Compound Microscope Lab Microscope Parts and Appropriate Use Exercise

Size: px
Start display at page:

Download "Compound Microscope Lab Microscope Parts and Appropriate Use Exercise"

Transcription

1 Name Date Period Compound Microscope Lab Microscope Parts and Appropriate Use Exercise Objective: The purpose of this lab is to learn how to use a Compound Microscope, make a wet-mount slide and understand how these skills and equipment can help further the study of biology. (Indiana State Academic Standards: Biology, 4.1, 5.1, & 5.2) Instructions: Follow each step of the procedure below. This lab is to be completed in your LAB JOURNAL. Materials: Microscope Scissors Prepared slide Forceps or pin Microscope slide Water Coverslip Eyedropper Newspaper Procedure: PART I: The Anatomy of a Microscope 1. Remove microscope from its storage area by placing one hand beneath the base and grasping the arm of the microscope with the other hand. BE CAREFUL! 2. Gently place microscope on lab table with the arm facing you. Microscope s base should rest evenly on and away from edge of the table. 3. Using the following descriptions, identify the parts of the microscope. a. Label microscope diagram on DIAGRAM 1. Begin at the top of the microscope. i. Eyepiece: lens where your eye looks to see an object magnified; the eyepiece has a lens which, by itself, magnifies 10 times (10X) to make the object look 10X its actual size ii. The eyepiece is the topmost end of the body tube. The body tube is responsible for putting the correct amount of distance between the eyepiece lens and the lenses at the bottom of the body tube. iii. Look at the bottom of the body tube. You should see a round circle attached which moves when you turn it. Go ahead and turn the round revolving nosepiece. Notice that there are three more lenses attached to the revolving nosepiece each with a different magnifying power. The function of the revolving nosepiece is to place a lens in the down position to help the microscope. As you turn the revolving nosepiece, listen and feel for a click. The new lens is in place when you hear the click. iv. Look at the three lenses on the revolving nosepiece. Notice that they are three different sizes. These three lenses are called objective lenses. Their function is to increase the magnification of the microscope. 1. The shortest is called the scanning power objective when used alone, its magnification is 4X. Look on the side of the lens. You should see the number 4 printed there. 2. The next lens is called the low power objective when used alone, its magnification is 10X. Look on the side of the lens. You should see the number 10 printed there. 3. The third, or longest lens, is called the high power objective when used alone, its magnification is 40X. Look on the side of the lens. You should see the number 40 printed there. Part I (a): Calculating Total Magnification Since this is a compound microscope, the objective lenses and eyepiece lenses are not used by themselves; instead, two lenses are used together. To determine the total magnification of the microscope with the scanning power objective in the locked, down position, multiply the magnification number of the eyepiece lens times the number of the scanning power objective lens. Total magnification = eyepiece magnification X objective lens magnification So the microscope, when using the scanning power objective lens in place, has a total magnification of 40X. Using the formula shown above, Complete Table 1. 40X = 10X X 4X

2 Locate the stage of the microscope. The stage holds the slide being observed. Attached to the stage are two silver-colored stage clips. These are used to hold the slide in position. In the stage there is an opening. This opening allows light from the lamp under the stage to shine through an object. Remember, a light microscope depends on light being able to go through an object. Now look under the stage. You should find a disk with holes in it. Notice that the holes are of varying sizes. This is called the diaphragm and works like the iris of your eye. As the hole in the diaphragm gets larger, more light can go through the opening on the stage and thus through the object you are looking at. Plug in the cord and check the position of the cord to make sure it is out of the way. Turn on the lamp to be sure it is working. Turn the diaphragm to see how less light goes through the opening on the stage when the smaller hole is lined up and more light goes through when the larger holes are lined up. Turn the microscope off at this time. 9. On the sides of the microscope are two knobs used to focus the lenses. The larger knob is called the coarse adjustment knob. It is used to get an object into as close focus as possible BUT THIS KNOB MAY ONLY BE USED WHEN YOU ARE USING THE SCANNING OR THE LOW-POWERED OBJECTIVES. 10. The smaller knob is called the fine adjustment knob. This knob is for fine tuning the focus. It may be used with any objective lens clicked into place. PART II: Making A Wet-Mount Slide Obtain a SLIDE, a COVERSLIP, the letter e from a piece of newsprint. (It should look just like this e and be about this size), and some water. Cut a small letter e from the newspaper and place it onto the slide. To make a wet-mount slide, use the eyedropper to place water over the letter e. Take a small coverslip (about 2cm x 2cm) at a 45 o and place one edge of the coverslip at the edge of the water. Using a pin or a forceps, lower the coverslip over the letter e and the drop of water. Try not to trap any air bubbles under the coverslip since these will interfere with your view of the object. Congratulations, now you have a wet-mount slide! *As the water evaporates while you look at the slide, you may need to add water to keep the slide fresh. This is done by placing the tip of the eyedropper next to the edge of the coverslip and adding a drop of water. The water will run underneath the coverslip. Be sure the stage is as far from the objective lenses as possible. You do this by turning the coarse adjustment knob. Be sure you have the scanning power objective (the shortest one) clicked in the down position. Clip the slide with the letter e into place on the stage of your microscope and position it so that the letter is directly over the center of the stage opening. PLACE THE SLIDE WITH THE LETTER e POSITIONED AS IF YOU WERE READING IT. HUMOR ME AND DO IT THIS WAY I REALLY DO HAVE A REASON FOR THIS! EVEN IF YOU HAVE TO PLACE YOUR SLIDE AT AN ANGLE, HAVE THE LETTER e FACING YOU AS YOU LOOK AT THE MICROSCOPE STAGE Turn on the microscope lamp. Using the coarse adjustment knob, raise the stage as far as it will go without bumping into the objective lens. Look through the eyepiece lens. While looking through the lens, use the coarse adjustment knob to lower the stage until the letter e comes into view. Focus it as well as you can with the coarse adjustment knob and then use the fine adjustment knob for fine-tuning. KEEP YOUR HANDS OFF THE SLIDE UNLESS YOU ARE CENTERING IT IN THE FIELD OF VISION! (The large, lighted circle you see is called the field of vision.) You should see the letter e. What is wrong with it??? If you said it was upside down, you are exactly right! As the light passes through the lenses, it is bent. This causes you to the e upside-down and backwards. Draw the letter e on Diagram 2-A exactly as you see it through the eyepiece.

3 9. While looking through the eyepiece at the letter e, move the slide to your right. Notice the direction that the letter appears to move. Record the direction that the letter moves in the analysis section of your lab journal. 10. Now move the slide to the left. Note the direction that the letter appears to move. Record your observations in the analysis section of your lab journal. 11. Re-center the letter e. Now move the slide up and away from you. 12. Re-center the letter e. Now move it down. 13. To switch the objective lens, first re-center the letter e in the field of vision. Look at the slide on the stage and rotate the revolving nosepiece until the low power objective clicks into place. Use the low power objective lens to observe the letter e. Use the coarse and fine adjustment knobs to get the letter into focus. 14. Draw the letter e on Diagram 2-B exactly as you see it through the eyepiece. 15. Before you change the objective lens to high power, make sure there is some ink in the center of the field of vision. The field narrows so much that, if there is no ink, you may miss the letter completely when you try to see it on high power. 16. DO NOT TOUCH THE COARSE ADJUSTMENT KNOB OR THE FINE ADJUSTMENT KNOB AGAIN UNTIL YOU ARE TOLD TO DO SO!!!!!!! 17. Turn the revolving nosepiece while looking at the stage. When you go to the high power objective you need to turn the nosepiece while looking at it to be sure it will clear the slide without hitting it. For this slide IT WILL BE FINE IT WILL NOT HIT THE SLIDE EVEN THOUGH IT SEEMS IT MIGHT. Turn the revolving nosepiece until the high power objective clicks into place. 18. USE ONLY THE FINE ADJUSTMENT KNOB WHEN YOU ARE ON HIGH POWER!!! The coarse adjustment knob has been known to smash right through a slide. NEVER USE THE COARSEADJUSTMENT KNOB WHEN ON HIGH POWER. Focus the slide as well as possible it may not get into focus very clearly. 19. In the circle on Diagram 2-C, draw a picture of the letter e as you now see it. 20. You may have noticed that when you changed the magnification by changing the objective lenses, the image was only slightly out of focus if at all. This is because modern microscopes are PARFOCAL. This means the microscope will hold its focus when the objective lenses are changed. 21. To put the microscope away properly, turn it off, unplug, return the objective lenses to the scanning lens, wrap the cord, and carry it to its cubby using the arm and the base.

4 Cut along the dotted line and paste the following sections in your lab journal as described in the lab journal format. MATCHING (Diagram 1-A) Match the structure with its function: 1. Eyepiece 2. Arm 3. Stage 4. Opening of the stage 5. Fine adjustment knob 6. Coarse Adjustment knob 7. Base 8. Lamp 9. Diaphragm 10. Stage clips 11. Low power objective lens 12. High power objective lens 13. Scanning power objective lens 14. Revolving nosepiece 15. Body tube A. Holds the slide in place B. Moves the stage up and down for focusing C. Provides a magnification of 10X and is the middle sized of the objectives D. Maintains a proper distance between the eyepiece and the objective lenses E. Contains a 10X lens; where you place your eye F. Supports the microscope G. Contains the objective lenses and moves them into position for use H. Supports the body tube and is held to carry the microscope I. Produces light to shine up through the body tube J. Provides a magnification of 40X for a total magnification of 400X K. Supports the slide being observed L. Regulates the amount of light going through the opening in the stage and into the body tube M. Allows the microscope to be in sharper focus N. A hole which allows light through the stage and to the object and the body tube. O..Provides a magnification of 4X for a total magnification of 40X DIAGRAM 2 (Letter e drawings from steps 8, 14 & 19) 2-A 2-B 2-C Magnification Magnification Magnification Scanning Power Low Power High Power

5 DIAGRAM 1-B Table 1 SCANNING POWER LOW POWER HIGH POWER EYEPIECE OBJECTIVE TOTAL MAGNIFICATION 10X 10X 10X

6 Analysis Questions Answer the questions below using complete sentences in your lab journal. 1. What is meant by field of vision? 2. How does changing the magnification change your field of vision? 3. Describe how to make a wet-mount slide. 4. Why must you be careful when focusing when you are using the high power objective? What precautions should you take? 5. When you moved the e to the right in Part II step 9, which direction did it appear to move? 6. In Part II step 10 when you moved the e to the left, which direction did it appear to move? 7. In Part II steps 11 & 12 what did you notice about the direction the e appeared to move when you moved the slide up and down? 8. If a stationary object (like the letter e ) was moved to the upper right corner of the field of vision as you looked through the microscope and you wanted to get it into the center, in which 2 directions would you have to move the slide? You would have to move it to the 9. If you were tracking a microorganism that appeared to be moving from the right side of the field of vision to the left side of the field of vision, which way would you move the slide to keep it in view? Why? and Lab Journal Format Title Objective Materials Slide Forceps Matching Diagram 1-A Microscope Diagram Table 1 Diagram 1-B Letter e Wet Mount Diagram 2 Analysis Questions: #1-9

Name Class Date Laboratory Investigation 4B Chapter 4: Cell Structure

Name Class Date Laboratory Investigation 4B Chapter 4: Cell Structure Name Class Date Laboratory Investigation 4B Chapter 4: Cell Structure The Microscope: A Tool of the Scientist You may refer to pages 66-67, 72-73 in your textbook for a general discussion of microscopes.

More information

Care and Use of the Compound Microscope

Care and Use of the Compound Microscope Revised Fall 2011 Care and Use of the Compound Microscope Objectives After completing this lab students should be able to 1. properly clean and carry a compound and dissecting microscope. 2. focus a specimen

More information

Microscope Lab Introduction to the Microscope Lab Activity

Microscope Lab Introduction to the Microscope Lab Activity Microscope Lab Introduction to the Microscope Lab Activity Wendy Kim 3B 24 Sep 2010 http://www.mainsgate.com/spacebio/modules/gs_resource/ CellDivisionMetaphase.jpeg 1 Introduction Microscope is a tool

More information

EXPERIMENT #1: MICROSCOPY

EXPERIMENT #1: MICROSCOPY EXPERIMENT #1: MICROSCOPY Brightfield Compound Light Microscope The light microscope is an important tool in the study of microorganisms. The compound light microscope uses visible light to directly illuminate

More information

MICROSCOPY. To demonstrate skill in the proper utilization of a light microscope.

MICROSCOPY. To demonstrate skill in the proper utilization of a light microscope. MICROSCOPY I. OBJECTIVES To demonstrate skill in the proper utilization of a light microscope. To demonstrate skill in the use of ocular and stage micrometers for measurements of cell size. To recognize

More information

Compound microscope (Hund)

Compound microscope (Hund) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Compound microscope (Hund) 15 16 17 18 19 20 1) Eyepieces (magnifies 10x), one with diopter adjustment, 2) Interp[upillary adjustment, 3) Head, 4) Revolving nosepiece,

More information

Exercise 2. The Compound Light Microscope

Exercise 2. The Compound Light Microscope 6 Exercise 2 The Compound Light Microscope INTRODUCTION: Student Learning Objectives: After completing this exercise students will: a. Demonstrate proficient use of the microscope using low, high dry,

More information

MT-30 & MT-90 Series. Advanced Academic Microscopes/ Advanced Academic Polarizing Microscope INSTRUCTION MANUAL

MT-30 & MT-90 Series. Advanced Academic Microscopes/ Advanced Academic Polarizing Microscope INSTRUCTION MANUAL Introduction With your purchase of an MT-30/MT-90 series type microscope you have chosen for a quality product. The MT-30/MT-90 series type microscopes are developed for use at schools and laboratories.

More information

MITOSIS IN ONION ROOT TIP CELLS: AN INTRODUCTION TO LIGHT MICROSCOPY

MITOSIS IN ONION ROOT TIP CELLS: AN INTRODUCTION TO LIGHT MICROSCOPY MITOSIS IN ONION ROOT TIP CELLS: AN INTRODUCTION TO LIGHT MICROSCOPY Adapted from Foundations of Biology I; Lab 6 Introduction to Microscopy Dr. John Robertson, Westminster College Biology Department,

More information

National Optical & Scientific Instruments Inc. 11113 Landmark 35 Drive San Antonio, Texas 78233 Phone (210) 590-9010 Fax (210) 590-1104

National Optical & Scientific Instruments Inc. 11113 Landmark 35 Drive San Antonio, Texas 78233 Phone (210) 590-9010 Fax (210) 590-1104 National Optical & Scientific Instruments Inc. 11113 Landmark 35 Drive San Antonio, Texas 78233 Phone (210) 590-9010 Fax (210) 590-1104 INSTRUCTIONS FOR MODELS 106, 106-L 107, 107-L 108, 108-L 109-L ELEMENTARY

More information

A Fishy Tale. Observing the Circulatory System of a Goldfish with a Compound Light Microscope

A Fishy Tale. Observing the Circulatory System of a Goldfish with a Compound Light Microscope A Fishy Tale Observing the Circulatory System of a Goldfish with a Compound Light Microscope A Fishy Tale About this Lesson In this lesson, students will explore a computer animation of the human body

More information

THE COMPOUND MICROSCOPE

THE COMPOUND MICROSCOPE THE COMPOUND MICROSCOPE In microbiology, the microscope plays an important role in allowing us to see tiny objects that are normally invisible to the naked eye. It is essential for students to learn how

More information

Use of the Microscope and Cytology

Use of the Microscope and Cytology Use of the Microscope and Cytology Introduction: A true study of anatomy not only considers the large, visible structures of an organism, but also the small structures that provide the organism its form

More information

BIO 10 Lab 1 Introduction Pre Lab Test

BIO 10 Lab 1 Introduction Pre Lab Test BIO 10 Lab 1 Introduction Pre Lab Test 1. Why is the microscope in our lab called a compound microscope? 2. How do you calculate total magnification? 3. What is the lowest and the maximal magnification

More information

CALIBRATION FOR LAL20X & LAL24X

CALIBRATION FOR LAL20X & LAL24X CALIBRATION AND FAULT FINDING FOR LAL20X & LAL24X DUMPY LEVELS MEASURING EXPERTS SINCE 1869 How The LAL20X & LAL24X Works The Automatic level is called Automatic because it requires only a simple basic

More information

Protocol for Microscope Calibration

Protocol for Microscope Calibration Protocol for Microscope Calibration A properly calibrated system is essential for successful and efficient software use. The following are step by step instructions on how to calibrate the hardware using

More information

Microscopy and Cellular Morphology

Microscopy and Cellular Morphology Microscopy and Cellular Morphology As we discussed in class, many organisms on the planet exist as single cells and are referred to as microorganisms bacteria, protozoans, among others. When a single microorganism

More information

The illustrations below reflect other scientists results in identifying and counting the stages of the onion root tip and the whitefish blastula.

The illustrations below reflect other scientists results in identifying and counting the stages of the onion root tip and the whitefish blastula. Abstract: The purpose of this laboratory experiment was to identify in what stage of mitosis viewed cells were in. The stages of mitosis include prophase, metaphase, anaphase and telophase. Although the

More information

LIGHT SECTION 6-REFRACTION-BENDING LIGHT From Hands on Science by Linda Poore, 2003.

LIGHT SECTION 6-REFRACTION-BENDING LIGHT From Hands on Science by Linda Poore, 2003. LIGHT SECTION 6-REFRACTION-BENDING LIGHT From Hands on Science by Linda Poore, 2003. STANDARDS: Students know an object is seen when light traveling from an object enters our eye. Students will differentiate

More information

RAY OPTICS II 7.1 INTRODUCTION

RAY OPTICS II 7.1 INTRODUCTION 7 RAY OPTICS II 7.1 INTRODUCTION This chapter presents a discussion of more complicated issues in ray optics that builds on and extends the ideas presented in the last chapter (which you must read first!)

More information

Chapter 1 Parts C. Robert Bagnell, Jr., Ph.D., 2012

Chapter 1 Parts C. Robert Bagnell, Jr., Ph.D., 2012 Chapter 1 Parts C. Robert Bagnell, Jr., Ph.D., 2012 Figure 1.1 illustrates the parts of an upright compound microscope and indicates the terminology that I use in these notes. Figure 1.1. Parts of a Compound

More information

How to make a Galileian Telescope

How to make a Galileian Telescope How to make a Galileian Telescope I. THE BASICS THE PRINCIPLES OF OPTICS A Galileian telescope uses just two lenses. The objective lens is convergent (plano-convex), the ocular lens is divergent (plano-concave).

More information

National Optical & Scientific Instruments Inc. 11113 Landmark 35 Drive San Antonio, Texas 78233 Phone (210) 590-9010 Fax (210) 590-1104

National Optical & Scientific Instruments Inc. 11113 Landmark 35 Drive San Antonio, Texas 78233 Phone (210) 590-9010 Fax (210) 590-1104 National Optical & Scientific Instruments Inc. 11113 Landmark 35 Drive San Antonio, Texas 78233 Phone (210) 590-9010 Fax (210) 590-1104 INSTRUCTIONS FOR MODELS 156, 156-S, 157 COMPOUND BIOLOGICAL MICROSCOPES

More information

Solution Derivations for Capa #14

Solution Derivations for Capa #14 Solution Derivations for Capa #4 ) An image of the moon is focused onto a screen using a converging lens of focal length (f = 34.8 cm). The diameter of the moon is 3.48 0 6 m, and its mean distance from

More information

Making a reflector telescope

Making a reflector telescope Making a reflector telescope telescope built by Sir Isaac Newton Replica of the first reflector Nowadays, professional astronomers use another type of telescope that is different to the first telescope

More information

Lenses and Telescopes

Lenses and Telescopes A. Using single lenses to form images Lenses and Telescopes The simplest variety of telescope uses a single lens. The image is formed at the focus of the telescope, which is simply the focal plane of the

More information

VISM Evolution Scope Series

VISM Evolution Scope Series 1 VISM Evolution Scope Series Congratulations on the purchase of your New VISM Evolution (EVO) Series Scope! The EVO Series of Scopes give you many great high end features and various magnification ranges

More information

Light and its effects

Light and its effects Light and its effects Light and the speed of light Shadows Shadow films Pinhole camera (1) Pinhole camera (2) Reflection of light Image in a plane mirror An image in a plane mirror is: (i) the same size

More information

DETECTION OF BACTERIAL MOTILITY. To demonstrate bacterial motility by microscopic and macroscopic techniques.

DETECTION OF BACTERIAL MOTILITY. To demonstrate bacterial motility by microscopic and macroscopic techniques. DETECTION OF BACTERIAL MOTILITY I. OBJECTIVES To demonstrate bacterial motility by microscopic and macroscopic techniques. To observe flagella in prepared slides stained by specific flagellar stains. II.

More information

EXPERIMENT 6 OPTICS: FOCAL LENGTH OF A LENS

EXPERIMENT 6 OPTICS: FOCAL LENGTH OF A LENS EXPERIMENT 6 OPTICS: FOCAL LENGTH OF A LENS The following website should be accessed before coming to class. Text reference: pp189-196 Optics Bench a) For convenience of discussion we assume that the light

More information

Forensic Science: The Basics. Microscopy

Forensic Science: The Basics. Microscopy Forensic Science: The Basics Microscopy Chapter 6 Jay A. Siegel,Ph.D. Power point presentation by Greg Galardi, Peru State College, Peru Nebraska Presentation by Greg Galardi, Peru State College CRC Press,

More information

Lesson 26: Reflection & Mirror Diagrams

Lesson 26: Reflection & Mirror Diagrams Lesson 26: Reflection & Mirror Diagrams The Law of Reflection There is nothing really mysterious about reflection, but some people try to make it more difficult than it really is. All EMR will reflect

More information

COMPARING PLANT AND ANIMAL CELLS

COMPARING PLANT AND ANIMAL CELLS COMPARING PLANT AND ANIMAL CELLS OBJECTIVES: Distinguish between plant and animals cells by their structures Demonstrate the benefit of stains Acquire ability to prepare wet mounts SAFETY: Methylene blue

More information

Science In Action 8 Unit C - Light and Optical Systems. 1.1 The Challenge of light

Science In Action 8 Unit C - Light and Optical Systems. 1.1 The Challenge of light 1.1 The Challenge of light 1. Pythagoras' thoughts about light were proven wrong because it was impossible to see A. the light beams B. dark objects C. in the dark D. shiny objects 2. Sir Isaac Newton

More information

EXPERIMENT O-6. Michelson Interferometer. Abstract. References. Pre-Lab

EXPERIMENT O-6. Michelson Interferometer. Abstract. References. Pre-Lab EXPERIMENT O-6 Michelson Interferometer Abstract A Michelson interferometer, constructed by the student, is used to measure the wavelength of He-Ne laser light and the index of refraction of a flat transparent

More information

Removing memory and option cards

Removing memory and option cards These instructions can help you remove memory or option cards. Use the following illustration to locate the connector for the card you want to remove. Hard disk connector 1 Option card connector Firmware

More information

9/16 Optics 1 /11 GEOMETRIC OPTICS

9/16 Optics 1 /11 GEOMETRIC OPTICS 9/6 Optics / GEOMETRIC OPTICS PURPOSE: To review the basics of geometric optics and to observe the function of some simple and compound optical devices. APPARATUS: Optical bench, lenses, mirror, target

More information

Where is Mitosis Most Common in the Onion Root?

Where is Mitosis Most Common in the Onion Root? Where is Mitosis Most Common in the Onion Root? Faith Loyd Biology Miss Carpenter February 20, 2013 Problem, Hypothesis, and Prediction The problem in this lab is: To analyze data to see whether mitosis

More information

FirstView 3 Reflector Telescope Owner s Manual

FirstView 3 Reflector Telescope Owner s Manual FirstView 3 Reflector Telescope Owner s Manual 1. Horizontal Locking Auxiliary Screw 2. Main Mount 3. Pitching Auxiliary Knob 4. Pitching Shaft Screw 5. Rack and Pinion Focusing Knob 6. Thumb Nut for Finder

More information

CALIBRATING YOUR SYSTEM. Follow our guidelines carefully to ensure proper system function. EQUIPMENT

CALIBRATING YOUR SYSTEM. Follow our guidelines carefully to ensure proper system function. EQUIPMENT Follow our guidelines carefully to ensure proper system function. EQUIPMENT A microscope system (camera, stage, objectives, computer etc.) Calibration grid slide The latest version of MBF software. Optional:

More information

Students will identify these animal cell structures: Students should properly answer the pre-activity cell membrane, nucleus. questions.

Students will identify these animal cell structures: Students should properly answer the pre-activity cell membrane, nucleus. questions. WHAT DO PLANT & ANIMAL CELLS LOOK LIKE? Grade Levels: 10-12 Time Frame: 2 periods Big Idea: Students will compare various plant epithelial cells (onion and elodea) with human epithelial cells (cheek lining

More information

Figure 1. Basic structure of the leaf, with a close up of the leaf surface showing Stomata and Guard cells.

Figure 1. Basic structure of the leaf, with a close up of the leaf surface showing Stomata and Guard cells. BIOL100 Laboratory Assignment 3: Analysis of Stomata Name: Stomata (singular=stoma) are the respiratory control structures in plants (see Figure 1 below). They are essentially small holes in the surface

More information

Biology. STANDARD II: Objective 3. Osmosis Inquiry Labs

Biology. STANDARD II: Objective 3. Osmosis Inquiry Labs Biology STANDARD II: Objective 3 Osmosis Inquiry Labs Background Knowledge: Students should have used a microscope before and be familiar with the parts. They should also know how to make a wet mount slide.

More information

M A R C O. CP-670 AUTOMATIC CHART PROJECTOR Instruction Manual

M A R C O. CP-670 AUTOMATIC CHART PROJECTOR Instruction Manual M A R C O CP-670 AUTOMATIC CHART PROJECTOR Instruction Manual CONTENTS GENERAL DESCRIPTION............... 1 INSTALLATION...................... 2 Mounting the Projector Positioning the Projector Positioning

More information

Using a Microscope to See Different Types of Cells

Using a Microscope to See Different Types of Cells Using a Microscope to See Different Types of Cells copyright 2003 by Dr. Vivianne Nachmias, University of Pennsylvania All organisms are made up of cells - a cell is the simplest collection of matter that

More information

PROFESSIONAL REFRACTOR MODEL 78-0040 25

PROFESSIONAL REFRACTOR MODEL 78-0040 25 30 0 30 60 90 1 2 3 4 PROFESSIONAL REFRACTOR MODEL 78-0040 25 24 22 21 20 19 5 9060 18 6 7 17 16 15 8 14 13 9 11 12 10 Figure 1 1. Objective Lens 2. Mounting Screws (2) 3. Declination Axis 4. Equatorial

More information

7.2. Focusing devices: Unit 7.2. context. Lenses and curved mirrors. Lenses. The language of optics

7.2. Focusing devices: Unit 7.2. context. Lenses and curved mirrors. Lenses. The language of optics context 7.2 Unit 7.2 ocusing devices: Lenses and curved mirrors Light rays often need to be controlled and ed to produce s in optical instruments such as microscopes, cameras and binoculars, and to change

More information

Light Energy. Countdown: Experiment 1: 1 tomato paste can (without top or bottom) table lamp white poster board, 7 x 9

Light Energy. Countdown: Experiment 1: 1 tomato paste can (without top or bottom) table lamp white poster board, 7 x 9 Light Energy Grade Level: 5 Time Required: 1-2 class periods Suggested TEKS: Science - 5.8 Suggested SCANS: Information. Acquires and evaluates information. National Science and Math Standards Science

More information

Geometric Optics Converging Lenses and Mirrors Physics Lab IV

Geometric Optics Converging Lenses and Mirrors Physics Lab IV Objective Geometric Optics Converging Lenses and Mirrors Physics Lab IV In this set of lab exercises, the basic properties geometric optics concerning converging lenses and mirrors will be explored. The

More information

1. Three-Color Light. Introduction to Three-Color Light. Chapter 1. Adding Color Pigments. Difference Between Pigments and Light. Adding Color Light

1. Three-Color Light. Introduction to Three-Color Light. Chapter 1. Adding Color Pigments. Difference Between Pigments and Light. Adding Color Light 1. Three-Color Light Chapter 1 Introduction to Three-Color Light Many of us were taught at a young age that the primary colors are red, yellow, and blue. Our early experiences with color mixing were blending

More information

National Optical & Scientific Instruments Inc. 11113 Landmark 35 Drive San Antonio, Texas 78233 Phone (210) 590-9010 Fax (210) 590-1104

National Optical & Scientific Instruments Inc. 11113 Landmark 35 Drive San Antonio, Texas 78233 Phone (210) 590-9010 Fax (210) 590-1104 National Optical & Scientific Instruments Inc. 11113 Landmark 35 Drive San Antonio, Texas 78233 Phone (210) 590-9010 Fax (210) 590-1104 INSTRUCTIONS FOR MODELS 130, 131, 132, 138 & 139 COMPOUND MICROSCOPES

More information

Information. From the LowVision Specialists. Guidelines for the fitting of telescopic systems

Information. From the LowVision Specialists. Guidelines for the fitting of telescopic systems Information From the LowVision Specialists Guidelines for the fitting of telescopic systems About a successful fitting Eye care professionals dispensing telescopic spectacles must ensure they have successfully

More information

Thread Tensions All Machines

Thread Tensions All Machines Below are items related to thread tensions and tension problems as found on Brother embroidery equipment. They are listed in the order that they most often occur. Use this form only as a guide. Following

More information

Geometrical Optics - Grade 11

Geometrical Optics - Grade 11 OpenStax-CNX module: m32832 1 Geometrical Optics - Grade 11 Rory Adams Free High School Science Texts Project Mark Horner Heather Williams This work is produced by OpenStax-CNX and licensed under the Creative

More information

C5 Sound Deadening & Insulation Kit Interior Removal & Installation Instructions

C5 Sound Deadening & Insulation Kit Interior Removal & Installation Instructions C5 Sound Deadening & Insulation Kit Interior Removal & Installation Instructions Ok, let's start with taking the radio bezel dash area off first. Here is what the OEM radio looks like... First you flip

More information

Physics 41, Winter 1998 Lab 1 - The Current Balance. Theory

Physics 41, Winter 1998 Lab 1 - The Current Balance. Theory Physics 41, Winter 1998 Lab 1 - The Current Balance Theory Consider a point at a perpendicular distance d from a long straight wire carrying a current I as shown in figure 1. If the wire is very long compared

More information

Circuit diagrams and symbols (1)

Circuit diagrams and symbols (1) Circuit diagrams and symbols (1) Name: Circuit Symbols We remember how we put the circuits together by using a diagram or drawing a sketch. In order to save time and ensure that sketches are accurate,

More information

Be careful not to scratch or hit front edge of the side viewing micro prisms onto hard objects!

Be careful not to scratch or hit front edge of the side viewing micro prisms onto hard objects! Instructions Manual Flexia BGA Inspection Systems This manual describes how to use Flexia BGA Inspection System Optilia Instruments 1 AB Contents 1. Safety and maintenance Instructions 3 2. About Flexia

More information

Pre-Lab Questions. 1. What is cell theory? 2. What do all cells contain? 3. What is a prokaryote? 4. What is a eukaryote? 5. What is an organelle?

Pre-Lab Questions. 1. What is cell theory? 2. What do all cells contain? 3. What is a prokaryote? 4. What is a eukaryote? 5. What is an organelle? Name: TOC# Background Ever since the first microscope was used, biologists have been interested in studying the cellular organization of all living things. After hundred s of years of observations by many

More information

HP Pavilion All-in-One MS200 series PC. Upgrading and Servicing Guide. Printed in

HP Pavilion All-in-One MS200 series PC. Upgrading and Servicing Guide. Printed in HP Pavilion All-in-One MS200 series PC *579907-001* *579907-001* Printed in Upgrading and Servicing Guide Replacing a Wireless Keyboard or Mouse...2 Before You Begin... 2 Replacing the Keyboard or Mouse...

More information

User Guide LUXXOR VIDEO MICROSCOPE. 2 Luxxor Video Microscope Set Up

User Guide LUXXOR VIDEO MICROSCOPE. 2 Luxxor Video Microscope Set Up 2 Luxxor Video Microscope Set Up User Guide LUXXOR VIDEO MICROSCOPE Column When removed from its packaging, the Luxxor Video Microscope will be configured as shown, with the Vertical Slide and Slide Stop

More information

MACRO PHOTO LENS. MP-E 65mm f/2.8 1-5 ENG. Instruction

MACRO PHOTO LENS. MP-E 65mm f/2.8 1-5 ENG. Instruction MACRO PHOTO LENS MP-E 65mm f/2.8 1-5 ENG Instruction Thank you for purchasing a Canon product. Canon Macro Photo Lens MP-E 65mm f/2.8 1-5 is a high-magnification macro lens that can magnify the subject

More information

Chapter 17: Light and Image Formation

Chapter 17: Light and Image Formation Chapter 17: Light and Image Formation 1. When light enters a medium with a higher index of refraction it is A. absorbed. B. bent away from the normal. C. bent towards from the normal. D. continues in the

More information

Lesson 29: Lenses. Double Concave. Double Convex. Planoconcave. Planoconvex. Convex meniscus. Concave meniscus

Lesson 29: Lenses. Double Concave. Double Convex. Planoconcave. Planoconvex. Convex meniscus. Concave meniscus Lesson 29: Lenses Remembering the basics of mirrors puts you half ways towards fully understanding lenses as well. The same sort of rules apply, just with a few modifications. Keep in mind that for an

More information

SP AF 300mm F/2.8 LD [IF] for Canon (Model 360EE)

SP AF 300mm F/2.8 LD [IF] for Canon (Model 360EE) SP AF 300mm F/2.8 LD [IF] for Canon (Model 360EE) We greatly appreciate your purchase of this Tamron lens. The Tamron SP AF 300mm F/2.8 LD [IF] is a fast telephoto lens developed for Canon AF single-reflex

More information

ST-80 MICROSCOPE With Electronic Eyepiece #6810. User Guide

ST-80 MICROSCOPE With Electronic Eyepiece #6810. User Guide ST-80 MICROSCOPE With Electronic Eyepiece #6810 User Guide The ST-80 Microscope Thank you for purchasing your student microscope from ioptron. The ST-80 Microscope is both versatile and easy to use with

More information

Revision problem. Chapter 18 problem 37 page 612. Suppose you point a pinhole camera at a 15m tall tree that is 75m away.

Revision problem. Chapter 18 problem 37 page 612. Suppose you point a pinhole camera at a 15m tall tree that is 75m away. Revision problem Chapter 18 problem 37 page 612 Suppose you point a pinhole camera at a 15m tall tree that is 75m away. 1 Optical Instruments Thin lens equation Refractive power Cameras The human eye Combining

More information

FIFTH GRADE WORKBOOK

FIFTH GRADE WORKBOOK FIFTH GRADE WORKBOOK students Math/Science Nucleus 1990,2001 APPLIED SCIENCE - SCIENCE AND MATH (5A) PROBLEM: Can you learn how to estimate? PREDICTION: MATERIALS: 3 containers filled with items given

More information

THE BOHR QUANTUM MODEL

THE BOHR QUANTUM MODEL THE BOHR QUANTUM MODEL INTRODUCTION When light from a low-pressure gas is subject to an electric discharge, a discrete line spectrum is emitted. When light from such a low-pressure gas is examined with

More information

Twist Drill Grinding Attachment By Steven Skiprat Jackson June 2009

Twist Drill Grinding Attachment By Steven Skiprat Jackson June 2009 Twist Drill Grinding Attachment By Steven Skiprat Jackson June 2009 Part 1. About the tool Part 2. Mounting the tool Part 3. Using the tool Part 1. About the tool This little gadget while not a precision

More information

Original Assembly Guide

Original Assembly Guide TCT Multipurpose Single Bevel Sliding Compound Mitre Saw Original Assembly Guide Read instructions before assembling this tool. Table of Contents GB Assembly Guide Read instructions before assembling this

More information

Build A Simple Electric Motor (example #1)

Build A Simple Electric Motor (example #1) PHY115 Experiment 11 Build A Simple Electric Motor (example #1) MATERIAL This is the necessary equipment. Present any list of material in your written lab report. 1.5 V battery in series 1 ceramic magnet

More information

OPERATING INSTRUCTIONS XJL 101/101A REFLECTED LIGHT METALLURGICAL MICROSCOPE

OPERATING INSTRUCTIONS XJL 101/101A REFLECTED LIGHT METALLURGICAL MICROSCOPE OPERATING INSTRUCTIONS XJL 0/0A REFLECTED LIGHT METALLURGICAL MICROSCOPE M.R.C.LTD. OFFICES: HAHYSTADRUT 84, HOLON 58394 P.O.B. 684, TEL-AVIV 606, ISRAEL TEL: 97-3-559305,97-3-55955 FAX: 97-3-559459 www.mrclab.com

More information

AF-C (side edge only model) Ski Edge Tuning Machine

AF-C (side edge only model) Ski Edge Tuning Machine AF-C (side edge only model) Ski Edge Tuning Machine Quick Start Guide and Operating Instructions for SnowGlide AF-C Videos of machine operation are also available at www.verdonkracing.com. Personal Safety

More information

Paper Chromatography: Separation and Identification of Five Metal Cations

Paper Chromatography: Separation and Identification of Five Metal Cations Paper Chromatography: Separation and Identification of Five Metal Cations Objectives Known and unknown solutions of the metal ions Ag +, Fe 3+, Co 2+, Cu 2+ and Hg 2+ will be analyzed using paper chromatography.

More information

HISTOLOGY LABORATORY. Microscope Orientation and Blood Smear Lab

HISTOLOGY LABORATORY. Microscope Orientation and Blood Smear Lab HISTOLOGY LABORATORY Microscope Orientation and Blood Smear Lab For practicing how to use the microscope DO NOT use the blood smear slide (it is too boring for the lower mags). Use a slide from the white

More information

Parts List. The HyperStar Lens Assembly includes three pieces: HyperStar Lens Secondary Mirror Holder Counterweight

Parts List. The HyperStar Lens Assembly includes three pieces: HyperStar Lens Secondary Mirror Holder Counterweight The HyperStar Lens allows CCD imaging at f/2.3 with compatible Celestron 9.25 Schmidt-Cassegrain telescopes and compatible CCD cameras. These instructions show the proper methods for installing the HyperStar

More information

Handheld USB Digital Endoscope/Microscope

Handheld USB Digital Endoscope/Microscope Handheld USB Digital Endoscope/Microscope ehev1-usbplus User s Manual INTRODUCTION FUNCTIONS AND APPLICATIONS The USB Digital Endoscope/Microscope is a new electronic product for the micro observations.

More information

Chapter 4. Microscopy, Staining, and Classification. Lecture prepared by Mindy Miller-Kittrell North Carolina State University

Chapter 4. Microscopy, Staining, and Classification. Lecture prepared by Mindy Miller-Kittrell North Carolina State University Chapter 4 Microscopy, Staining, and Classification 2012 Pearson Education Inc. Lecture prepared by Mindy Miller-Kittrell North Carolina State University Microscopy and Staining 2012 Pearson Education Inc.

More information

Build Your Own Solar Car Teach build learn renewable Energy! Page 1 of 1

Build Your Own Solar Car Teach build learn renewable Energy! Page 1 of 1 Solar Car Teach build learn renewable Energy! Page 1 of 1 Background Not only is the sun a source of heat and light, it s a source of electricity too! Solar cells, also called photovoltaic cells, are used

More information

MAINTENANCE & TROUBLESHOOTING

MAINTENANCE & TROUBLESHOOTING MAINTENANCE & TROUBLESHOOTING This section describes how to: clean the lens clean the fan intake filter replace the projection lamp replace the batteries in the remote control use the Kensington lock feature

More information

PAPER CHROMATOGRAPHY

PAPER CHROMATOGRAPHY PAPER CHROMATOGRAPHY INTRODUCTION Chromatography is a technique that is used to separate and to identify components of a mixture. This analytical technique has a wide range of applications in the real

More information

Lab Activity on Air Pressure, Wind and Air Circulation Caused by Heating of the Atmosphere

Lab Activity on Air Pressure, Wind and Air Circulation Caused by Heating of the Atmosphere Lab Activity on Air Pressure, Wind and Air Circulation Caused by Heating of the Atmosphere 2002 Ann Bykerk-Kauffman, Dept. of Geological and Environmental Sciences, California State University, Chico *

More information

Cell Biology Prokaryotic and eukaryotic cells

Cell Biology Prokaryotic and eukaryotic cells Cell Biology Prokaryotic and eukaryotic cells Observation of cells and organelles In this lab you will be looking at an example of a Prokaryotic cell (Bacillus cereus) and a some examples of Eukaryotic

More information

Solar Observing in Schools

Solar Observing in Schools Solar Observing in Schools Basic solar observations and photography Prof. Ed Cackett ecackett@wayne.edu (313) 577 9355 http://physics.clas.wayne.edu/astronomy/sos.php Funded by the National Science Foundation

More information

Animal & Plant Cell Slides

Animal & Plant Cell Slides Animal & Plant Cell Slides Category: Biology Type: Class Experiment, 60 min class Materials: 2 Glass Slides 2 Cover Slips 1 Bottle of methylene blue (optional) 1 Plastic tray 1 Bottle of iodine 1 Plastic

More information

EF70-300mm f/4-5.6 IS USM

EF70-300mm f/4-5.6 IS USM EF70-300mm f/4-5.6 IS USM ENG Instruction Thank you for purchasing a Canon product. Dedicated to EOS cameras, the Canon EF70-300mm f/4-5.6 IS USM lens is a highperformance telephoto zoom lens equipped

More information

KNITTING MACHINE Quick Tips for Knitting Success

KNITTING MACHINE Quick Tips for Knitting Success Visit our website: www.nsiinnovations.com KNITTING MACHINE Quick Tips for Knitting Success Intended for Adult Use No. 7590-08 Addendum BEFORE YOU START: Before you start knitting, wind your yarn into an

More information

VISM CQB Scope Series

VISM CQB Scope Series 1 VISM CQB Scope Series Congratulations on the purchase of your new VISM CQB Scope! The CQB Series of Scopes give you many great options so you can choose the scope that best fits your needs. Backed by

More information

Basic Optics System OS-8515C

Basic Optics System OS-8515C 40 50 30 60 20 70 10 80 0 90 80 10 20 70 T 30 60 40 50 50 40 60 30 C 70 20 80 10 90 90 0 80 10 70 20 60 50 40 30 Instruction Manual with Experiment Guide and Teachers Notes 012-09900B Basic Optics System

More information

Advanced MakeUp Tips by Kathy Whittington

Advanced MakeUp Tips by Kathy Whittington Advanced MakeUp Tips by Kathy Whittington Applying Eye Shadow Eyes are the windows to your soul. The right make up can add to the beauty of your eyes if you know how to accent the positive and minimize

More information

Simple Machines. What are simple machines?

Simple Machines. What are simple machines? Definitions to know: Simple Machines Work done when an applied force causes an object to move in the direction of the force Energy ability to cause change; can change the speed, direction, shape, or temperature

More information

Soccer Control and Trapping Small Sided Game, Soccer Control, Soccer Trapping

Soccer Control and Trapping Small Sided Game, Soccer Control, Soccer Trapping Mini Soccer Games Soccer Control and Trapping Small Sided Game, Soccer Control, Soccer Trapping Create a grid that is approximately 40X60 yards with goals on each end. Split the teams into 6v6 and place

More information

RIFLESCOPE RIFLESCOPE MANUAL

RIFLESCOPE RIFLESCOPE MANUAL MANUAL The Vortex Diamondback Riflescopes The perfect match for hunters. Solid construction from a rugged singlepiece tube of aircraft-grade aluminum is the foundation for highly reliable performance features

More information

SERVICE PARTS LIST PAGE 1 OF 6 BASE ASSEMBLY SPECIFY CATALOG NO. AND SERIAL NO. WHEN ORDERING PARTS 12" DUAL BEVEL COMPOUND MITER SAW B27A

SERVICE PARTS LIST PAGE 1 OF 6 BASE ASSEMBLY SPECIFY CATALOG NO. AND SERIAL NO. WHEN ORDERING PARTS 12 DUAL BEVEL COMPOUND MITER SAW B27A PAGE 1 OF 6 BASE ASSEMBLY 00 0 EXAMPLE: Component Parts (Small #) Are Included When Ordering The Assembly (Large #). SPECIFY CATALOG NO. AND NO. WHEN ORDERING PARTS 1 02-80-0050 Thrust Bearing (1) 2 05-80-0510

More information

PlaneWave CDK Telescope Instructions CDK12.5, 17, 20 and 24

PlaneWave CDK Telescope Instructions CDK12.5, 17, 20 and 24 PlaneWave CDK Telescope Instructions CDK12.5, 17, 20 and 24 V112712 1 Collimation and Secondary Spacing Procedure The CDK optical design has four optical elements shown in Figure 1. The primary mirror

More information

Speed-Mat Rectangle Cutter

Speed-Mat Rectangle Cutter Speed-Mat Rectangle Cutter 1 Honeycomb baseboard. 2 Left hold down. 14 3 Bottom hold down. 4 4 Left / right rule. 8 5 8 5 Left / right rule pointer. 1 6 Top / bottom rule. 7 Top / bottom rule pointer.

More information

National Optical & Scientific Instrument Inc. 11113 Landmark 35 Drive San Antonio, Texas 78233 Phone (210) 590-9010 Fax (210) 590-1104

National Optical & Scientific Instrument Inc. 11113 Landmark 35 Drive San Antonio, Texas 78233 Phone (210) 590-9010 Fax (210) 590-1104 National Optical & Scientific Instrument Inc. 11113 Landmark 35 Drive San Antonio, Texas 78233 Phone (210) 590-9010 Fax (210) 590-1104 INSTRUCTIONS FOR STEREOSCOPIC MICROSCOPES MODEL NUMBERS 400 400TL

More information

TeamPoS 2000 Installation Instructions Upgrade to M Motherboard

TeamPoS 2000 Installation Instructions Upgrade to M Motherboard TeamPoS 2000 Installation Instructions Upgrade to M Motherboard Fujitsu Transaction Solutions Inc. endeavors to ensure that the information in this document is correct and fairly stated but does not accept

More information

Ink Analysis 2005, 2004, 2002, 1993 by David A. Katz. All rights reserved.

Ink Analysis 2005, 2004, 2002, 1993 by David A. Katz. All rights reserved. Ink Analysis 2005, 2004, 2002, 1993 by David A. Katz. All rights reserved. Ink from most ball-point pens and markers can be developed by paper chromatography using 70% isopropyl rubbing alcohol as the

More information