Page 1 Wireless Computing and Network Systems. Other MSC clusters. A wireless channel: each mobile device assigned a distinct channel

Size: px
Start display at page:

Download "Page 1 Wireless Computing and Network Systems. Other MSC clusters. A wireless channel: each mobile device assigned a distinct channel"

Transcription

1 The Vision: Ubiquitous Wireless Internet Access Overview of Wireless Networking Systems anywhere office, car, train, in the forest, or in a swamp anytime day or night anyone between two mobile users anywhere in the world any device pager, cell phone, pocket computer, wireless watch, sensor Infrastructured Networks Mobile wireless WANs Fixed wireless WANs Broadband Wireless Networks WLANs: the family Infrastructureless Mobile Ad Hoc Networks (MANETs) Sensor Ad Hoc Networks (SANETs) any service Multimedia (voice, video, data) Hybrid Mesh Networks Page 1 Page 2 Types of Wireless Networks (1) 1. Cellular Networks (Mobile Wireless WANs) Infrastructured fixed networks Centralized base station controller Optimized for voice communications Large coverage Low data rates MSC PSTN MSC MSC Other MSC clusters A wireless channel: each mobile device assigned a distinct channel Generations in Mobile Wireless Service First Generation (1G) Mobile voice services Second Generation (2G) Primarily voice, some low-speed data (circuit switched) Generation 2½ (2.5G) Higher data rates than 2G A bridge (for GSM) to 3G A base station A mobile/wireless device Third Generation (3G) Seamless integration of voice and data Higher data rates, full support for packet switched data Page 3 Page 4 Evolution of Mobile Wireless (1) Evolution of Mobile Wireless (2) Advance Mobile Phone Service (AMPS) FDMA MHz (UL), MHz (DL) U.S. (1983), So. America, Australia, China Global System for Mobile communications (GSM) TDMA Different frequency bands for cellular and PCS Developed in 1990, >1B subscriber by end of 2003 European Total Access Communication System (E-TACS) FDMA MHz (UL), MHz (DL) Deployed throughout Europe IS-95 CDMA 800/1900 MHz Cellular/PCS U.S., Europe, Asia Page 5 Page 6 1

2 Evolution of Mobile Wireless (3) Evolution of Mobile Wireless (4) General Packet Radio Services (GPRS) Introduces packet switched data services for GSM Transmission rate up to 170 kbps Some support for QoS Universal Mobile Telecommunication Systems (UMTS) Wideband DS-CDMA Bandwidth-on-demand, up to 2 Mbps Supports handoff from GSM/GPRS Enhanced Data rates for GSM Evolution (EDGE) Circuit-switched voice (at up to 43.5 kbps/slot) Packet-switched data (at up to 59.2 kbps/slot) Can achieve on the order of 475 kbps on the downlink, by combining multiple slots IS2000 CDMA2000: Multicarrier DS-CDMA Bandwidth on demand (different flavors, up to a few Mbps) Supports handoff from/to IS-95 Page 7 Page 8 Types of Wireless Networks (1) Types of Wireless Networks (2) 1. Broadband Wireless Metropolitan Area Networks (WMANs) Mobile Broadband Wireless (IEEE ) Specifies physical and medium access control layers Licensed bands below 3.5 GHz Optimized for IP-data transport Per user data rate > 1Mbps Supports vehicular speeds up to 250 km/h WiMAX (IEEE ) Fixed Wireless Broadband Access (IEEE a) Specifies physical and medium access control layers Defines how wireless traffic will move between subscribers and core networks Addresses wireless last connectivity (e.g., alternative to traditional twisted pair) Licensed and unlicensed bands IEEE e (supports Mobile access) 2. WLANs Infrastructured fixed networks Centralized access point controller Small coverage High data rates Page 9 Page 10 WLANs: IEEE Family Infrastructure Mode (1) working group Specify an open-air interface between a wireless client and a base station or access point, as well as among wireless clients IEEE a Up to 54 Mbps in the 5 GHz band Uses orthogonal frequency division multiplexing (OFDM) IEEE b (Wi-Fi) 11 Mbps (with fallback to 5.5, 2 and 1 Mbps) in the 2.4 GHz band Uses DSSS IEEE g 20+ Mbps in the 2.4 GHz band Access Point Wired LAN Mobile Stations Basic Service Set (BSS) Access point serves as a local bridge Stations communicate through the access point, which relays frames to/from mobile stations Page 11 Page 12 2

3 Infrastructure Mode (2) Ad Hoc Mode Wired LAN Server Access Points Mobile Stations Extended Service Set (ESS) A set of infrastructure BSSs Access points communicate among themselves to forward frames between BSSs and to facilitate movement of stations between BSSs Mobile Stations Independent Basic Service Set (IBSS) or Peer to Peer Stations communicate directly with each other When no direct link is feasible between two station, a third station may act as a relay (multi-hop communications) Page 13 Page 14 Distribution Systems The architectural component used to interconnect BSSs is the distribution system (DS) DS enable mobile device support Address-to-destination mapping Seamless integration of several BSSs In practice, an access point implements DS services Bluetooth Characteristics Comparison with IEEE Wired LAN Access Points Mobile Stations Page 15 Page 16 Introduction Characteristics Motivation: cable replacement in peripherals and embedded devices Named after Harald Blaatand Bluetooth II, king of Denmark A.D. Estimated > 670 M Bluetooth-enabled devices by 2005 Operates in the ISM band (like b) Frequency hopping spread spectrum Up to 720 kbps data transfer with a range of 10 m Transmission rate decreases if interference from other devices is present Master/slave architecture A collection of master + slaves is called a piconet Up to 7 slave devices may communicate with a master Piconets can be linked together to form a scatternet Page 17 Page 18 3

4 Comparison with Types of Wireless Networks (5) Characteristic Spectrum Max Data Rate Connections Frequency Selection Distance Bluetooth 2.4 GHz 725 kbps Point-to- Multipoint FHSS 10 meters IEEE b 2.4 GHz 11 Mbps Point-to-Point DSSS ~250 meters IEEE a 5 GHz 54 Mbps Point-to-Point OFDM ~150 meters 5. Mobile Ad Hoc Networks (MANETs) No wired backbone All nodes are capable of movement All nodes serve as routers (multi-hop routing) Dynamic topology Ease of deployment A link in the wireless fabric: all nodes communicate over a single channel. A mobile node: A router with hosts and wireless devices Page 19 Page 20 Types of Wireless Networks (6) Wireless Mesh Networks WLANs + MANET principles IEEE s Access point/router Mobile Station BSS BSS Gateway BSS Attributes of Wireless & Mobile Communication Systems Wireless limited bandwidth: frequencies have to be coordinated broadcast meduim: requires efficient access mechanisms variable link quality (noise, disconnection, interference) high latency, higher jitter (cellular) Security Mobility User and terminal is a dynamic system variable Speed of mobile impact wireless bandwidth Security Portability Limited battery capacity Limited computing Limited storage Small dimensions (user interface) Gateway BSS Page 21 Page 22 Our Focus Agents Involved in Communication The main focus of this course: IP stack over wireless WLAN Mesh and mobile ad hoc networks Basic differences between cellular and WLAN WLAN Designed for high bit-rate data transmission Internet Protocols oriented Low-scale mobility, small area coverage Use unlicensed ISM frequency bands Cellular Originally (2 nd generation) design for voice communication Limited bit-rate data transmission Large scale mobility and coverage (high speed, large cells) Operated over licensed frequency bands Applications Exchange data between computers (e.g., electronic mail) Computers Connected to networks Networks Transfers data from one computer to another Page 23 Page 24 4

5 The Need for a Protocol Architecture Protocols A set of layers and protocols is called a network architecture. Why the need for layers and protocols? There must be a path between source and destination. The source must activate a path or inform the communication network of the identity of the destination. Source must understand the capabilities of the destination. Data translations may be required Define the format and order of messages exchanged between two entities in the network Define the actions to be taken upon transmission or arrival of messages or some other event Examples: IP, HTTP, DHCP, TCP etc. A high degree of cooperation between source and destination is required. Better to implement logic into subtasks, implemented separately (in distinct layers). Hello! Hello! Changes in one layer should not require changes in other layers. Peer layers communicate using a protocol by means of formatted blocks. How are you? Fine, thanks! Page 25 Page 26 Layering OSI Model Start with services provided by the hardware, then add a sequence of layers, each providing services to the layer just above it Why? Decomposes the very complex problem of providing networked communications into more manageable pieces More modular design (easier to add a new service or to modify the functionality of a layer) Example of protocol layering HTTP (for web browsing) uses services from TCP (for instance, reliable delivery of packets), which uses services provided by IP (for instance, globally unique addressing) Reliable delivery, error recovery, congestion control Addressing, medium access, error control End System Application Presentation Session Transport Network Data link Physical Application-specific exchange of messages Routing, segmentation and reassembly, network-wide addressing Voltage swing, bit duration, connector type, etc. Page 27 Page 28 Encapsulation Communications Networks M Layer 5 Protocol M H4 M H3 H4 M1 H3 M2 Layer 4 Protocol Layer 3 Protocol H4 M H3 H4 M1 H3 M2 Layer Application Application Protocol (http, ftp, telnet, etc.) Data unit Exchanged Application APDU H2 H3 H4 M1 T2 Layer 2 Protocol H2 H3 H4 M1 T2 H2 H3 M2 T2 H2 H3 M2 T2 Layer 1 Protocol Page 29 Page 30 5

6 IP Protocol Suite IP Protocol Stack Why so successful? Many protocols run over IP. IP runs over everything. Architectural principles Minimalism, autonomy Best effort service Stateless routers Decentralized control Application Transport Internet Physical + Data Link e.g. TELNET, FTP, SNMP, DNS, HTTP, etc. TCP, UDP IP e.g. Ethernet, , SONET, ATM, etc. Page 31 Page 32 OSI and the IP suite Essential Characteristics of IP Source: Introducing TCP/IP, by FindTutorials.com Connectionless Each IP datagram is treated independently and may follow a different path Best effort No guarantees of timely delivery, ordering, or even delivery Globally unique 32-bit addresses Usually expressed in dot-decimal notation: Each interface has its own IP address Later, we will see that there are ways to use non-unique addresses Typical IP datagram contains payload + a 20-byte header with control information (addressing, redundant bits for error detection, etc.) Page 33 Page 34 Issues in WLAN, Mobile Ad Hoc, & Mesh Networks Physical Layer How to resist to the wireless link limitations? multiple error control coding schemes Medium Access Layer Transmission scheduling and coordination of nodes Dealing with wireless limitations (medium sensing and collisions detections) Network Layer How to maintain the routing tables in the context of highly mobile nodes (multi-hop routing)? Transport Layer TCP is optimized for congestion avoidance how to extend to error control Application Layer How to satisfy the application requirements (delay, throughput)? How can the application adapt to the channel? Resource conservation Power-consumption, bandwidth optimization Self-configuration for multi-hop ad hoc networks The Data Link Layer Page 35 Page 36 6

7 Data Link Layer Design Issues Functions of the Data Link Layer Services Provided to the Network Layer Framing Error Control Flow Control Provide service interface to the network layer Dealing with transmission errors Regulating data flow Slow receivers not swamped by fast senders Page 37 Page 38 Functions of the Data Link Layer (2) Services Provided to Network Layer Relationship between packets and frames. (a) Virtual communication. (b) Actual communication. Page 39 Page 40 Services Provided to Network Layer (2) Data Link Layer Design Issues Placement of the data link protocol. Framing Character counts Byte/Bit stuffing Error detection Error correction Page 41 Page 42 7

8 Types of Data Link Protocols Stop and wait Sliding window Go-back-N Selective repeat Medium Access Control Page 43 Page 44 Wireless Medium Access Channel access methods for cellular networks Why Medium Access Control (MAC)? How to allocate a single broadcast channel among multiple competing users? Is MAC required in wired networks? Issues in wireless networks Bandwidth availability Reliability Collision detection (for random access networks) Two classes of MAC Protocols? Mobile cellular Random (for data networks) Contention-based Collision-free Hybrid Voice-oriented access methods assumes relatively long conversations several MB of data exchanged in both directions uses a separate signaling channel call set-up, reserve resources, termination the network will assign a slot time a portion of frequency a specified code Three basic methods FDMA, TDMA, CDMA What are the tradeoffs? Page 45 Page 46 Access for Voice Oriented Cellular Networks FDMA vs. TDMA FDMA single channel shared among multiple users by assigning each user to an exclusive frequency band within the channel TDMA A number of users share the same frequency band by taking assigned turns in using the channel. GSM, IS-136 CDMA IS-95, IMT-2000 Frequency-division multiplexing (FDMA) Takes advantage of the fact that the useful bandwidth of the medium exceeds the required bandwidth of a given signal Time-division multiplexing (TDMA) Takes advantage of the fact that the achievable bit rate of the medium exceeds the required data rate of a digital signal Page 47 Page 48 8

9 Forward and Reverse Channels Forward link (downlink: communication between the base station and mobile) Reverse link (uplink: communication between the mobile and base station) TDD forward and reverse channels use same frequency band forward and reverse channels use alternating time slots FDD Forward and reverse channel use different carrier frequencies Figure 1: (a) FDMA/FDD (b) FDMA/TDD (c) TDMA/FDD with multiple carriers (d) TDMA/TDD with multiple carriers Page 49 Page 50 Frequency Division Multiple Access Example: FDMA in AMPS with FDD All users transmit simultaneously Must address the Near-Far Problem have frequencies in each cell as far apart as possible employ power control techniques to ensure all signals from the mobiles within a given cell arrive at the base of the cell with equal power. to maximize the total user capacity to minimize the consumption of transmitted power of portable unit Forward and reverse channels use different carrier frequencies 30kHz channels in 25MHz of spectrum 395 channels for voice traffic use guard bands to reduce adjacent channel interference Page 51 Page 52 Example: FDMA in CT-2 with TDD Forward and reverse channels take turns via alternating time slots 4 MHz 40 carriers each with 100 khz of bandwidth Page 53 Page 54 9

10 Time Division Multiple Access A number of users share the same frequency band by taking turns using the channel Transmit controller assigns time slots to users Time slot is held by user until user releases it Example TDMA in GSM 8-slot TDMA scheme Forward and reverse channels use separate carrier frequencies (FDD) 13kbps per user 124 frequency carriers (FDMA) 100 khz guard band at each edge Receiver must synchronize to the TDMA signal frame Receiver extracts time slot designated for that user Page 55 Page 56 Code Division Multiple Access Can accommodate various users with different bandwidth requirements Multiple users use the same band at the same time Page 57 Page 58 Code Division Multiple Access CDMA Code Division Multiple Access The user is differentiated by a code. Codes are selected so that when they are used at the same time in the same band a receiver knowing the code of a particular user can detect that user among all the received signals. (a) Binary chip sequences for four stations (b) Bipolar chip sequences (c) Six examples of transmissions (d) Recovery of station C s signal Page 59 Page 60 10

11 WLANS, MESH, Ad hoc Networks Random channel access methods Random medium access control Multi-hop routing over mesh and ad hoc networks TCP over Wireless Networks Data-oriented access methods designed for burst of data no separate signaling channel each packet carries signaling information destination address source address packet priority MAC Protocols for WLANs, Mesh, Ad Hoc Networks ALOHA-based Carrier SenseIEEE ALOHA MAC-SCC Page 61 Page 62 11

EPL 657 Wireless Networks

EPL 657 Wireless Networks EPL 657 Wireless Networks Some fundamentals: Multiplexing / Multiple Access / Duplex Infrastructure vs Infrastructureless Panayiotis Kolios Recall: The big picture... Modulations: some basics 2 Multiplexing

More information

Wireless Personal Area Networks (WPANs)

Wireless Personal Area Networks (WPANs) Wireless Personal Area Networks (WPANs) Bluetooth, ZigBee Contents Introduction to the IEEE 802 specification family Concept of ISM frequency band Comparison between different wireless technologies ( and

More information

Wireless LAN advantages. Wireless LAN. Wireless LAN disadvantages. Wireless LAN disadvantages WLAN:

Wireless LAN advantages. Wireless LAN. Wireless LAN disadvantages. Wireless LAN disadvantages WLAN: WLAN: Wireless LAN Make use of a wireless transmission medium Tipically restricted in their diameter: buildings, campus, single room etc.. The global goal is to replace office cabling and to introduce

More information

CS263: Wireless Communications and Sensor Networks

CS263: Wireless Communications and Sensor Networks CS263: Wireless Communications and Sensor Networks Matt Welsh Lecture 4: Medium Access Control October 5, 2004 2004 Matt Welsh Harvard University 1 Today's Lecture Medium Access Control Schemes: FDMA TDMA

More information

IT4504 - Data Communication and Networks (Optional)

IT4504 - Data Communication and Networks (Optional) - Data Communication and Networks (Optional) INTRODUCTION This is one of the optional courses designed for Semester 4 of the Bachelor of Information Technology Degree program. This course on Data Communication

More information

ECE/CS 372 introduction to computer networks. Lecture 13

ECE/CS 372 introduction to computer networks. Lecture 13 ECE/CS 372 introduction to computer networks Lecture 13 Announcements: HW #4 hard copy due today Lab #5 posted is due Tuesday June 4 th HW #5 posted is due Thursday June 6 th Pickup midterms Acknowledgement:

More information

IT4405 Computer Networks (Compulsory)

IT4405 Computer Networks (Compulsory) IT4405 Computer Networks (Compulsory) INTRODUCTION This course provides a comprehensive insight into the fundamental concepts in data communications, computer network systems and protocols both fixed and

More information

Wireless Networks. Reading: Sec5on 2.8. COS 461: Computer Networks Spring 2011. Mike Freedman

Wireless Networks. Reading: Sec5on 2.8. COS 461: Computer Networks Spring 2011. Mike Freedman 1 Wireless Networks Reading: Sec5on 2.8 COS 461: Computer Networks Spring 2011 Mike Freedman hep://www.cs.princeton.edu/courses/archive/spring11/cos461/ 2 Widespread Deployment Worldwide cellular subscribers

More information

Computer Networks CS321

Computer Networks CS321 Computer Networks CS321 Dr. Ramana I.I.T Jodhpur Dr. Ramana ( I.I.T Jodhpur ) Computer Networks CS321 1 / 22 Outline of the Lectures 1 Introduction OSI Reference Model Internet Protocol Performance Metrics

More information

Foreword... 2 Introduction to VoIP... 3 SIP:... 3 H.323:... 4 SER:... 4 Cellular network... 4 GSM... 5 GPRS... 6 3G... 6 Wimax... 7 Introduction...

Foreword... 2 Introduction to VoIP... 3 SIP:... 3 H.323:... 4 SER:... 4 Cellular network... 4 GSM... 5 GPRS... 6 3G... 6 Wimax... 7 Introduction... Foreword... 2 Introduction to VoIP... 3 SIP:... 3 H.323:... 4 SER:... 4 Cellular network... 4 GSM... 5 GPRS... 6 3G... 6 Wimax... 7 Introduction... 7 Fixed-WiMAX based on the IEEE 802.16-2004... 8 Mobile

More information

2G/3G Mobile Communication Systems

2G/3G Mobile Communication Systems 2G/3G Mobile Communication Systems Winter 2012/13 Integrated Communication Systems Group Ilmenau University of Technology Outline 2G Review: GSM Services Architecture Protocols Call setup Mobility management

More information

Course Duration: Course Content Course Description Course Objectives Course Requirements

Course Duration: Course Content Course Description Course Objectives Course Requirements Course: TCS 201 Telecommunication and Networks I (3 credits compulsory) Course Duration: The course shall comprise of 45hours of theory and practical classes. The theory will be taught for 30hours of 2hours

More information

Hello viewers, welcome to today s lecture on cellular telephone systems.

Hello viewers, welcome to today s lecture on cellular telephone systems. Data Communications Prof. A. Pal Department of Computer Science & Engineering Indian Institute of Technology, Kharagpur Lecture minus 31 Cellular Telephone Systems Hello viewers, welcome to today s lecture

More information

Communication Networks. MAP-TELE 2011/12 José Ruela

Communication Networks. MAP-TELE 2011/12 José Ruela Communication Networks MAP-TELE 2011/12 José Ruela Network basic mechanisms Introduction to Communications Networks Communications networks Communications networks are used to transport information (data)

More information

LTE, WLAN, BLUETOOTHB

LTE, WLAN, BLUETOOTHB LTE, WLAN, BLUETOOTHB AND Aditya K. Jagannatham FUTURE Indian Institute of Technology Kanpur Commonwealth of Learning Vancouver 4G LTE LTE (Long Term Evolution) is the 4G wireless cellular standard developed

More information

Transport and Network Layer

Transport and Network Layer Transport and Network Layer 1 Introduction Responsible for moving messages from end-to-end in a network Closely tied together TCP/IP: most commonly used protocol o Used in Internet o Compatible with a

More information

Introduction Chapter 1. Uses of Computer Networks

Introduction Chapter 1. Uses of Computer Networks Introduction Chapter 1 Uses of Computer Networks Network Hardware Network Software Reference Models Example Networks Network Standardization Metric Units Revised: August 2011 Uses of Computer Networks

More information

Data Communication and Computer Network

Data Communication and Computer Network 1 Data communication principles, types and working principles of modems, Network principles, OSI model, functions of data link layer and network layer, networking components, communication protocols- X

More information

CSMA/CA. Information Networks p. 1

CSMA/CA. Information Networks p. 1 Information Networks p. 1 CSMA/CA IEEE 802.11 standard for WLAN defines a distributed coordination function (DCF) for sharing access to the medium based on the CSMA/CA protocol Collision detection is not

More information

The GSM and GPRS network T-110.300/301

The GSM and GPRS network T-110.300/301 The GSM and GPRS network T-110.300/301 History The successful analog 1:st generation mobile telephone systems proved that there is a market for mobile telephones ARP (AutoRadioPuhelin) in Finland NMT (Nordic

More information

Computer Network. Interconnected collection of autonomous computers that are able to exchange information

Computer Network. Interconnected collection of autonomous computers that are able to exchange information Introduction Computer Network. Interconnected collection of autonomous computers that are able to exchange information No master/slave relationship between the computers in the network Data Communications.

More information

Asynchronous Transfer Mode: ATM. ATM architecture. ATM: network or link layer? ATM Adaptation Layer (AAL)

Asynchronous Transfer Mode: ATM. ATM architecture. ATM: network or link layer? ATM Adaptation Layer (AAL) Asynchrous Transfer Mode: architecture 1980s/1990 s standard for high-speed (155Mbps to 622 Mbps and higher) Broadband Integrated Service Digital Network architecture Goal: integrated, end-end transport

More information

3GPP Wireless Standard

3GPP Wireless Standard 3GPP Wireless Standard Shishir Pandey School of Technology and Computer Science TIFR, Mumbai April 10, 2009 Shishir Pandey (TIFR) 3GPP Wireless Standard April 10, 2009 1 / 23 3GPP Overview 3GPP : 3rd Generation

More information

CHAPTER - 4 CHANNEL ALLOCATION BASED WIMAX TOPOLOGY

CHAPTER - 4 CHANNEL ALLOCATION BASED WIMAX TOPOLOGY CHAPTER - 4 CHANNEL ALLOCATION BASED WIMAX TOPOLOGY 4.1. INTRODUCTION In recent years, the rapid growth of wireless communication technology has improved the transmission data rate and communication distance.

More information

BCS THE CHARTERED INSTITUTE FOR IT. BCS HIGHER EDUCATION QUALIFICATIONS BCS Level 5 Diploma in IT COMPUTER NETWORKS

BCS THE CHARTERED INSTITUTE FOR IT. BCS HIGHER EDUCATION QUALIFICATIONS BCS Level 5 Diploma in IT COMPUTER NETWORKS BCS THE CHARTERED INSTITUTE FOR IT BCS HIGHER EDUCATION QUALIFICATIONS BCS Level 5 Diploma in IT COMPUTER NETWORKS Friday 2 nd October 2015 Morning Answer any FOUR questions out of SIX. All questions carry

More information

Attenuation (amplitude of the wave loses strength thereby the signal power) Refraction Reflection Shadowing Scattering Diffraction

Attenuation (amplitude of the wave loses strength thereby the signal power) Refraction Reflection Shadowing Scattering Diffraction Wireless Physical Layer Q1. Is it possible to transmit a digital signal, e.g., coded as square wave as used inside a computer, using radio transmission without any loss? Why? It is not possible to transmit

More information

Computer Networks. Wireless and Mobile Networks. László Böszörményi Computer Networks Mobile - 1

Computer Networks. Wireless and Mobile Networks. László Böszörményi Computer Networks Mobile - 1 Computer Networks Wireless and Mobile Networks László Böszörményi Computer Networks Mobile - 1 Background Number of wireless (mobile) phone subscribers now exceeds number of wired phone subscribers! Computer

More information

LAN Switching. 15-441 Computer Networking. Switched Network Advantages. Hubs (more) Hubs. Bridges/Switches, 802.11, PPP. Interconnecting LANs

LAN Switching. 15-441 Computer Networking. Switched Network Advantages. Hubs (more) Hubs. Bridges/Switches, 802.11, PPP. Interconnecting LANs LAN Switching 15-441 Computer Networking Bridges/Switches, 802.11, PPP Extend reach of a single shared medium Connect two or more segments by copying data frames between them Switches only copy data when

More information

Revision of Lecture Eighteen

Revision of Lecture Eighteen Revision of Lecture Eighteen Previous lecture has discussed equalisation using Viterbi algorithm: Note similarity with channel decoding using maximum likelihood sequence estimation principle It also discusses

More information

Ethernet. Ethernet. Network Devices

Ethernet. Ethernet. Network Devices Ethernet Babak Kia Adjunct Professor Boston University College of Engineering ENG SC757 - Advanced Microprocessor Design Ethernet Ethernet is a term used to refer to a diverse set of frame based networking

More information

Telecommunications, Networks, and Wireless Computing

Telecommunications, Networks, and Wireless Computing Objectives Telecommunications, Networks, and Wireless Computing 1. What are the features of a contemporary corporate telecommunications system? On what major technology developments are they based? 2.

More information

CCNA 1: Networking Basics. Cisco Networking Academy Program Version 3.0

CCNA 1: Networking Basics. Cisco Networking Academy Program Version 3.0 CCNA 1: Networking Basics Cisco Networking Academy Program Version 3.0 Table of Contents CCNA 1: NETWORKING BASICS...1 TARGET AUDIENCE...3 PREREQUISITES...3 COURSE DESCRIPTION...3 COURSE OBJECTIVES...3

More information

COMP 3331/9331: Computer Networks and Applications

COMP 3331/9331: Computer Networks and Applications COMP 3331/9331: Computer Networks and Applications Week 10 Wireless Networks Reading Guide: Chapter 6: 6.1 6.3 Wireless Networks + Security 1 Wireless and Mobile Networks Background: # wireless (mobile)

More information

Introduction to Ad hoc Networks

Introduction to Ad hoc Networks Introduction to Ad hoc Networks CS-647: Advanced Topics in Wireless Networks Drs. Baruch Awerbuch & Amitabh Mishra Department of Computer Science Johns Hopkins University Amitabh Mishra & Baruch Awerbuch

More information

communication over wireless link handling mobile user who changes point of attachment to network

communication over wireless link handling mobile user who changes point of attachment to network Wireless Networks Background: # wireless (mobile) phone subscribers now exceeds # wired phone subscribers! computer nets: laptops, palmtops, PDAs, Internet-enabled phone promise anytime untethered Internet

More information

Note! The problem set consists of two parts: Part I: The problem specifications pages Part II: The answer pages

Note! The problem set consists of two parts: Part I: The problem specifications pages Part II: The answer pages Part I: The problem specifications NTNU The Norwegian University of Science and Technology Department of Telematics Note! The problem set consists of two parts: Part I: The problem specifications pages

More information

Mobile Wireless Overview

Mobile Wireless Overview Mobile Wireless Overview A fast-paced technological transition is occurring today in the world of internetworking. This transition is marked by the convergence of the telecommunications infrastructure

More information

How To Understand The Gsm And Mts Mobile Network Evolution

How To Understand The Gsm And Mts Mobile Network Evolution Mobile Network Evolution Part 1 GSM and UMTS GSM Cell layout Architecture Call setup Mobility management Security GPRS Architecture Protocols QoS EDGE UMTS Architecture Integrated Communication Systems

More information

Ethernet. Ethernet Frame Structure. Ethernet Frame Structure (more) Ethernet: uses CSMA/CD

Ethernet. Ethernet Frame Structure. Ethernet Frame Structure (more) Ethernet: uses CSMA/CD Ethernet dominant LAN technology: cheap -- $20 for 100Mbs! first widely used LAN technology Simpler, cheaper than token rings and ATM Kept up with speed race: 10, 100, 1000 Mbps Metcalfe s Etheret sketch

More information

Wireless LANs vs. Wireless WANs

Wireless LANs vs. Wireless WANs White Paper Wireless LANs vs. Wireless WANs White Paper 2130273 Revision 1.0 Date 2002 November 18 Subject Supported Products Comparing Wireless LANs and Wireless WANs Wireless data cards and modules,

More information

ESSENTIALS. Understanding Ethernet Switches and Routers. April 2011 VOLUME 3 ISSUE 1 A TECHNICAL SUPPLEMENT TO CONTROL NETWORK

ESSENTIALS. Understanding Ethernet Switches and Routers. April 2011 VOLUME 3 ISSUE 1 A TECHNICAL SUPPLEMENT TO CONTROL NETWORK VOLUME 3 ISSUE 1 A TECHNICAL SUPPLEMENT TO CONTROL NETWORK Contemporary Control Systems, Inc. Understanding Ethernet Switches and Routers This extended article was based on a two-part article that was

More information

Module 5. Broadcast Communication Networks. Version 2 CSE IIT, Kharagpur

Module 5. Broadcast Communication Networks. Version 2 CSE IIT, Kharagpur Module 5 Broadcast Communication Networks Lesson 9 Cellular Telephone Networks Specific Instructional Objectives At the end of this lesson, the student will be able to: Explain the operation of Cellular

More information

Mathatma Gandhi University

Mathatma Gandhi University Mathatma Gandhi University BSc Computer Science IV th semester BCS 402 Computer Network &Internet MULTIPLE CHOICE QUESTIONS 1. The computer network is A) Network computer with cable B) Network computer

More information

Chapter 7 Low-Speed Wireless Local Area Networks

Chapter 7 Low-Speed Wireless Local Area Networks Wireless# Guide to Wireless Communications 7-1 Chapter 7 Low-Speed Wireless Local Area Networks At a Glance Instructor s Manual Table of Contents Overview Objectives s Quick Quizzes Class Discussion Topics

More information

WAN Data Link Protocols

WAN Data Link Protocols WAN Data Link Protocols In addition to Physical layer devices, WANs require Data Link layer protocols to establish the link across the communication line from the sending to the receiving device. 1 Data

More information

Lecture 1. Introduction to Wireless Communications 1

Lecture 1. Introduction to Wireless Communications 1 896960 Introduction to Algorithmic Wireless Communications Lecture 1. Introduction to Wireless Communications 1 David Amzallag 2 May 25, 2008 Introduction to cellular telephone systems. How a cellular

More information

Mobility and cellular networks

Mobility and cellular networks Mobility and cellular s Wireless WANs Cellular radio and PCS s Wireless data s Satellite links and s Mobility, etc.- 2 Cellular s First generation: initially debuted in Japan in 1979, analog transmission

More information

Chapter 2 - The TCP/IP and OSI Networking Models

Chapter 2 - The TCP/IP and OSI Networking Models Chapter 2 - The TCP/IP and OSI Networking Models TCP/IP : Transmission Control Protocol/Internet Protocol OSI : Open System Interconnection RFC Request for Comments TCP/IP Architecture Layers Application

More information

Chapter 9A. Network Definition. The Uses of a Network. Network Basics

Chapter 9A. Network Definition. The Uses of a Network. Network Basics Chapter 9A Network Basics 1 Network Definition Set of technologies that connects computers Allows communication and collaboration between users 2 The Uses of a Network Simultaneous access to data Data

More information

Network Technologies

Network Technologies Network Technologies Telephone Networks IP Networks ATM Networks Three Network Technologies Telephone Network The largest worldwide computer network, specialized for voice ing technique: Circuit-switching

More information

Wireless Home Networks based on a Hierarchical Bluetooth Scatternet Architecture

Wireless Home Networks based on a Hierarchical Bluetooth Scatternet Architecture Wireless Home Networks based on a Hierarchical Bluetooth Scatternet Architecture W. Lilakiatsakun'. 2, A. Seneviratne' I School of Electrical Engineering and Telecommunication University of New South Wales,

More information

Overview of Computer Networks

Overview of Computer Networks Overview of Computer Networks Client-Server Transaction Client process 4. Client processes response 1. Client sends request 3. Server sends response Server process 2. Server processes request Resource

More information

Protocols and Architecture. Protocol Architecture.

Protocols and Architecture. Protocol Architecture. Protocols and Architecture Protocol Architecture. Layered structure of hardware and software to support exchange of data between systems/distributed applications Set of rules for transmission of data between

More information

SFWR 4C03: Computer Networks & Computer Security Jan 3-7, 2005. Lecturer: Kartik Krishnan Lecture 1-3

SFWR 4C03: Computer Networks & Computer Security Jan 3-7, 2005. Lecturer: Kartik Krishnan Lecture 1-3 SFWR 4C03: Computer Networks & Computer Security Jan 3-7, 2005 Lecturer: Kartik Krishnan Lecture 1-3 Communications and Computer Networks The fundamental purpose of a communication network is the exchange

More information

Wireless Cellular Networks: 1G and 2G

Wireless Cellular Networks: 1G and 2G Wireless Cellular Networks: 1G and 2G Raj Jain Professor of Computer Science and Engineering Washington University in Saint Louis Saint Louis, MO 63130 Audio/Video recordings of this lecture are available

More information

LoRaWAN. What is it? A technical overview of LoRa and LoRaWAN. Technical Marketing Workgroup 1.0

LoRaWAN. What is it? A technical overview of LoRa and LoRaWAN. Technical Marketing Workgroup 1.0 LoRaWAN What is it? A technical overview of LoRa and LoRaWAN Technical Marketing Workgroup 1.0 November 2015 TABLE OF CONTENTS 1. INTRODUCTION... 3 What is LoRa?... 3 Long Range (LoRa )... 3 2. Where does

More information

8/27/2014. What is a computer network? Introduction. Business Applications (1) Uses of Computer Networks. Business Applications (2)

8/27/2014. What is a computer network? Introduction. Business Applications (1) Uses of Computer Networks. Business Applications (2) What is a computer network? Introduction Chapter 1 A number of separate but interconnected computers A collection of autonomous computers interconnected by a single technology COURSE FOCUS: design and

More information

2. What is the maximum value of each octet in an IP address? A. 128 B. 255 C. 256 D. None of the above

2. What is the maximum value of each octet in an IP address? A. 128 B. 255 C. 256 D. None of the above 1. How many bits are in an IP address? A. 16 B. 32 C. 64 2. What is the maximum value of each octet in an IP address? A. 128 B. 255 C. 256 3. The network number plays what part in an IP address? A. It

More information

This course has been retired. View the schedule of current <a href=http://www.ptr.co.uk/networkingcourses.htm>networking

This course has been retired. View the schedule of current <a href=http://www.ptr.co.uk/networkingcourses.htm>networking Introduction to Data Communications & Networking Course Description: This course has been retired. View the schedule of current networking Courses

More information

Chapter 5. Data Communication And Internet Technology

Chapter 5. Data Communication And Internet Technology Chapter 5 Data Communication And Internet Technology Purpose Understand the fundamental networking concepts Agenda Network Concepts Communication Protocol TCP/IP-OSI Architecture Network Types LAN WAN

More information

EE4367 Telecom. Switching & Transmission. Prof. Murat Torlak

EE4367 Telecom. Switching & Transmission. Prof. Murat Torlak Packet Switching and Computer Networks Switching As computer networks became more pervasive, more and more data and also less voice was transmitted over telephone lines. Circuit Switching The telephone

More information

RESOURCE ALLOCATION FOR INTERACTIVE TRAFFIC CLASS OVER GPRS

RESOURCE ALLOCATION FOR INTERACTIVE TRAFFIC CLASS OVER GPRS RESOURCE ALLOCATION FOR INTERACTIVE TRAFFIC CLASS OVER GPRS Edward Nowicki and John Murphy 1 ABSTRACT The General Packet Radio Service (GPRS) is a new bearer service for GSM that greatly simplify wireless

More information

Mobile Communications TCS 455

Mobile Communications TCS 455 Mobile Communications TCS 455 Dr. Prapun Suksompong prapun@siit.tu.ac.th Lecture 26 1 Office Hours: BKD 3601-7 Tuesday 14:00-16:00 Thursday 9:30-11:30 Announcements Read the following from the SIIT online

More information

10. Wireless Networks

10. Wireless Networks Computernetzwerke und Sicherheit (CS221) 10. Wireless Networks 1. April 2011 omas Meyer Departement Mathematik und Informatik, Universität Basel Chapter 6 Wireless and Mobile Networks (with changes CS221

More information

Wireless LAN Concepts

Wireless LAN Concepts Wireless LAN Concepts Wireless LAN technology is becoming increasingly popular for a wide variety of applications. After evaluating the technology, most users are convinced of its reliability, satisfied

More information

Performance Issues of TCP and MPEG-4 4 over UMTS

Performance Issues of TCP and MPEG-4 4 over UMTS Performance Issues of TCP and MPEG-4 4 over UMTS Anthony Lo A.Lo@ewi.tudelft.nl 1 Wiskunde end Informatica Outline UMTS Overview TCP and MPEG-4 Performance Summary 2 1 Universal Mobile Telecommunications

More information

CSE 3461 / 5461: Computer Networking & Internet Technologies

CSE 3461 / 5461: Computer Networking & Internet Technologies Autumn Semester 2014 CSE 3461 / 5461: Computer Networking & Internet Technologies Instructor: Prof. Kannan Srinivasan 08/28/2014 Announcement Drop before Friday evening! k. srinivasan Presentation A 2

More information

Spring 2014. Final Project Report

Spring 2014. Final Project Report ENSC 427: COMMUNICATIONNETWORKS Spring 2014 Final Project Report Evaluation and Comparison of WiMAX (802.16a) and Wi-Fi (802.11a) http://www.sfu.ca/~tlan/ensc427webpage.html Group #11 Tian Lan tlan@sfu.ca

More information

Indian Institute of Technology Kharagpur. TCP/IP Part I. Prof Indranil Sengupta Computer Science and Engineering Indian Institute of Technology

Indian Institute of Technology Kharagpur. TCP/IP Part I. Prof Indranil Sengupta Computer Science and Engineering Indian Institute of Technology Indian Institute of Technology Kharagpur TCP/IP Part I Prof Indranil Sengupta Computer Science and Engineering Indian Institute of Technology Kharagpur Lecture 3: TCP/IP Part I On completion, the student

More information

Introduction to Ethernet

Introduction to Ethernet Technical Tutorial 2002 12-06 Table of Contents 1: Introduction 2: Ethernet 3: IEEE standards 4: Topology 5: CSMA/CD 6: Wireless-LAN 7: Transmission Speed 8: Limitations of Ethernet 9: Sena Products and

More information

IP Networking. Overview. Networks Impact Daily Life. IP Networking - Part 1. How Networks Impact Daily Life. How Networks Impact Daily Life

IP Networking. Overview. Networks Impact Daily Life. IP Networking - Part 1. How Networks Impact Daily Life. How Networks Impact Daily Life Overview Dipl.-Ing. Peter Schrotter Institute of Communication Networks and Satellite Communications Graz University of Technology, Austria Fundamentals of Communicating over the Network Application Layer

More information

ZIGBEE 802.15.4. ECGR-6185 Advanced Embedded Systems. Charlotte. University of North Carolina-Charlotte. Chaitanya Misal Vamsee Krishna

ZIGBEE 802.15.4. ECGR-6185 Advanced Embedded Systems. Charlotte. University of North Carolina-Charlotte. Chaitanya Misal Vamsee Krishna ECGR-6185 Advanced Embedded Systems ZIGBEE 802.15.4 University of North Carolina-Charlotte Charlotte Chaitanya Misal Vamsee Krishna WPAN A personal area network (PAN) is a computer network used for communication

More information

Nortel - 920-803. Technology Standards and Protocol for IP Telephony Solutions

Nortel - 920-803. Technology Standards and Protocol for IP Telephony Solutions 1 Nortel - 920-803 Technology Standards and Protocol for IP Telephony Solutions QUESTION: 1 To achieve the QoS necessary to deliver voice between two points on a Frame Relay network, which two items are

More information

Tecnologías Inalámbricas.

Tecnologías Inalámbricas. Tecnologías Inalámbricas. Why is Wireless Security Different? There are four major differences for wireless services: Bandwidth Allowable error rates Latency Power Constraints Secure Mobile Devices Characteristics

More information

Local Area Networks transmission system private speedy and secure kilometres shared transmission medium hardware & software

Local Area Networks transmission system private speedy and secure kilometres shared transmission medium hardware & software Local Area What s a LAN? A transmission system, usually private owned, very speedy and secure, covering a geographical area in the range of kilometres, comprising a shared transmission medium and a set

More information

CSE331: Introduction to Networks and Security. Lecture 6 Fall 2006

CSE331: Introduction to Networks and Security. Lecture 6 Fall 2006 CSE331: Introduction to Networks and Security Lecture 6 Fall 2006 Open Systems Interconnection (OSI) End Host Application Reference model not actual implementation. Transmits messages (e.g. FTP or HTTP)

More information

1 Which network type is a specifically designed configuration of computers and other devices located within a confined area? A Peer-to-peer network

1 Which network type is a specifically designed configuration of computers and other devices located within a confined area? A Peer-to-peer network Review questions 1 Which network type is a specifically designed configuration of computers and other devices located within a confined area? A Peer-to-peer network B Local area network C Client/server

More information

EITF25 Internet Techniques and Applications L5: Wide Area Networks (WAN) Stefan Höst

EITF25 Internet Techniques and Applications L5: Wide Area Networks (WAN) Stefan Höst EITF25 Internet Techniques and Applications L5: Wide Area Networks (WAN) Stefan Höst Data communication in reality In reality, the source and destination hosts are very seldom on the same network, for

More information

TECHNICAL NOTE. GoFree WIFI-1 web interface settings. Revision Comment Author Date 0.0a First release James Zhang 10/09/2012

TECHNICAL NOTE. GoFree WIFI-1 web interface settings. Revision Comment Author Date 0.0a First release James Zhang 10/09/2012 TECHNICAL NOTE GoFree WIFI-1 web interface settings Revision Comment Author Date 0.0a First release James Zhang 10/09/2012 1/14 Web interface settings under admin mode Figure 1: web interface admin log

More information

802.11 standard. Acknowledgement: Slides borrowed from Richard Y. Yang @ Yale

802.11 standard. Acknowledgement: Slides borrowed from Richard Y. Yang @ Yale 802.11 standard Acknowledgement: Slides borrowed from Richard Y. Yang @ Yale IEEE 802.11 Requirements Design for small coverage (e.g. office, home) Low/no mobility High data-rate applications Ability to

More information

EECS 122: Introduction to Computer Networks Multiaccess Protocols. ISO OSI Reference Model for Layers

EECS 122: Introduction to Computer Networks Multiaccess Protocols. ISO OSI Reference Model for Layers EECS 122: Introduction to Computer Networks Multiaccess Protocols Computer Science Division Department of Electrical Engineering and Computer Sciences University of California, Berkeley Berkeley, CA 94720-1776

More information

1 Introduction to mobile telecommunications

1 Introduction to mobile telecommunications 1 Introduction to mobile telecommunications Mobile phones were first introduced in the early 1980s. In the succeeding years, the underlying technology has gone through three phases, known as generations.

More information

TABLE OF CONTENTS. Dedication. Table of Contents. Preface. Overview of Wireless Networks. vii 1.1 1.2 1.3 1.4 1.5 1.6 1.7. xvii

TABLE OF CONTENTS. Dedication. Table of Contents. Preface. Overview of Wireless Networks. vii 1.1 1.2 1.3 1.4 1.5 1.6 1.7. xvii TABLE OF CONTENTS Dedication Table of Contents Preface v vii xvii Chapter 1 Overview of Wireless Networks 1.1 1.2 1.3 1.4 1.5 1.6 1.7 Signal Coverage Propagation Mechanisms 1.2.1 Multipath 1.2.2 Delay

More information

International Journal of Advanced Research in Computer Science and Software Engineering

International Journal of Advanced Research in Computer Science and Software Engineering Volume 2, Issue 11, November 2012 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com Automated

More information

CCNA R&S: Introduction to Networks. Chapter 5: Ethernet

CCNA R&S: Introduction to Networks. Chapter 5: Ethernet CCNA R&S: Introduction to Networks Chapter 5: Ethernet 5.0.1.1 Introduction The OSI physical layer provides the means to transport the bits that make up a data link layer frame across the network media.

More information

Data Communication Networks and Converged Networks

Data Communication Networks and Converged Networks Data Communication Networks and Converged Networks The OSI Model and Encapsulation Layer traversal through networks Protocol Stacks Converged Data/Telecommunication Networks From Telecom to Datacom, Asynchronous

More information

11/22/2013 1. komwut@siit

11/22/2013 1. komwut@siit 11/22/2013 1 Week3-4 Point-to-Point, LAN, WAN Review 11/22/2013 2 What will you learn? Representatives for Point-to-Point Network LAN Wired Ethernet Wireless Ethernet WAN ATM (Asynchronous Transfer Mode)

More information

Guide to TCP/IP, Third Edition. Chapter 3: Data Link and Network Layer TCP/IP Protocols

Guide to TCP/IP, Third Edition. Chapter 3: Data Link and Network Layer TCP/IP Protocols Guide to TCP/IP, Third Edition Chapter 3: Data Link and Network Layer TCP/IP Protocols Objectives Understand the role that data link protocols, such as SLIP and PPP, play for TCP/IP Distinguish among various

More information

Protocol Data Units and Encapsulation

Protocol Data Units and Encapsulation Chapter 2: Communicating over the 51 Protocol Units and Encapsulation For application data to travel uncorrupted from one host to another, header (or control data), which contains control and addressing

More information

192620010 Mobile & Wireless Networking. Lecture 5: Cellular Systems (UMTS / LTE) (1/2) [Schiller, Section 4.4]

192620010 Mobile & Wireless Networking. Lecture 5: Cellular Systems (UMTS / LTE) (1/2) [Schiller, Section 4.4] 192620010 Mobile & Wireless Networking Lecture 5: Cellular Systems (UMTS / LTE) (1/2) [Schiller, Section 4.4] Geert Heijenk Outline of Lecture 5 Cellular Systems (UMTS / LTE) (1/2) q Evolution of cellular

More information

Chapter 6: Broadcast Systems. Mobile Communications. Unidirectional distribution systems DVB DAB. High-speed Internet. architecture Container

Chapter 6: Broadcast Systems. Mobile Communications. Unidirectional distribution systems DVB DAB. High-speed Internet. architecture Container Mobile Communications Chapter 6: Broadcast Systems Unidirectional distribution systems DAB DVB architecture Container High-speed Internet Prof. Dr.-Ing. Jochen Schiller, http://www.jochenschiller.de/ MC

More information

Introduction to Wireless Communications and Networks

Introduction to Wireless Communications and Networks Introduction to Wireless Communications and Networks Tongtong Li Dept. Electrical and Computer Engineering East Lansing, MI 48824 tongli@egr.msu.edu 1 Outline Overview of a Communication System Digital

More information

CHAPTER 1 1 INTRODUCTION

CHAPTER 1 1 INTRODUCTION CHAPTER 1 1 INTRODUCTION 1.1 Wireless Networks Background 1.1.1 Evolution of Wireless Networks Figure 1.1 shows a general view of the evolution of wireless networks. It is well known that the first successful

More information

ICS 153 Introduction to Computer Networks. Inst: Chris Davison cbdaviso@uci.edu

ICS 153 Introduction to Computer Networks. Inst: Chris Davison cbdaviso@uci.edu ICS 153 Introduction to Computer Networks Inst: Chris Davison cbdaviso@uci.edu 1 ICS 153 Introduction to Computer Networks Course Goals Understand the basic principles of computer networks Design Architecture

More information

How To Make A Multi-User Communication Efficient

How To Make A Multi-User Communication Efficient Multiple Access Techniques PROF. MICHAEL TSAI 2011/12/8 Multiple Access Scheme Allow many users to share simultaneously a finite amount of radio spectrum Need to be done without severe degradation of the

More information

WPAN. Contents. S-72.3240 Wireless Personal, Local, Metropolitan, and Wide Area Networks 1

WPAN. Contents. S-72.3240 Wireless Personal, Local, Metropolitan, and Wide Area Networks 1 Contents Bluetooth (IEEE 802.15.1) Network topology FHSS operation Link delivery services System architecture & protocols Usage models ZigBee (IEEE 802.15.4) Network topology Physical layer operation CSMA/CA

More information

Communications and Computer Networks

Communications and Computer Networks SFWR 4C03: Computer Networks and Computer Security January 5-8 2004 Lecturer: Kartik Krishnan Lectures 1-3 Communications and Computer Networks The fundamental purpose of a communication system is the

More information

Technical and economical assessment of selected LTE-A schemes.

Technical and economical assessment of selected LTE-A schemes. Technical and economical assessment of selected LTE-A schemes. Heinz Droste,, Darmstadt Project Field Intelligent Wireless Technologies & Networks 1 Mobile Networks enabler for connected life & work. Textbox

More information

Frequency Hopping Spread Spectrum (FHSS) vs. Direct Sequence Spread Spectrum (DSSS) in Broadband Wireless Access (BWA) and Wireless LAN (WLAN)

Frequency Hopping Spread Spectrum (FHSS) vs. Direct Sequence Spread Spectrum (DSSS) in Broadband Wireless Access (BWA) and Wireless LAN (WLAN) FHSS vs. DSSS page 1 of 16 Frequency Hopping Spread Spectrum (FHSS) vs. Direct Sequence Spread Spectrum (DSSS) in Broadband Wireless Access (BWA) and Wireless LAN (WLAN) by Sorin M. SCHWARTZ Scope In 1997

More information

Written examination in Computer Networks

Written examination in Computer Networks Written examination in Computer Networks February 14th 2014 Last name: First name: Student number: Provide on all sheets (including the cover sheet) your last name, rst name and student number. Use the

More information