unambiguous. (iii)
More informationChapter 8. Matrices II: inverses. 8.1 What is an inverse?
Chapter 8 Matrices II: inverses We have learnt how to add subtract and multiply matrices but we have not defined division. The reason is that in general it cannot always be defined. In this chapter, we
More informationNOTES ON LINEAR TRANSFORMATIONS
NOTES ON LINEAR TRANSFORMATIONS Definition 1. Let V and W be vector spaces. A function T : V W is a linear transformation from V to W if the following two properties hold. i T v + v = T v + T v for all
More informationDiscrete (and Continuous) Optimization Solutions of Exercises 1 WI4 131
Discrete (and Continuous) Optimization Solutions of Exercises 1 WI4 131 Kees Roos Technische Universiteit Delft Faculteit Informatietechnologie en Systemen Afdeling Informatie, Systemen en Algoritmiek
More informationName: Section Registered In:
Name: Section Registered In: Math 125 Exam 3 Version 1 April 24, 2006 60 total points possible 1. (5pts) Use Cramer s Rule to solve 3x + 4y = 30 x 2y = 8. Be sure to show enough detail that shows you are
More informationMinimum Makespan Scheduling
Minimum Makespan Scheduling Minimum makespan scheduling: Definition and variants Factor 2 algorithm for identical machines PTAS for identical machines Factor 2 algorithm for unrelated machines Martin Zachariasen,
More informationFactorization Theorems
Chapter 7 Factorization Theorems This chapter highlights a few of the many factorization theorems for matrices While some factorization results are relatively direct, others are iterative While some factorization
More informationFacts About Eigenvalues
Facts About Eigenvalues By Dr David Butler Definitions Suppose A is an n n matrix An eigenvalue of A is a number λ such that Av = λv for some nonzero vector v An eigenvector of A is a nonzero vector v
More information160 CHAPTER 4. VECTOR SPACES
160 CHAPTER 4. VECTOR SPACES 4. Rank and Nullity In this section, we look at relationships between the row space, column space, null space of a matrix and its transpose. We will derive fundamental results
More informationSYSTEMS OF EQUATIONS
SYSTEMS OF EQUATIONS 1. Examples of systems of equations Here are some examples of systems of equations. Each system has a number of equations and a number (not necessarily the same) of variables for which
More informationSHARP BOUNDS FOR THE SUM OF THE SQUARES OF THE DEGREES OF A GRAPH
31 Kragujevac J. Math. 25 (2003) 31 49. SHARP BOUNDS FOR THE SUM OF THE SQUARES OF THE DEGREES OF A GRAPH Kinkar Ch. Das Department of Mathematics, Indian Institute of Technology, Kharagpur 721302, W.B.,
More informationChapter 3 LINEAR PROGRAMMING GRAPHICAL SOLUTION 3.1 SOLUTION METHODS 3.2 TERMINOLOGY
Chapter 3 LINEAR PROGRAMMING GRAPHICAL SOLUTION 3.1 SOLUTION METHODS Once the problem is formulated by setting appropriate objective function and constraints, the next step is to solve it. Solving LPP
More information! Solve problem to optimality. ! Solve problem in polytime. ! Solve arbitrary instances of the problem. !approximation algorithm.
Approximation Algorithms Chapter Approximation Algorithms Q Suppose I need to solve an NPhard problem What should I do? A Theory says you're unlikely to find a polytime algorithm Must sacrifice one of
More informationINTRODUCTORY LINEAR ALGEBRA WITH APPLICATIONS B. KOLMAN, D. R. HILL
SOLUTIONS OF THEORETICAL EXERCISES selected from INTRODUCTORY LINEAR ALGEBRA WITH APPLICATIONS B. KOLMAN, D. R. HILL Eighth Edition, Prentice Hall, 2005. Dr. Grigore CĂLUGĂREANU Department of Mathematics
More information3 Does the Simplex Algorithm Work?
Does the Simplex Algorithm Work? In this section we carefully examine the simplex algorithm introduced in the previous chapter. Our goal is to either prove that it works, or to determine those circumstances
More information1 Determinants and the Solvability of Linear Systems
1 Determinants and the Solvability of Linear Systems In the last section we learned how to use Gaussian elimination to solve linear systems of n equations in n unknowns The section completely sidestepped
More informationLecture 3. Linear Programming. 3B1B Optimization Michaelmas 2015 A. Zisserman. Extreme solutions. Simplex method. Interior point method
Lecture 3 3B1B Optimization Michaelmas 2015 A. Zisserman Linear Programming Extreme solutions Simplex method Interior point method Integer programming and relaxation The Optimization Tree Linear Programming
More information