Stage 1: Integrate significant concept, area of interaction and unit question, and ensure it can be assessed

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Stage 1: Integrate significant concept, area of interaction and unit question, and ensure it can be assessed"

Transcription

1 MYP unit planner Unit Title Teacher(s) The Shapes Around Us Martin, Mitchell, Rieder, Roland, Hutson Subject and Grade Level Geometry Level 5 Time frame and Duration First Six Weeks Stage 1: Integrate significant concept, area of interaction and unit question, and ensure it can be assessed Area of Interaction Focus Which AoI will be your focus? Why have you chosen this? Environment Significant Concept(s) What are the big ideas? What do I want my students to retain for years into the future? Building Blocks of geometry, reasoning, transformations MYP Unit Question If you were dropped off anywhere in the Metroplex, could you find your way home? Assessment What task(s) will allow students the opportunity to respond to the unit question? What will constitute acceptable evidence of understanding? How will students show what they have understood? Geometry in the Real World Project (A real-life problem where students are given the opportunity to apply mathematics to a real life context, reflect upon and evaluate their findings.) (Criterion D is strongly recommended as one of the criteria used to assess this task.) Six Weeks Test Which specific MYP objectives will be addressed during this unit? Criterion A: Knowledge and Understanding. _ _A1: Know and demonstrate understanding of the concepts from the 5 branches of mathematics (number, algebra, geometry, statics, and discrete)

2 _ _A2: Use appropriate math concepts and skills to solve problems in familiar and unfamiliar contexts A3: Select and apply general rules to solve problems correctly, including those in a real-life context. Criterion B: Investigating Patterns B1: Select and apply appropriate inquiry and problem solving techniques. _ _B2: Recognize patterns _ _B3: Describe patterns as a relationship or general rule _ _B4: Draw conclusions consistent with findings. B5: Justify or prove mathematical relationships and general rules. Criterion C: Communication in Mathematics _ _C1: Use appropriate math language in both oral and written explanations. _ _C2: Use different forms of mathematical representations (charts, formulae, graphs, diagrams, and models) _ _C3: Communicate and complete and coherent mathematical line of reasoning using different forms of representation when investigating complex problems. Criterion D: Reflection in Mathematics _ _D1: Explain whether results make sense within the context of the problem _ _D2: Explain the importance of findings _ _D3: Justify the degree of accuracy of results where appropriate D4: Suggest improvements to the method when necessary. Which MYP assessment criteria will be used? Criterion C and D Stage 2: Backward planning: from the assessment to the learning activities through inquiry Content What knowledge and/or skills (from my course overview) are going to be used to enable the student to respond to the guiding question? What (if any) state, provincial, district, or local standards/skills are to be addressed? G.1A The student is expected to develop an awareness of the structure of a mathematical system, connecting definitions, postulates, logical reasoning, and theorems. G.2A The student is expected to explore attributes of geometric figures and to make conjectures about geometric relationships. G.2B The student is expected to make conjectures about angles, lines, polygons, circles, and three-dimensional figures and determine the validity of the conjectures, choosing from a variety of approaches such as coordinate, transformational, or axiomatic. G.3A The student is expected to determine the validity of a conditional statement, its converse, inverse, and contrapositive. G.3B The student is expected to construct and justify statements about geometric figures and their properties. G.3C The student is expected to use logical reasoning to prove statements are true and find counter examples to disprove statements that are false. G.3D The student is expected to use inductive reasoning to formulate a conjecture. G.3E The student is expected to use deductive reasoning to prove a statement. G.3C The student is expected to use logical reasoning to prove statements are true and find counter examples to disprove statements that are false. G.4 The student uses a variety of representations to describe geometric relationships and

3 solve problems. The student is expected to select an appropriate representation (concrete, pictorial, graphical, verbal, or symbolic) in order to solve problems. G.5A The student is expected to use numeric and geometric patterns to develop algebraic expressions representing geometric properties. G.7A The student is expected to use one- and two-dimensional coordinate systems to represent points, lines, rays, line segments, and figures. G.7C The student is expected to derive and use formulas involving length, slope, and midpoint. G.8C The student is expected to derive, extend, and use the Pythagorean Theorem. G.9A The student is expected to formulate and test conjectures about the properties of parallel and perpendicular lines based on explorations and [concrete] models Approaches to Learning How will this unit contribute to the overall development of subject-specific and general AtL skills? Clear thinking is emphasized heavily in the beginning of the year, and students have opportunities to show their clear thinking through showing the math processes through both math language and essay writing form. Guided inquiry to open inquiry This teaches students to ask questions as a problem solving tactic. Discovery Learning: Students will use prior knowledge to develop knew knowledge Learning Experiences How will students know what is expected of them? Will they see examples, rubrics, templates, etc.? How will students acquire the knowledge and practise the skills required? How will they practise applying these? Do the students have enough prior knowledge? Teaching Strategies How will we use formative assessment to give students feedback during the unit? What different teaching methodologies will we employ? How are we differentiating teaching and learning for all? Have we considered those learning in a language other than their mother tongue? Have we considered those with special educational needs? The teacher models an example of the desired outcome for students to see. Other student examples can be displayed from past classes. Clear rubrics, including MYP criteria as well as more specific requirements, will be made and communicated. Students will be participating in activities that require them to communicate, both verbally and written, the math process going on in their minds. Clear expectations for homework and activities will be spoken and written for students. Clear expectations, accountable talk, guided practice / daily practice, cooperative learning, peer review, teacher checking for understanding. Resources What resources are available to us? How will our classroom environment, local environment and/or the community be used to facilitate students experiences during the unit? Holt Geometry, Kagan Geometry, Discovering Geometry, patty paper, protractors, tape, construction

4 paper, scissors, TAKS formula chart, Promethean Board LEARNING ACTIVITIES THAT INCORPORATE THE MYP Area of Interaction, Learner Profile, Inquiry Based Learning, and International Mindedness blended with FWISD Curriculum Requirements. Explain activities in narrative or bullet point format. Do not list daily plans here; activities can last 30 minutes to 3 days. DAY 1 Begin Building Blocks Vocabulary undefined terms line collinear non-collinear intersection point plane coplanar non-coplanar Class-Building Activity Find person closest to your height, ask what is your favorite animal? Direct Instruction Vocab with Table Discuss Intersections of lines and planes Use sticks and cards for lines and planes Pairs Acivity to draw what it says Kagan p. 6 Guided Practice in pairs or fours DAY 2 Segment and Angle Postulates postulate segment ray endpoint opposite rays protractor coordinate distance length between midpoint congruent segments angle vertex segment bisector interior of an angle straight angle exterior of an angle congruent angles angle bisector degree bisect measure Think-Share: 5K Race Checkpoints Patty Paper Activity to discuss midpoint, segment bisector, angle bisector. Geometry Labs -Protractor Practice p. 4-5 Kagan p.8 DAY 3 Characteristics & Properties of Angle Pairs right angle acute angle obtuse angle nonexample complementary angles adjacent angles linear pair vertical angles supplementary angles Assign Shapes in Life Project Angle Sorting Activity Kagan Develop Angle Pair Definitions

5 DAY 4 Distance, Midpoint, Slope Estimate Shortest Distance on city map. Pythagorean Activities Discover Distance & Midpoint Formulas Assign: Moving Troops Progress Check Product Reflection: How are Pythagorean and Distance Formulas related? DAY 5 Induction, Deduction, Conditional Statements Inductive Reasoning Deductive Reasoning Conjecture Counterexample Identify Mathematical Patterns Activity Develop conjectures based on patterns. Develop Conclusions based on Facts Caught Stealing, You are the Jury scenario DAY 6 Conditional Statements Conditional Statements Hypothesis Conclusion If You Give a Pig a Pancake book review Turning statements into Conditional Statements. Turning facts into ordered events and conclusions. DAY 7 Conditional, Converse, Inverse, Contrapositive Review of various advertisemens: Change them into Conditional Statements Venn Diagram on statements. Foldable indicating statements and If P, then Q. Mind Your P s and Q s Activity DAY 8 Linear and Quadratic Patterns Discuss Why important to know patterns as it relates to laying brick around pools. Examples of Linear Patterns and how to determine equations. Examples of Quadratic Patterns, how to distinguish from Linear and determining equations using Stat/Edit function of calculator. Assign Pool Problem Progress Check Product. DAY 9 Identify Angles formed by 2 lines and a transversal parallel lines parallel planes perpendicular lines skew lines transversal alternate interior angles alternate exterior angles same side interior angles same side exterior angles corresponding angles Engage: AMES Room -- Video: Lead into discussion importance of understanding lines/planes relationships. Activity: Diagram/Label angle pairs formed when two lines are cut by a transversal.

6 DAY 10 Parallel Lines cut by a Transversal Kagan, pp Use of Patty Paper also. Students should work in groups of 3 or 4 to discover properties of angle pairs when the 2 lines are parallel. Guided Practice problems using algebra instead of straight angle measurements. DAY 11 Proving Lines Parallel Engage with review of Conditional Statements Discuss the rules of Parallel Lines cut by a transversal and put them in conditional statement format. Develop the inverse of those conditional statements. Introduce two-column proofs to the Inverses to prove lines parallel. Assign large Angle/Lines combination worksheet. Ongoing reflections and evaluation In keeping an ongoing record, consider the following questions. There are further stimulus questions in the unit planning section of MYP: from principles into practice. Students and Teachers What did we find compelling? Was our disciplinary knowledge/skills challenged in any way? What inquiries arose during the learning? What, if any, extension activities arose? How did we reflect both on the unit and on our own learning? Were there any attributes of the learner profile that were encouraged through this unit? Were there any opportunities for action? Possible connections How successful was the collaboration with other teachers within my subject group and from other subject groups? What interdisciplinary understandings were or could be forged through collaboration with other subjects? Assessment Were students able to demonstrate their learning? Did the assessment tasks allow students to demonstrate the learning objectives identified for this unit? Did I make sure students were invited to achieve at all levels of the criteria descriptors? Are we prepared for the next stage? Data collection How did I decide on the data to collect? Was it useful?

Geometry. Unit 1. Transforming and Congruence. Suggested Time Frame 1 st Six Weeks 22 Days

Geometry. Unit 1. Transforming and Congruence. Suggested Time Frame 1 st Six Weeks 22 Days Geometry Unit 1 Transforming and Congruence Title Suggested Time Frame 1 st Six Weeks 22 Days Big Ideas/Enduring Understandings Module 1 Tools of geometry can be used to solve real-world problems. Variety

More information

Module 3 Congruency can be used to solve real-world problems. What happens when you apply more than one transformation to

Module 3 Congruency can be used to solve real-world problems. What happens when you apply more than one transformation to Transforming and Congruence *CISD Safety Net Standards: G.3C, G.4C Title Big Ideas/Enduring Understandings Module 1 Tools of geometry can be used to solve real-world problems. Variety of representations

More information

Geometry: Unit 1 Vocabulary TERM DEFINITION GEOMETRIC FIGURE. Cannot be defined by using other figures.

Geometry: Unit 1 Vocabulary TERM DEFINITION GEOMETRIC FIGURE. Cannot be defined by using other figures. Geometry: Unit 1 Vocabulary 1.1 Undefined terms Cannot be defined by using other figures. Point A specific location. It has no dimension and is represented by a dot. Line Plane A connected straight path.

More information

Chapter 1: Essentials of Geometry

Chapter 1: Essentials of Geometry Section Section Title 1.1 Identify Points, Lines, and Planes 1.2 Use Segments and Congruence 1.3 Use Midpoint and Distance Formulas Chapter 1: Essentials of Geometry Learning Targets I Can 1. Identify,

More information

The Basics: Geometric Structure

The Basics: Geometric Structure Trinity University Digital Commons @ Trinity Understanding by Design: Complete Collection Understanding by Design Summer 6-2015 The Basics: Geometric Structure Danielle Kendrick Trinity University Follow

More information

Geometry Course Summary Department: Math. Semester 1

Geometry Course Summary Department: Math. Semester 1 Geometry Course Summary Department: Math Semester 1 Learning Objective #1 Geometry Basics Targets to Meet Learning Objective #1 Use inductive reasoning to make conclusions about mathematical patterns Give

More information

Curriculum Map by Block Geometry Mapping for Math Block Testing 2007-2008. August 20 to August 24 Review concepts from previous grades.

Curriculum Map by Block Geometry Mapping for Math Block Testing 2007-2008. August 20 to August 24 Review concepts from previous grades. Curriculum Map by Geometry Mapping for Math Testing 2007-2008 Pre- s 1 August 20 to August 24 Review concepts from previous grades. August 27 to September 28 (Assessment to be completed by September 28)

More information

Geometry Essential Curriculum

Geometry Essential Curriculum Geometry Essential Curriculum Unit I: Fundamental Concepts and Patterns in Geometry Goal: The student will demonstrate the ability to use the fundamental concepts of geometry including the definitions

More information

A Different Look at Trapezoid Area Prerequisite Knowledge

A Different Look at Trapezoid Area Prerequisite Knowledge Prerequisite Knowledge Conditional statement an if-then statement (If A, then B) Converse the two parts of the conditional statement are reversed (If B, then A) Parallel lines are lines in the same plane

More information

3.1. Angle Pairs. What s Your Angle? Angle Pairs. ACTIVITY 3.1 Investigative. Activity Focus Measuring angles Angle pairs

3.1. Angle Pairs. What s Your Angle? Angle Pairs. ACTIVITY 3.1 Investigative. Activity Focus Measuring angles Angle pairs SUGGESTED LEARNING STRATEGIES: Think/Pair/Share, Use Manipulatives Two rays with a common endpoint form an angle. The common endpoint is called the vertex. You can use a protractor to draw and measure

More information

Distance, Midpoint, and Pythagorean Theorem

Distance, Midpoint, and Pythagorean Theorem Geometry, Quarter 1, Unit 1.1 Distance, Midpoint, and Pythagorean Theorem Overview Number of instructional days: 8 (1 day = 45 minutes) Content to be learned Find distance and midpoint. (2 days) Identify

More information

55 questions (multiple choice, check all that apply, and fill in the blank) The exam is worth 220 points.

55 questions (multiple choice, check all that apply, and fill in the blank) The exam is worth 220 points. Geometry Core Semester 1 Semester Exam Preparation Look back at the unit quizzes and diagnostics. Use the unit quizzes and diagnostics to determine which topics you need to review most carefully. The unit

More information

acute angle adjacent angles angle bisector between axiom Vocabulary Flash Cards Chapter 1 (p. 39) Chapter 1 (p. 48) Chapter 1 (p.38) Chapter 1 (p.

acute angle adjacent angles angle bisector between axiom Vocabulary Flash Cards Chapter 1 (p. 39) Chapter 1 (p. 48) Chapter 1 (p.38) Chapter 1 (p. Vocabulary Flash ards acute angle adjacent angles hapter 1 (p. 39) hapter 1 (p. 48) angle angle bisector hapter 1 (p.38) hapter 1 (p. 42) axiom between hapter 1 (p. 12) hapter 1 (p. 14) collinear points

More information

2.1. Inductive Reasoning EXAMPLE A

2.1. Inductive Reasoning EXAMPLE A CONDENSED LESSON 2.1 Inductive Reasoning In this lesson you will Learn how inductive reasoning is used in science and mathematics Use inductive reasoning to make conjectures about sequences of numbers

More information

Middle Grades Mathematics 5 9

Middle Grades Mathematics 5 9 Middle Grades Mathematics 5 9 Section 25 1 Knowledge of mathematics through problem solving 1. Identify appropriate mathematical problems from real-world situations. 2. Apply problem-solving strategies

More information

1. A student followed the given steps below to complete a construction. Which type of construction is best represented by the steps given above?

1. A student followed the given steps below to complete a construction. Which type of construction is best represented by the steps given above? 1. A student followed the given steps below to complete a construction. Step 1: Place the compass on one endpoint of the line segment. Step 2: Extend the compass from the chosen endpoint so that the width

More information

Student Name: Teacher: Date: District: Miami-Dade County Public Schools. Assessment: 9_12 Mathematics Geometry Exam 1

Student Name: Teacher: Date: District: Miami-Dade County Public Schools. Assessment: 9_12 Mathematics Geometry Exam 1 Student Name: Teacher: Date: District: Miami-Dade County Public Schools Assessment: 9_12 Mathematics Geometry Exam 1 Description: GEO Topic 1 Test: Tools of Geometry Form: 201 1. A student followed the

More information

1.2 Informal Geometry

1.2 Informal Geometry 1.2 Informal Geometry Mathematical System: (xiomatic System) Undefined terms, concepts: Point, line, plane, space Straightness of a line, flatness of a plane point lies in the interior or the exterior

More information

Final Review Geometry A Fall Semester

Final Review Geometry A Fall Semester Final Review Geometry Fall Semester Multiple Response Identify one or more choices that best complete the statement or answer the question. 1. Which graph shows a triangle and its reflection image over

More information

Chapter 3.1 Angles. Geometry. Objectives: Define what an angle is. Define the parts of an angle.

Chapter 3.1 Angles. Geometry. Objectives: Define what an angle is. Define the parts of an angle. Chapter 3.1 Angles Define what an angle is. Define the parts of an angle. Recall our definition for a ray. A ray is a line segment with a definite starting point and extends into infinity in only one direction.

More information

#2. Isosceles Triangle Theorem says that If a triangle is isosceles, then its BASE ANGLES are congruent.

#2. Isosceles Triangle Theorem says that If a triangle is isosceles, then its BASE ANGLES are congruent. 1 Geometry Proofs Reference Sheet Here are some of the properties that we might use in our proofs today: #1. Definition of Isosceles Triangle says that If a triangle is isosceles then TWO or more sides

More information

GEOMETRY CONCEPT MAP. Suggested Sequence:

GEOMETRY CONCEPT MAP. Suggested Sequence: CONCEPT MAP GEOMETRY August 2011 Suggested Sequence: 1. Tools of Geometry 2. Reasoning and Proof 3. Parallel and Perpendicular Lines 4. Congruent Triangles 5. Relationships Within Triangles 6. Polygons

More information

A Correlation of Pearson Texas Geometry Digital, 2015

A Correlation of Pearson Texas Geometry Digital, 2015 A Correlation of Pearson Texas Geometry Digital, 2015 To the Texas Essential Knowledge and Skills (TEKS) for Geometry, High School, and the Texas English Language Proficiency Standards (ELPS) Correlations

More information

This is a tentative schedule, date may change. Please be sure to write down homework assignments daily.

This is a tentative schedule, date may change. Please be sure to write down homework assignments daily. Mon Tue Wed Thu Fri Aug 26 Aug 27 Aug 28 Aug 29 Aug 30 Introductions, Expectations, Course Outline and Carnegie Review summer packet Topic: (1-1) Points, Lines, & Planes Topic: (1-2) Segment Measure Quiz

More information

GEOMETRY. Constructions OBJECTIVE #: G.CO.12

GEOMETRY. Constructions OBJECTIVE #: G.CO.12 GEOMETRY Constructions OBJECTIVE #: G.CO.12 OBJECTIVE Make formal geometric constructions with a variety of tools and methods (compass and straightedge, string, reflective devices, paper folding, dynamic

More information

Geometry Chapter 1. 1.1 Point (pt) 1.1 Coplanar (1.1) 1.1 Space (1.1) 1.2 Line Segment (seg) 1.2 Measure of a Segment

Geometry Chapter 1. 1.1 Point (pt) 1.1 Coplanar (1.1) 1.1 Space (1.1) 1.2 Line Segment (seg) 1.2 Measure of a Segment Geometry Chapter 1 Section Term 1.1 Point (pt) Definition A location. It is drawn as a dot, and named with a capital letter. It has no shape or size. undefined term 1.1 Line A line is made up of points

More information

Unit Background. Stage 1: Big Goals

Unit Background. Stage 1: Big Goals Course: 7 th Grade Mathematics Unit Background Unit Title Angle Relationships, Transversals & 3-Dimensional Geometry Does the unit title reflect the standards? PCCMS Unit Reviewer (s): Unit Designer: Resources

More information

INDEX. Arc Addition Postulate,

INDEX. Arc Addition Postulate, # 30-60 right triangle, 441-442, 684 A Absolute value, 59 Acute angle, 77, 669 Acute triangle, 178 Addition Property of Equality, 86 Addition Property of Inequality, 258 Adjacent angle, 109, 669 Adjacent

More information

Wentzville School District Curriculum Development Template Stage 1 Desired Results

Wentzville School District Curriculum Development Template Stage 1 Desired Results Wentzville School District Curriculum Development Template Stage 1 Desired Results Integrated Math 8 Unit Four Geometry Unit Title: Geometry Course: Integrated Math 8 Brief Summary of Unit: In this unit

More information

Geometry Chapter 1 Vocabulary. coordinate - The real number that corresponds to a point on a line.

Geometry Chapter 1 Vocabulary. coordinate - The real number that corresponds to a point on a line. Chapter 1 Vocabulary coordinate - The real number that corresponds to a point on a line. point - Has no dimension. It is usually represented by a small dot. bisect - To divide into two congruent parts.

More information

Unit 6 Grade 7 Geometry

Unit 6 Grade 7 Geometry Unit 6 Grade 7 Geometry Lesson Outline BIG PICTURE Students will: investigate geometric properties of triangles, quadrilaterals, and prisms; develop an understanding of similarity and congruence. Day Lesson

More information

Chapter One. Points, Lines, Planes, and Angles

Chapter One. Points, Lines, Planes, and Angles Chapter One Points, Lines, Planes, and Angles Objectives A. Use the terms defined in the chapter correctly. B. Properly use and interpret the symbols for the terms and concepts in this chapter. C. Appropriately

More information

Mathematics Geometry Unit 1 (SAMPLE)

Mathematics Geometry Unit 1 (SAMPLE) Review the Geometry sample year-long scope and sequence associated with this unit plan. Mathematics Possible time frame: Unit 1: Introduction to Geometric Concepts, Construction, and Proof 14 days This

More information

Geometry 1. Unit 3: Perpendicular and Parallel Lines

Geometry 1. Unit 3: Perpendicular and Parallel Lines Geometry 1 Unit 3: Perpendicular and Parallel Lines Geometry 1 Unit 3 3.1 Lines and Angles Lines and Angles Parallel Lines Parallel lines are lines that are coplanar and do not intersect. Some examples

More information

4-1 Classifying Triangles. ARCHITECTURE Classify each triangle as acute, equiangular, obtuse, or right. 1. Refer to the figure on page 240.

4-1 Classifying Triangles. ARCHITECTURE Classify each triangle as acute, equiangular, obtuse, or right. 1. Refer to the figure on page 240. ARCHITECTURE Classify each triangle as acute, equiangular, obtuse, or right. 1. Refer to the figure on page 240. Classify each triangle as acute, equiangular, obtuse, or right. Explain your reasoning.

More information

Mathematics Georgia Performance Standards

Mathematics Georgia Performance Standards Mathematics Georgia Performance Standards K-12 Mathematics Introduction The Georgia Mathematics Curriculum focuses on actively engaging the students in the development of mathematical understanding by

More information

Chapter 1. Foundations of Geometry: Points, Lines, and Planes

Chapter 1. Foundations of Geometry: Points, Lines, and Planes Chapter 1 Foundations of Geometry: Points, Lines, and Planes Objectives(Goals) Identify and model points, lines, and planes. Identify collinear and coplanar points and intersecting lines and planes in

More information

Circles in Triangles. This problem gives you the chance to: use algebra to explore a geometric situation

Circles in Triangles. This problem gives you the chance to: use algebra to explore a geometric situation Circles in Triangles This problem gives you the chance to: use algebra to explore a geometric situation A This diagram shows a circle that just touches the sides of a right triangle whose sides are 3 units,

More information

In the examples above, you used a process called inductive reasoning to continue the pattern. Inductive reasoning is.

In the examples above, you used a process called inductive reasoning to continue the pattern. Inductive reasoning is. Lesson 7 Inductive ing 1. I CAN understand what inductive reasoning is and its importance in geometry 3. I CAN show that a conditional statement is false by finding a counterexample Can you find the next

More information

**The Ruler Postulate guarantees that you can measure any segment. **The Protractor Postulate guarantees that you can measure any angle.

**The Ruler Postulate guarantees that you can measure any segment. **The Protractor Postulate guarantees that you can measure any angle. Geometry Week 7 Sec 4.2 to 4.5 section 4.2 **The Ruler Postulate guarantees that you can measure any segment. **The Protractor Postulate guarantees that you can measure any angle. Protractor Postulate:

More information

Level: High School: Geometry. Domain: Expressing Geometric Properties with Equations G-GPE

Level: High School: Geometry. Domain: Expressing Geometric Properties with Equations G-GPE 1. Derive the equation of a circle of given center and radius using the Pythagorean Theorem; complete the square to find the center and radius of a circle given by an equation. Translate between the geometric

More information

Euclidean Geometry. We start with the idea of an axiomatic system. An axiomatic system has four parts:

Euclidean Geometry. We start with the idea of an axiomatic system. An axiomatic system has four parts: Euclidean Geometry Students are often so challenged by the details of Euclidean geometry that they miss the rich structure of the subject. We give an overview of a piece of this structure below. We start

More information

Students will understand 1. use numerical bases and the laws of exponents

Students will understand 1. use numerical bases and the laws of exponents Grade 8 Expressions and Equations Essential Questions: 1. How do you use patterns to understand mathematics and model situations? 2. What is algebra? 3. How are the horizontal and vertical axes related?

More information

1.1 Identify Points, Lines, and Planes

1.1 Identify Points, Lines, and Planes 1.1 Identify Points, Lines, and Planes Objective: Name and sketch geometric figures. Key Vocabulary Undefined terms - These words do not have formal definitions, but there is agreement aboutwhat they mean.

More information

Common Core State Standard I Can Statements 8 th Grade Mathematics. The Number System (NS)

Common Core State Standard I Can Statements 8 th Grade Mathematics. The Number System (NS) CCSS Key: The Number System (NS) Expressions & Equations (EE) Functions (F) Geometry (G) Statistics & Probability (SP) Common Core State Standard I Can Statements 8 th Grade Mathematics 8.NS.1. Understand

More information

For example, estimate the population of the United States as 3 times 10⁸ and the

For example, estimate the population of the United States as 3 times 10⁸ and the CCSS: Mathematics The Number System CCSS: Grade 8 8.NS.A. Know that there are numbers that are not rational, and approximate them by rational numbers. 8.NS.A.1. Understand informally that every number

More information

Mathematics Task Arcs

Mathematics Task Arcs Overview of Mathematics Task Arcs: Mathematics Task Arcs A task arc is a set of related lessons which consists of eight tasks and their associated lesson guides. The lessons are focused on a small number

More information

Unit 6 Coordinate Geometry

Unit 6 Coordinate Geometry Mathematics I Frameworks Student Edition Unit 6 Coordinate Geometry 2 nd Edition Table of Contents Introduction:... 3 Video Game Learning Task... 6 New York Learning Task... 11 Quadrilaterals Revisited

More information

Chapter Three. Parallel Lines and Planes

Chapter Three. Parallel Lines and Planes Chapter Three Parallel Lines and Planes Objectives A. Use the terms defined in the chapter correctly. B. Properly use and interpret the symbols for the terms and concepts in this chapter. C. Appropriately

More information

Standards for Mathematical Practice: Commentary and Elaborations for 6 8

Standards for Mathematical Practice: Commentary and Elaborations for 6 8 Standards for Mathematical Practice: Commentary and Elaborations for 6 8 c Illustrative Mathematics 6 May 2014 Suggested citation: Illustrative Mathematics. (2014, May 6). Standards for Mathematical Practice:

More information

A summary of definitions, postulates, algebra rules, and theorems that are often used in geometry proofs:

A summary of definitions, postulates, algebra rules, and theorems that are often used in geometry proofs: summary of definitions, postulates, algebra rules, and theorems that are often used in geometry proofs: efinitions: efinition of mid-point and segment bisector M If a line intersects another line segment

More information

Chapter 4.1 Parallel Lines and Planes

Chapter 4.1 Parallel Lines and Planes Chapter 4.1 Parallel Lines and Planes Expand on our definition of parallel lines Introduce the idea of parallel planes. What do we recall about parallel lines? In geometry, we have to be concerned about

More information

MYP Unit Question. How can I apply and convey my design skills in developing a product to meet the expectations of a client?

MYP Unit Question. How can I apply and convey my design skills in developing a product to meet the expectations of a client? MYP unit planner Unit Title Teacher(s) Communication of Concepts/Creating Business Web Sites Utilizing a Client s Perceptions Nicholson Subject and Grade Level Technology - Year 5 Time frame and duration

More information

Course: Math 7. engage in problem solving, communicating, reasoning, connecting, and representing

Course: Math 7. engage in problem solving, communicating, reasoning, connecting, and representing Course: Math 7 Decimals and Integers 1-1 Estimation Strategies. Estimate by rounding, front-end estimation, and compatible numbers. Prentice Hall Textbook - Course 2 7.M.0 ~ Measurement Strand ~ Students

More information

Centroid: The point of intersection of the three medians of a triangle. Centroid

Centroid: The point of intersection of the three medians of a triangle. Centroid Vocabulary Words Acute Triangles: A triangle with all acute angles. Examples 80 50 50 Angle: A figure formed by two noncollinear rays that have a common endpoint and are not opposite rays. Angle Bisector:

More information

Incenter Circumcenter

Incenter Circumcenter TRIANGLE: Centers: Incenter Incenter is the center of the inscribed circle (incircle) of the triangle, it is the point of intersection of the angle bisectors of the triangle. The radius of incircle is

More information

Lesson 2: Circles, Chords, Diameters, and Their Relationships

Lesson 2: Circles, Chords, Diameters, and Their Relationships Circles, Chords, Diameters, and Their Relationships Student Outcomes Identify the relationships between the diameters of a circle and other chords of the circle. Lesson Notes Students are asked to construct

More information

Unit 2 - Triangles. Equilateral Triangles

Unit 2 - Triangles. Equilateral Triangles Equilateral Triangles Unit 2 - Triangles Equilateral Triangles Overview: Objective: In this activity participants discover properties of equilateral triangles using properties of symmetry. TExES Mathematics

More information

Discovering Math: Exploring Geometry Teacher s Guide

Discovering Math: Exploring Geometry Teacher s Guide Teacher s Guide Grade Level: 6 8 Curriculum Focus: Mathematics Lesson Duration: Three class periods Program Description Discovering Math: Exploring Geometry From methods of geometric construction and threedimensional

More information

POTENTIAL REASONS: Definition of Congruence:

POTENTIAL REASONS: Definition of Congruence: Sec 6 CC Geometry Triangle Pros Name: POTENTIAL REASONS: Definition Congruence: Having the exact same size and shape and there by having the exact same measures. Definition Midpoint: The point that divides

More information

Geometry. Higher Mathematics Courses 69. Geometry

Geometry. Higher Mathematics Courses 69. Geometry The fundamental purpose of the course is to formalize and extend students geometric experiences from the middle grades. This course includes standards from the conceptual categories of and Statistics and

More information

McDougal Littell California:

McDougal Littell California: McDougal Littell California: Pre-Algebra Algebra 1 correlated to the California Math Content s Grades 7 8 McDougal Littell California Pre-Algebra Components: Pupil Edition (PE), Teacher s Edition (TE),

More information

Geometry: 2.1-2.3 Notes

Geometry: 2.1-2.3 Notes Geometry: 2.1-2.3 Notes NAME 2.1 Be able to write all types of conditional statements. Date: Define Vocabulary: conditional statement if-then form hypothesis conclusion negation converse inverse contrapositive

More information

Foundations of Mathematics 11 (Online)

Foundations of Mathematics 11 (Online) Course Outline Coquitlam Learning Opportunity Centre 104-2748 Lougheed Hwy Port Coquitlam, BC, V3B 6P2 Phone: (604) 945-4211 Course Name Teacher Course Format Teacher Contact Information & Schedule Learning

More information

New York State Student Learning Objective: Regents Geometry

New York State Student Learning Objective: Regents Geometry New York State Student Learning Objective: Regents Geometry All SLOs MUST include the following basic components: Population These are the students assigned to the course section(s) in this SLO all students

More information

Geometry Chapter 5 Relationships Within Triangles

Geometry Chapter 5 Relationships Within Triangles Objectives: Section 5.1 Section 5.2 Section 5.3 Section 5.4 Section 5.5 To use properties of midsegments to solve problems. To use properties of perpendicular bisectors and angle bisectors. To identify

More information

Angles Formed by Intersecting Lines

Angles Formed by Intersecting Lines COMMON CORE 1 3 Locker LESSON Common Core Math Standards The student is expected to: COMMON CORE G-CO.C.9 Prove theorems about lines and angles. Mathematical Practices COMMON CORE 4.1 Angles Formed by

More information

Vocabulary List Geometry Altitude- the perpendicular distance from the vertex to the opposite side of the figure (base)

Vocabulary List Geometry Altitude- the perpendicular distance from the vertex to the opposite side of the figure (base) GEOMETRY Vocabulary List Geometry Altitude- the perpendicular distance from the vertex to the opposite side of the figure (base) Face- one of the polygons of a solid figure Diagonal- a line segment that

More information

CK-12 Geometry: Midpoints and Bisectors

CK-12 Geometry: Midpoints and Bisectors CK-12 Geometry: Midpoints and Bisectors Learning Objectives Identify the midpoint of line segments. Identify the bisector of a line segment. Understand and the Angle Bisector Postulate. Review Queue Answer

More information

GEOMETRY. Chapter 1: Foundations for Geometry. Name: Teacher: Pd:

GEOMETRY. Chapter 1: Foundations for Geometry. Name: Teacher: Pd: GEOMETRY Chapter 1: Foundations for Geometry Name: Teacher: Pd: Table of Contents Lesson 1.1: SWBAT: Identify, name, and draw points, lines, segments, rays, and planes. Pgs: 1-4 Lesson 1.2: SWBAT: Use

More information

CHAPTER 8: ACUTE TRIANGLE TRIGONOMETRY

CHAPTER 8: ACUTE TRIANGLE TRIGONOMETRY CHAPTER 8: ACUTE TRIANGLE TRIGONOMETRY Specific Expectations Addressed in the Chapter Explore the development of the sine law within acute triangles (e.g., use dynamic geometry software to determine that

More information

A (straight) line has length but no width or thickness. A line is understood to extend indefinitely to both sides. beginning or end.

A (straight) line has length but no width or thickness. A line is understood to extend indefinitely to both sides. beginning or end. Points, Lines, and Planes Point is a position in space. point has no length or width or thickness. point in geometry is represented by a dot. To name a point, we usually use a (capital) letter. (straight)

More information

Grade 4 - Module 4: Angle Measure and Plane Figures

Grade 4 - Module 4: Angle Measure and Plane Figures Grade 4 - Module 4: Angle Measure and Plane Figures Acute angle (angle with a measure of less than 90 degrees) Angle (union of two different rays sharing a common vertex) Complementary angles (two angles

More information

Indiana State Core Curriculum Standards updated 2009 Algebra I

Indiana State Core Curriculum Standards updated 2009 Algebra I Indiana State Core Curriculum Standards updated 2009 Algebra I Strand Description Boardworks High School Algebra presentations Operations With Real Numbers Linear Equations and A1.1 Students simplify and

More information

The Protractor Postulate and the SAS Axiom. Chapter The Axioms of Plane Geometry

The Protractor Postulate and the SAS Axiom. Chapter The Axioms of Plane Geometry The Protractor Postulate and the SAS Axiom Chapter 3.4-3.7 The Axioms of Plane Geometry The Protractor Postulate and Angle Measure The Protractor Postulate (p51) defines the measure of an angle (denoted

More information

7. 6 Justifying Constructions

7. 6 Justifying Constructions 31 7. 6 Justifying Constructions A Solidify Understanding Task CC BY THOR https://flic.kr/p/9qkxv Compass and straightedge constructions can be justified using such tools as: the definitions and properties

More information

Geometry Enduring Understandings Students will understand 1. that all circles are similar.

Geometry Enduring Understandings Students will understand 1. that all circles are similar. High School - Circles Essential Questions: 1. Why are geometry and geometric figures relevant and important? 2. How can geometric ideas be communicated using a variety of representations? ******(i.e maps,

More information

Algebra I. In this technological age, mathematics is more important than ever. When students

Algebra I. In this technological age, mathematics is more important than ever. When students In this technological age, mathematics is more important than ever. When students leave school, they are more and more likely to use mathematics in their work and everyday lives operating computer equipment,

More information

Foundations of Geometry 1: Points, Lines, Segments, Angles

Foundations of Geometry 1: Points, Lines, Segments, Angles Chapter 3 Foundations of Geometry 1: Points, Lines, Segments, Angles 3.1 An Introduction to Proof Syllogism: The abstract form is: 1. All A is B. 2. X is A 3. X is B Example: Let s think about an example.

More information

Quadrilaterals Properties of a parallelogram, a rectangle, a rhombus, a square, and a trapezoid

Quadrilaterals Properties of a parallelogram, a rectangle, a rhombus, a square, and a trapezoid Quadrilaterals Properties of a parallelogram, a rectangle, a rhombus, a square, and a trapezoid Grade level: 10 Prerequisite knowledge: Students have studied triangle congruences, perpendicular lines,

More information

Quadrilaterals GETTING READY FOR INSTRUCTION

Quadrilaterals GETTING READY FOR INSTRUCTION Quadrilaterals / Mathematics Unit: 11 Lesson: 01 Duration: 7 days Lesson Synopsis: In this lesson students explore properties of quadrilaterals in a variety of ways including concrete modeling, patty paper

More information

4. Prove the above theorem. 5. Prove the above theorem. 9. Prove the above corollary. 10. Prove the above theorem.

4. Prove the above theorem. 5. Prove the above theorem. 9. Prove the above corollary. 10. Prove the above theorem. 14 Perpendicularity and Angle Congruence Definition (acute angle, right angle, obtuse angle, supplementary angles, complementary angles) An acute angle is an angle whose measure is less than 90. A right

More information

Parallel and Perpendicular Lines

Parallel and Perpendicular Lines Trinity University Digital Commons @ Trinity Understanding by Design: Complete Collection Understanding by Design Summer 6-12-2014 Parallel and Perpendicular Lines Danielle R. Kendrick Trinity University,

More information

G C.3 Construct the inscribed and circumscribed circles of a triangle, and prove properties of angles for a quadrilateral inscribed in a circle.

G C.3 Construct the inscribed and circumscribed circles of a triangle, and prove properties of angles for a quadrilateral inscribed in a circle. Performance Assessment Task Circle and Squares Grade 10 This task challenges a student to analyze characteristics of 2 dimensional shapes to develop mathematical arguments about geometric relationships.

More information

Problem of the Month The Shape of Things

Problem of the Month The Shape of Things Problem of the Month The Problems of the Month (POM) are used in a variety of ways to promote problem solving and to foster the first standard of mathematical practice from the Common Core State Standards:

More information

Vocabulary. Term Page Definition Clarifying Example. biconditional statement. conclusion. conditional statement. conjecture.

Vocabulary. Term Page Definition Clarifying Example. biconditional statement. conclusion. conditional statement. conjecture. CHAPTER Vocabulary The table contains important vocabulary terms from Chapter. As you work through the chapter, fill in the page number, definition, and a clarifying example. biconditional statement conclusion

More information

Geometry Math Standards and I Can Statements

Geometry Math Standards and I Can Statements Geometry Math Standards and I Can Statements Unit 1 Subsection A CC.9-12.G.CO.1 Know precise definitions of angle, circle, perpendicular line, parallel line, and line segment, based on the undefined notions

More information

7-3 Parallel and Perpendicular Lines

7-3 Parallel and Perpendicular Lines Learn to identify parallel, perpendicular, and skew lines, and angles formed by a transversal. 7-3 Parallel Insert Lesson and Perpendicular Title Here Lines Vocabulary perpendicular lines parallel lines

More information

Situation: Proving Quadrilaterals in the Coordinate Plane

Situation: Proving Quadrilaterals in the Coordinate Plane Situation: Proving Quadrilaterals in the Coordinate Plane 1 Prepared at the University of Georgia EMAT 6500 Date Last Revised: 07/31/013 Michael Ferra Prompt A teacher in a high school Coordinate Algebra

More information

Performance Based Learning and Assessment Task Triangles in Parallelograms I. ASSESSSMENT TASK OVERVIEW & PURPOSE: In this task, students will

Performance Based Learning and Assessment Task Triangles in Parallelograms I. ASSESSSMENT TASK OVERVIEW & PURPOSE: In this task, students will Performance Based Learning and Assessment Task Triangles in Parallelograms I. ASSESSSMENT TASK OVERVIEW & PURPOSE: In this task, students will discover and prove the relationship between the triangles

More information

Year 8 - Maths Autumn Term

Year 8 - Maths Autumn Term Year 8 - Maths Autumn Term Whole Numbers and Decimals Order, add and subtract negative numbers. Recognise and use multiples and factors. Use divisibility tests. Recognise prime numbers. Find square numbers

More information

1.7 Find Perimeter, Circumference,

1.7 Find Perimeter, Circumference, .7 Find Perimeter, Circumference, and rea Goal p Find dimensions of polygons. Your Notes FORMULS FOR PERIMETER P, RE, ND CIRCUMFERENCE C Square Rectangle side length s length l and width w P 5 P 5 s 5

More information

Reasoning and Proof Review Questions

Reasoning and Proof Review Questions www.ck12.org 1 Reasoning and Proof Review Questions Inductive Reasoning from Patterns 1. What is the next term in the pattern: 1, 4, 9, 16, 25, 36, 49...? (a) 81 (b) 64 (c) 121 (d) 56 2. What is the next

More information

State the assumption you would make to start an indirect proof of each statement.

State the assumption you would make to start an indirect proof of each statement. 1. State the assumption you would make to start an indirect proof of each statement. Identify the conclusion you wish to prove. The assumption is that this conclusion is false. 2. is a scalene triangle.

More information

Activity Set 4. Trainer Guide

Activity Set 4. Trainer Guide Geometry and Measurement of Plane Figures Activity Set 4 Trainer Guide Int_PGe_04_TG GEOMETRY AND MEASUREMENT OF PLANE FIGURES Activity Set #4 NGSSS 3.G.3.1 NGSSS 3.G.3.3 NGSSS 4.G.5.1 NGSSS 5.G.3.1 Amazing

More information

Overview. Essential Questions. Precalculus, Quarter 2, Unit 2.5 Proving Trigonometric Identities. Number of instruction days: 5 7 (1 day = 53 minutes)

Overview. Essential Questions. Precalculus, Quarter 2, Unit 2.5 Proving Trigonometric Identities. Number of instruction days: 5 7 (1 day = 53 minutes) Precalculus, Quarter, Unit.5 Proving Trigonometric Identities Overview Number of instruction days: 5 7 (1 day = 53 minutes) Content to Be Learned Verify proofs of Pythagorean identities. Apply Pythagorean,

More information

MYP Objectives and Assessment Criteria

MYP Objectives and Assessment Criteria Mathematics Objectives MYP Objectives and Assessment Criteria A. Knowing and understanding Knowledge and understanding are fundamental to studying mathematics and form the base from which to explore concepts

More information

Georgia Standards of Excellence Mathematics

Georgia Standards of Excellence Mathematics Georgia Standards of Excellence Mathematics Standards GSE Geometry K-12 Mathematics Introduction Georgia Mathematics focuses on actively engaging the student in the development of mathematical understanding

More information

Geometry Mathematics Curriculum Guide Unit 6 Trig & Spec. Right Triangles 2016 2017

Geometry Mathematics Curriculum Guide Unit 6 Trig & Spec. Right Triangles 2016 2017 Unit 6: Trigonometry and Special Right Time Frame: 14 Days Primary Focus This topic extends the idea of triangle similarity to indirect measurements. Students develop properties of special right triangles,

More information

Intermediate Math Circles October 10, 2012 Geometry I: Angles

Intermediate Math Circles October 10, 2012 Geometry I: Angles Intermediate Math Circles October 10, 2012 Geometry I: Angles Over the next four weeks, we will look at several geometry topics. Some of the topics may be familiar to you while others, for most of you,

More information