1. Syntax and semantics of DP L +

Size: px
Start display at page:

Download "1. Syntax and semantics of DP L +"

Transcription

1 Bulletin of the Section of Logic Volume 15/3 (1986), pp reedition 2005 [original edition, pp ] Zdzis law Habasiński DECIDABILITY IN PRATT S PROCESS LOGIC We present here the Dynamic Process Logic, DP L, which is a generalization of Pratt s process logics from [10]. DP L has been introduced in [4] and is designated for reasoning about events during regular programs computations. It should be regarded as a class of propositional logics with path formulae (interpreted over sequences of states) and state formulae interpreted as usually over states. A criterion of the decidability problem is given due to which any logic definable in the DP L-framework and meeting a natural regularity condition is decidable in time O (exp cn 3 ) where n is the length of the formula tested. For instance some logics strictly stronger than P L from [5] are still decidable in that time. DP L + is an extension of DP L allowing Boolean combinations of the elementary path formulae. Any DP L + -logic meeting the same regularity condition is decidable in time O(exp(n 3 exp ck)), where k is a number (usually appreciable) less than the length n of the given formula. 1. Syntax and semantics of DP L + Dynamic Process Logic generalizes the logics from [5,10]. The name Dynamic has been used in order to stress the connections with the Propositional Dynamic Logic [3]. Assume we have given two countable disjoint sets of atomic programs A 0, A 1,... and atomic formulae P 0, P 1,... and a finite set of path operators E 0,..., E z. Programs are defined exactly as in Propositional Dynamic Logic [3] (with tests over state formulae). Formulae of DP L + F1. Any atomic formula is a state formula.

2 Decidability in Pratt s Process Logic 89 F2. If a is a program and p is a path formula then < a > p is a state formula (called a diamond formula). F3. State formulae are closed under the usual Boolean connectives. F4. If E is a path operator of arity m and p 1,..., p m are state formulae then E(p 1,..., p m ) is a path formula (called an elementary one). F5 +. Path formulae are closed under the Boolean connectives. The set of DP L + -formulae consists of all the state formulae defined by the above rules. DP L-formulae are those defined by F1 - F4 only. As usual [a]p denotes < a > p. Semantics of DP L + Let S be a non-empty set. By S we denote the set of all non-empty finite sequences of elements from S. A structure for DP L + is any triple (S, =, T r) where S is a non-empty set of states, = is a satisfiability relation such that = (S {state formulae}) (S {path formulae}) and T r : {programs} Powerset(S). T r(a) is the set of traces of the program a. She above components should fulfill the following conditions: S1. s =< a > p iff there is s T r(a) : s = p and the first element of s is s. S2. T r(a) {(s) s S} =, for any atomic program A. S3. T r(a; b) = T r(a); T r(b) = {(s 0,..., s m ) (s 0,..., s k ) T r(a) and (s k,..., s m ) T r(b) for some k m}. S4. T r(a b) = T r(a) T r(b). S5. T r(a ) = {(s) s S} {T r(a n ) n 1}. S6. T r(p?) = {(s) s = p}. S7 - S9 describe the standard behaviour of the satisfiability relation on the Boolean connectives. 2. Examples In order to fix a DP L-logic we have to define path operators. Let us consider six two-ary operators: Until, while, before, pres, since and imp. We write simply p until q instead of until (p, q) etc. Let s = (s 0,..., s k ) for some k > 0.

3 90 Zdzis law Habasiński s = p until q iff i : s i = q and j i s j = p s = p while q iff i( j i s j = q) = s i = p s = p before q iff i : s i = p and j > i s j = q s = p pres q iff i : s i = p = j > i s j = q s = p since q iff i : s i = q and j > is j = p s = p imp q iff i : s i = p = j > i s j = q Using this formalism some other constructs may be defined: some p is simply true until p, all p corresponds to p while true and last p to false since p. Thus Pratt s construct during written in [5,10] as a p is expressible in DP L + as [a] some p and in DP L as < a >all p. Similarly preserves from the quoted papers is simply [a](p pres p) in DP L + i.e. < a > (p before p) in DP L. The formula < a > p from the Propositional Dynamic Logic is definable as < a >last p. ψ-formula from [5] is expressible in DP L + as [a](p imp q) or as < a > ( q since p) in DP L and is not definable in P L from [5]. Hence DP L over the six operators is an actual extension of P L from the Harel s paper. It follows from our criterion that it is decidable in one-exponential time. unchanged p operator which may be abstracted from [8] is easily defined as (p pres p) ( p pres p). 3. Decidability criterion Let us define for any formula p an alphabet Des(p) : D Des(p) iff D {state subformulae of p} and D is consistent i.e. q D q D. As usual finite automaton Aut accepting finite strings on the alphabet Des(p) defines the path formula p iff for any sequence (s 0,..., s k ) in any structure (S, =, T r) we have: (s 0,..., s k ) = p iff Aut accepts D 0,..., D k where D i = {q s i = q and q is a state subformula of p}. Let E be a path operator of arity m. E is regular iff there is a constant c : for any state formulae q 1,..., q m there is an usual finite-state automaton Aut on the alphabet Des(E(q 1,..., q m )) such that: Aut defines E(q 1,..., q m ) number of states in Aut is less than c Aut can be constructed in time proportional to the cardinality of its alphabet.

4 Decidability in Pratt s Process Logic 91 Note that each operator in the example is regular. Let us fix certain DP L + - formula p. A subformula of p is called maximal iff it is an elementary formula not in the scope of any path operator. Let DP L(k) denotes DP L + in which any path formula may contain at most k occurrences of the maximal subformulae. Theorem. Let us fix a finite set of regular path operators. For any state formula p 0 of DP L + the satisfiability problem is decidable in time proportional to exp(n 3 exp ck) where: n is the length of p 0, k = max{k 1,..., k N 1 }, k i is the number of occurrences of the maximal subformulae in p i (i = 1,..., N 1) and p 1,..., p N 1 are the diamond subformulae of p Concluding remarks In our opinion an introduction of whole class of regular operators in DP L is justified by the development of program verification methods. For example the operators below taken from this area are obviously regular. atnext from 7: s = atnext(p, q) iff ( i s i = q) or ( i : s i = p q and j < i s j = q) unless from [9]: s = unless(p, q) iff ( i s i = p) or ( i : s i = q and j < i s j = p) The complexity bound from the DP L + -criterion remains unchanged if we restrict the semantics of atomic programs in a way suggested in [12] to paths of length one or more generally shorter than a fixed number. However, our semantics cannot be simulated by the binary one, i.e. P DL-like semantics where programs are understood as binary relations. For consider an atomic program A with T r(a) = {(s 0, s 1, s 2 ), (t 0, s 1, t 2 )}. In this case we would mix the two paths getting unintentionally (s 0, s 1, t 2 ) as a trace of A. In other words DP L does not possess the crossing-path property. The arity of path operators does not make any difficulties in the decision procedure. We may consider DP L + -logics with zero-ary operators (non-local atomic formulae in parlance of [1]). As far as they are regular the resulting logic remains decidable by our criterion in contrast to the non-local P L from [6] which is known to be undecidable. One can prove (cf. [1]) that the set of paths {(s 0, s 1,...) s 2i = P } (P is a fixed atomic formula) cannot be defined in P L from [6]. Any regular DP L + -logic re-

5 92 Zdzis law Habasiński mains decidable when augmented by the operator even (s = even(p) iff every even state from s satisfies p). References The full version of this paper will appear in Proc. of the Conf. Mathematical Methods in Synthesis and Specification of Software Systems, Wendish- Rietz, April 85, Lecture Notes in Computer Sci [1] A. Chandra et al., Equations between regular terms and an application to Process Logic, Proc. ACM Symp. on Theory of Computing, 1981, pp [2] E. Emerson, J. Halpern, Decision procedures and expressiveness in the Temporal Logic of Branching Time, Proc. ACM Symp. on Theory of Computing, 1982, pp [3] M. Fisher, R. Lander, Propositional Dynamic Logic of regular programs, J. of Computer and System Sciences 18(2) (1979), pp [4] Z. Habasiński, Process Logics: two decidability results, Lecture Notes in Computer Sci. 176 (1984), pp [5] D. Harel, Two results on Process Logic, Information Processing Letters 8(4) (1979), pp [6] D. Harel et al., Process Logic: expressiveness, decidability, completeness, J. of Computer and System Sciences 25 (1982), pp [7] F. Kröger, On temporal program verification rules, RAIRO Informatique theorique Theoretical Informatics 19(5) (1985), pp [8] L. Lamport, Specyfying Concurrent Program Modules, ACM Transactions on Programming Languages and Systems 5(2). [9] Z. Manra, A. Pnueli, Proving precedence properties, Lecture Notes in Computer Science 154 (1983), pp [10] V. Pratt, Process Logic: preliminary report, Proc. of Principles of Programming Languages, 1979, pp [11] R. Street, Propositional Dynamic Logic of Looping and Converse, Proc. ACM Symp. on Theory of Computing, 1981.

6 Decidability in Pratt s Process Logic 93 [12] R. Sherman et al., In the interesting part of Process Logic uninteresting?, Rep. of the Veizmann Institute of Science, Rehovot, Israel, [13] P. Wolper, Synthesis of Communicating Processes from Temporal Logic Specifications, Rep. Dept. of Computer Science, Stanford Univ Computer Centre Technical University Poznań

Algorithmic Software Verification

Algorithmic Software Verification Algorithmic Software Verification (LTL Model Checking) Azadeh Farzan What is Verification Anyway? Proving (in a formal way) that program satisfies a specification written in a logical language. Formal

More information

CHAPTER 7 GENERAL PROOF SYSTEMS

CHAPTER 7 GENERAL PROOF SYSTEMS CHAPTER 7 GENERAL PROOF SYSTEMS 1 Introduction Proof systems are built to prove statements. They can be thought as an inference machine with special statements, called provable statements, or sometimes

More information

T-79.186 Reactive Systems: Introduction and Finite State Automata

T-79.186 Reactive Systems: Introduction and Finite State Automata T-79.186 Reactive Systems: Introduction and Finite State Automata Timo Latvala 14.1.2004 Reactive Systems: Introduction and Finite State Automata 1-1 Reactive Systems Reactive systems are a class of software

More information

Automata-based Verification - I

Automata-based Verification - I CS3172: Advanced Algorithms Automata-based Verification - I Howard Barringer Room KB2.20: email: howard.barringer@manchester.ac.uk March 2006 Supporting and Background Material Copies of key slides (already

More information

Formal Verification and Linear-time Model Checking

Formal Verification and Linear-time Model Checking Formal Verification and Linear-time Model Checking Paul Jackson University of Edinburgh Automated Reasoning 21st and 24th October 2013 Why Automated Reasoning? Intellectually stimulating and challenging

More information

Testing LTL Formula Translation into Büchi Automata

Testing LTL Formula Translation into Büchi Automata Testing LTL Formula Translation into Büchi Automata Heikki Tauriainen and Keijo Heljanko Helsinki University of Technology, Laboratory for Theoretical Computer Science, P. O. Box 5400, FIN-02015 HUT, Finland

More information

Row Echelon Form and Reduced Row Echelon Form

Row Echelon Form and Reduced Row Echelon Form These notes closely follow the presentation of the material given in David C Lay s textbook Linear Algebra and its Applications (3rd edition) These notes are intended primarily for in-class presentation

More information

The Halting Problem is Undecidable

The Halting Problem is Undecidable 185 Corollary G = { M, w w L(M) } is not Turing-recognizable. Proof. = ERR, where ERR is the easy to decide language: ERR = { x { 0, 1 }* x does not have a prefix that is a valid code for a Turing machine

More information

Specification and Analysis of Contracts Lecture 1 Introduction

Specification and Analysis of Contracts Lecture 1 Introduction Specification and Analysis of Contracts Lecture 1 Introduction Gerardo Schneider gerardo@ifi.uio.no http://folk.uio.no/gerardo/ Department of Informatics, University of Oslo SEFM School, Oct. 27 - Nov.

More information

Monitoring Metric First-order Temporal Properties

Monitoring Metric First-order Temporal Properties Monitoring Metric First-order Temporal Properties DAVID BASIN, FELIX KLAEDTKE, SAMUEL MÜLLER, and EUGEN ZĂLINESCU, ETH Zurich Runtime monitoring is a general approach to verifying system properties at

More information

Automata Theory. Şubat 2006 Tuğrul Yılmaz Ankara Üniversitesi

Automata Theory. Şubat 2006 Tuğrul Yılmaz Ankara Üniversitesi Automata Theory Automata theory is the study of abstract computing devices. A. M. Turing studied an abstract machine that had all the capabilities of today s computers. Turing s goal was to describe the

More information

How To Understand The Theory Of Computer Science

How To Understand The Theory Of Computer Science Theory of Computation Lecture Notes Abhijat Vichare August 2005 Contents 1 Introduction 2 What is Computation? 3 The λ Calculus 3.1 Conversions: 3.2 The calculus in use 3.3 Few Important Theorems 3.4 Worked

More information

logic language, static/dynamic models SAT solvers Verified Software Systems 1 How can we model check of a program or system?

logic language, static/dynamic models SAT solvers Verified Software Systems 1 How can we model check of a program or system? 5. LTL, CTL Last part: Alloy logic language, static/dynamic models SAT solvers Today: Temporal Logic (LTL, CTL) Verified Software Systems 1 Overview How can we model check of a program or system? Modeling

More information

Temporal Logics. Computation Tree Logic

Temporal Logics. Computation Tree Logic Temporal Logics CTL: definition, relationship between operators, adequate sets, specifying properties, safety/liveness/fairness Modeling: sequential, concurrent systems; maximum parallelism/interleaving

More information

ON FUNCTIONAL SYMBOL-FREE LOGIC PROGRAMS

ON FUNCTIONAL SYMBOL-FREE LOGIC PROGRAMS PROCEEDINGS OF THE YEREVAN STATE UNIVERSITY Physical and Mathematical Sciences 2012 1 p. 43 48 ON FUNCTIONAL SYMBOL-FREE LOGIC PROGRAMS I nf or m at i cs L. A. HAYKAZYAN * Chair of Programming and Information

More information

Constructing Automata from Temporal Logic Formulas : A Tutorial

Constructing Automata from Temporal Logic Formulas : A Tutorial Constructing Automata from Temporal Logic Formulas : A Tutorial Pierre Wolper Université de Liège, Institut Montefiore, B28, 4000 Liège, Belgium pw@montefiore.ulg.ac.be, http://www.montefiore.ulg.ac.be/~pw/

More information

Fabio Patrizi DIS Sapienza - University of Rome

Fabio Patrizi DIS Sapienza - University of Rome Fabio Patrizi DIS Sapienza - University of Rome Overview Introduction to Services The Composition Problem Two frameworks for composition: Non data-aware services Data-aware services Conclusion & Research

More information

A Propositional Dynamic Logic for CCS Programs

A Propositional Dynamic Logic for CCS Programs A Propositional Dynamic Logic for CCS Programs Mario R. F. Benevides and L. Menasché Schechter {mario,luis}@cos.ufrj.br Abstract This work presents a Propositional Dynamic Logic in which the programs are

More information

On strong fairness in UNITY

On strong fairness in UNITY On strong fairness in UNITY H.P.Gumm, D.Zhukov Fachbereich Mathematik und Informatik Philipps Universität Marburg {gumm,shukov}@mathematik.uni-marburg.de Abstract. In [6] Tsay and Bagrodia present a correct

More information

Mathematical Induction

Mathematical Induction Mathematical Induction In logic, we often want to prove that every member of an infinite set has some feature. E.g., we would like to show: N 1 : is a number 1 : has the feature Φ ( x)(n 1 x! 1 x) How

More information

Using Patterns and Composite Propositions to Automate the Generation of Complex LTL

Using Patterns and Composite Propositions to Automate the Generation of Complex LTL University of Texas at El Paso DigitalCommons@UTEP Departmental Technical Reports (CS) Department of Computer Science 8-1-2007 Using Patterns and Composite Propositions to Automate the Generation of Complex

More information

Validated Templates for Specification of Complex LTL Formulas

Validated Templates for Specification of Complex LTL Formulas Validated Templates for Specification of Complex LTL Formulas Salamah Salamah Department of Electrical, computer, Software, and Systems Engineering Embry Riddle Aeronautical University 600 S. Clyde Morris

More information

Model Checking: An Introduction

Model Checking: An Introduction Announcements Model Checking: An Introduction Meeting 2 Office hours M 1:30pm-2:30pm W 5:30pm-6:30pm (after class) and by appointment ECOT 621 Moodle problems? Fundamentals of Programming Languages CSCI

More information

NP-Completeness and Cook s Theorem

NP-Completeness and Cook s Theorem NP-Completeness and Cook s Theorem Lecture notes for COM3412 Logic and Computation 15th January 2002 1 NP decision problems The decision problem D L for a formal language L Σ is the computational task:

More information

Feature Specification and Automated Conflict Detection

Feature Specification and Automated Conflict Detection Feature Specification and Automated Conflict Detection AMY P. FELTY University of Ottawa and KEDAR S. NAMJOSHI Bell Laboratories Large software systems, especially in the telecommunications field, are

More information

CS 3719 (Theory of Computation and Algorithms) Lecture 4

CS 3719 (Theory of Computation and Algorithms) Lecture 4 CS 3719 (Theory of Computation and Algorithms) Lecture 4 Antonina Kolokolova January 18, 2012 1 Undecidable languages 1.1 Church-Turing thesis Let s recap how it all started. In 1990, Hilbert stated a

More information

The Model Checker SPIN

The Model Checker SPIN The Model Checker SPIN Author: Gerard J. Holzmann Presented By: Maulik Patel Outline Introduction Structure Foundation Algorithms Memory management Example/Demo SPIN-Introduction Introduction SPIN (Simple(

More information

From Workflow Design Patterns to Logical Specifications

From Workflow Design Patterns to Logical Specifications AUTOMATYKA/ AUTOMATICS 2013 Vol. 17 No. 1 http://dx.doi.org/10.7494/automat.2013.17.1.59 Rados³aw Klimek* From Workflow Design Patterns to Logical Specifications 1. Introduction Formal methods in software

More information

Lecture 9 verifying temporal logic

Lecture 9 verifying temporal logic Basics of advanced software systems Lecture 9 verifying temporal logic formulae with SPIN 21/01/2013 1 Outline for today 1. Introduction: motivations for formal methods, use in industry 2. Developing models

More information

Model Checking II Temporal Logic Model Checking

Model Checking II Temporal Logic Model Checking 1/32 Model Checking II Temporal Logic Model Checking Edmund M Clarke, Jr School of Computer Science Carnegie Mellon University Pittsburgh, PA 15213 2/32 Temporal Logic Model Checking Specification Language:

More information

Semantics and Verification of Software

Semantics and Verification of Software Semantics and Verification of Software Lecture 21: Nondeterminism and Parallelism IV (Equivalence of CCS Processes & Wrap-Up) Thomas Noll Lehrstuhl für Informatik 2 (Software Modeling and Verification)

More information

Predicate logic. Logic in computer science. Logic in Computer Science (lecture) PART II. first order logic

Predicate logic. Logic in computer science. Logic in Computer Science (lecture) PART II. first order logic PART II. Predicate logic first order logic Logic in computer science Seminar: INGK401-K5; INHK401; INJK401-K4 University of Debrecen, Faculty of Informatics kadek.tamas@inf.unideb.hu 1 / 19 Alphabets Logical

More information

Büchi Complementation Made Tighter

Büchi Complementation Made Tighter International Journal of Foundations of Computer Science c World Scientific Publishing Company Büchi Complementation Made Tighter Ehud Friedgut Hebrew University, Institute of Mathematics, Jerusalem 91904,

More information

UPDATES OF LOGIC PROGRAMS

UPDATES OF LOGIC PROGRAMS Computing and Informatics, Vol. 20, 2001,????, V 2006-Nov-6 UPDATES OF LOGIC PROGRAMS Ján Šefránek Department of Applied Informatics, Faculty of Mathematics, Physics and Informatics, Comenius University,

More information

Software Verification and Testing. Lecture Notes: Temporal Logics

Software Verification and Testing. Lecture Notes: Temporal Logics Software Verification and Testing Lecture Notes: Temporal Logics Motivation traditional programs (whether terminating or non-terminating) can be modelled as relations are analysed wrt their input/output

More information

A Logic Approach for LTL System Modification

A Logic Approach for LTL System Modification A Logic Approach for LTL System Modification Yulin Ding and Yan Zhang School of Computing & Information Technology University of Western Sydney Kingswood, N.S.W. 1797, Australia email: {yding,yan}@cit.uws.edu.au

More information

On line construction of suffix trees 1

On line construction of suffix trees 1 (To appear in ALGORITHMICA) On line construction of suffix trees 1 Esko Ukkonen Department of Computer Science, University of Helsinki, P. O. Box 26 (Teollisuuskatu 23), FIN 00014 University of Helsinki,

More information

Informatique Fondamentale IMA S8

Informatique Fondamentale IMA S8 Informatique Fondamentale IMA S8 Cours 1 - Intro + schedule + finite state machines Laure Gonnord http://laure.gonnord.org/pro/teaching/ Laure.Gonnord@polytech-lille.fr Université Lille 1 - Polytech Lille

More information

A first step towards modeling semistructured data in hybrid multimodal logic

A first step towards modeling semistructured data in hybrid multimodal logic A first step towards modeling semistructured data in hybrid multimodal logic Nicole Bidoit * Serenella Cerrito ** Virginie Thion * * LRI UMR CNRS 8623, Université Paris 11, Centre d Orsay. ** LaMI UMR

More information

Pushdown automata. Informatics 2A: Lecture 9. Alex Simpson. 3 October, 2014. School of Informatics University of Edinburgh als@inf.ed.ac.

Pushdown automata. Informatics 2A: Lecture 9. Alex Simpson. 3 October, 2014. School of Informatics University of Edinburgh als@inf.ed.ac. Pushdown automata Informatics 2A: Lecture 9 Alex Simpson School of Informatics University of Edinburgh als@inf.ed.ac.uk 3 October, 2014 1 / 17 Recap of lecture 8 Context-free languages are defined by context-free

More information

x < y iff x < y, or x and y are incomparable and x χ(x,y) < y χ(x,y).

x < y iff x < y, or x and y are incomparable and x χ(x,y) < y χ(x,y). 12. Large cardinals The study, or use, of large cardinals is one of the most active areas of research in set theory currently. There are many provably different kinds of large cardinals whose descriptions

More information

Introduction to Formal Methods. Các Phương Pháp Hình Thức Cho Phát Triển Phần Mềm

Introduction to Formal Methods. Các Phương Pháp Hình Thức Cho Phát Triển Phần Mềm Introduction to Formal Methods Các Phương Pháp Hình Thức Cho Phát Triển Phần Mềm Outline Introduction Formal Specification Formal Verification Model Checking Theorem Proving Introduction Good papers to

More information

The Ultimate Undecidability Result for the Halpern Shoham Logic

The Ultimate Undecidability Result for the Halpern Shoham Logic The Ultimate Undecidability Result for the Halpern Shoham Logic Jerzy Marcinkowski, Jakub Michaliszyn Institute of Computer Science University Of Wrocław {jma,jmi}@cs.uni.wroc.pl Abstract The Halpern Shoham

More information

Standard for Software Component Testing

Standard for Software Component Testing Standard for Software Component Testing Working Draft 3.4 Date: 27 April 2001 produced by the British Computer Society Specialist Interest Group in Software Testing (BCS SIGIST) Copyright Notice This document

More information

ON THE DEGREE OF MAXIMALITY OF DEFINITIONALLY COMPLETE LOGICS

ON THE DEGREE OF MAXIMALITY OF DEFINITIONALLY COMPLETE LOGICS Bulletin of the Section of Logic Volume 15/2 (1986), pp. 72 79 reedition 2005 [original edition, pp. 72 84] Ryszard Ladniak ON THE DEGREE OF MAXIMALITY OF DEFINITIONALLY COMPLETE LOGICS The following definition

More information

Formal Verification Coverage: Computing the Coverage Gap between Temporal Specifications

Formal Verification Coverage: Computing the Coverage Gap between Temporal Specifications Formal Verification Coverage: Computing the Coverage Gap between Temporal Specifications Sayantan Das Prasenjit Basu Ansuman Banerjee Pallab Dasgupta P.P. Chakrabarti Department of Computer Science & Engineering

More information

Bisimulation and Logical Preservation for Continuous-Time Markov Decision Processes

Bisimulation and Logical Preservation for Continuous-Time Markov Decision Processes Bisimulation and Logical Preservation for Continuous-Time Markov Decision Processes Martin R. Neuhäußer 1,2 Joost-Pieter Katoen 1,2 1 RWTH Aachen University, Germany 2 University of Twente, The Netherlands

More information

Lecture 2: Universality

Lecture 2: Universality CS 710: Complexity Theory 1/21/2010 Lecture 2: Universality Instructor: Dieter van Melkebeek Scribe: Tyson Williams In this lecture, we introduce the notion of a universal machine, develop efficient universal

More information

Follow links for Class Use and other Permissions. For more information send email to: permissions@pupress.princeton.edu

Follow links for Class Use and other Permissions. For more information send email to: permissions@pupress.princeton.edu COPYRIGHT NOTICE: Ariel Rubinstein: Lecture Notes in Microeconomic Theory is published by Princeton University Press and copyrighted, c 2006, by Princeton University Press. All rights reserved. No part

More information

CSE 135: Introduction to Theory of Computation Decidability and Recognizability

CSE 135: Introduction to Theory of Computation Decidability and Recognizability CSE 135: Introduction to Theory of Computation Decidability and Recognizability Sungjin Im University of California, Merced 04-28, 30-2014 High-Level Descriptions of Computation Instead of giving a Turing

More information

No: 10 04. Bilkent University. Monotonic Extension. Farhad Husseinov. Discussion Papers. Department of Economics

No: 10 04. Bilkent University. Monotonic Extension. Farhad Husseinov. Discussion Papers. Department of Economics No: 10 04 Bilkent University Monotonic Extension Farhad Husseinov Discussion Papers Department of Economics The Discussion Papers of the Department of Economics are intended to make the initial results

More information

(IALC, Chapters 8 and 9) Introduction to Turing s life, Turing machines, universal machines, unsolvable problems.

(IALC, Chapters 8 and 9) Introduction to Turing s life, Turing machines, universal machines, unsolvable problems. 3130CIT: Theory of Computation Turing machines and undecidability (IALC, Chapters 8 and 9) Introduction to Turing s life, Turing machines, universal machines, unsolvable problems. An undecidable problem

More information

Mathematics for Computer Science/Software Engineering. Notes for the course MSM1F3 Dr. R. A. Wilson

Mathematics for Computer Science/Software Engineering. Notes for the course MSM1F3 Dr. R. A. Wilson Mathematics for Computer Science/Software Engineering Notes for the course MSM1F3 Dr. R. A. Wilson October 1996 Chapter 1 Logic Lecture no. 1. We introduce the concept of a proposition, which is a statement

More information

Software Model Checking. Equivalence Hierarchy

Software Model Checking. Equivalence Hierarchy Software Equivalence Hierarchy Moonzoo Kim CS Dept. KAIST CS750B Software Korea Advanced Institute of Science and Technology Equivalence semantics and SW design Preliminary Hierarchy Diagram Trace-based

More information

Fixed-Point Logics and Computation

Fixed-Point Logics and Computation 1 Fixed-Point Logics and Computation Symposium on the Unusual Effectiveness of Logic in Computer Science University of Cambridge 2 Mathematical Logic Mathematical logic seeks to formalise the process of

More information

Software Active Online Monitoring Under. Anticipatory Semantics

Software Active Online Monitoring Under. Anticipatory Semantics Software Active Online Monitoring Under Anticipatory Semantics Changzhi Zhao, Wei Dong, Ji Wang, Zhichang Qi National Laboratory for Parallel and Distributed Processing P.R.China 7/21/2009 Overview Software

More information

SECRET sharing schemes were introduced by Blakley [5]

SECRET sharing schemes were introduced by Blakley [5] 206 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 52, NO. 1, JANUARY 2006 Secret Sharing Schemes From Three Classes of Linear Codes Jin Yuan Cunsheng Ding, Senior Member, IEEE Abstract Secret sharing has

More information

Formal Languages and Automata Theory - Regular Expressions and Finite Automata -

Formal Languages and Automata Theory - Regular Expressions and Finite Automata - Formal Languages and Automata Theory - Regular Expressions and Finite Automata - Samarjit Chakraborty Computer Engineering and Networks Laboratory Swiss Federal Institute of Technology (ETH) Zürich March

More information

(LMCS, p. 317) V.1. First Order Logic. This is the most powerful, most expressive logic that we will examine.

(LMCS, p. 317) V.1. First Order Logic. This is the most powerful, most expressive logic that we will examine. (LMCS, p. 317) V.1 First Order Logic This is the most powerful, most expressive logic that we will examine. Our version of first-order logic will use the following symbols: variables connectives (,,,,

More information

Development of dynamically evolving and self-adaptive software. 1. Background

Development of dynamically evolving and self-adaptive software. 1. Background Development of dynamically evolving and self-adaptive software 1. Background LASER 2013 Isola d Elba, September 2013 Carlo Ghezzi Politecnico di Milano Deep-SE Group @ DEIB 1 Requirements Functional requirements

More information

Logic in Computer Science: Logic Gates

Logic in Computer Science: Logic Gates Logic in Computer Science: Logic Gates Lila Kari The University of Western Ontario Logic in Computer Science: Logic Gates CS2209, Applied Logic for Computer Science 1 / 49 Logic and bit operations Computers

More information

MATH10212 Linear Algebra. Systems of Linear Equations. Definition. An n-dimensional vector is a row or a column of n numbers (or letters): a 1.

MATH10212 Linear Algebra. Systems of Linear Equations. Definition. An n-dimensional vector is a row or a column of n numbers (or letters): a 1. MATH10212 Linear Algebra Textbook: D. Poole, Linear Algebra: A Modern Introduction. Thompson, 2006. ISBN 0-534-40596-7. Systems of Linear Equations Definition. An n-dimensional vector is a row or a column

More information

Notes on Complexity Theory Last updated: August, 2011. Lecture 1

Notes on Complexity Theory Last updated: August, 2011. Lecture 1 Notes on Complexity Theory Last updated: August, 2011 Jonathan Katz Lecture 1 1 Turing Machines I assume that most students have encountered Turing machines before. (Students who have not may want to look

More information

Class notes Program Analysis course given by Prof. Mooly Sagiv Computer Science Department, Tel Aviv University second lecture 8/3/2007

Class notes Program Analysis course given by Prof. Mooly Sagiv Computer Science Department, Tel Aviv University second lecture 8/3/2007 Constant Propagation Class notes Program Analysis course given by Prof. Mooly Sagiv Computer Science Department, Tel Aviv University second lecture 8/3/2007 Osnat Minz and Mati Shomrat Introduction This

More information

Static Program Transformations for Efficient Software Model Checking

Static Program Transformations for Efficient Software Model Checking Static Program Transformations for Efficient Software Model Checking Shobha Vasudevan Jacob Abraham The University of Texas at Austin Dependable Systems Large and complex systems Software faults are major

More information

Software Engineering using Formal Methods

Software Engineering using Formal Methods Software Engineering using Formal Methods Model Checking with Temporal Logic Wolfgang Ahrendt 24th September 2013 SEFM: Model Checking with Temporal Logic /GU 130924 1 / 33 Model Checking with Spin model

More information

http://aejm.ca Journal of Mathematics http://rema.ca Volume 1, Number 1, Summer 2006 pp. 69 86

http://aejm.ca Journal of Mathematics http://rema.ca Volume 1, Number 1, Summer 2006 pp. 69 86 Atlantic Electronic http://aejm.ca Journal of Mathematics http://rema.ca Volume 1, Number 1, Summer 2006 pp. 69 86 AUTOMATED RECOGNITION OF STUTTER INVARIANCE OF LTL FORMULAS Jeffrey Dallien 1 and Wendy

More information

Software Modeling and Verification

Software Modeling and Verification Software Modeling and Verification Alessandro Aldini DiSBeF - Sezione STI University of Urbino Carlo Bo Italy 3-4 February 2015 Algorithmic verification Correctness problem Is the software/hardware system

More information

Rigorous Software Development CSCI-GA 3033-009

Rigorous Software Development CSCI-GA 3033-009 Rigorous Software Development CSCI-GA 3033-009 Instructor: Thomas Wies Spring 2013 Lecture 11 Semantics of Programming Languages Denotational Semantics Meaning of a program is defined as the mathematical

More information

facultad de informática universidad politécnica de madrid

facultad de informática universidad politécnica de madrid facultad de informática universidad politécnica de madrid On the Confluence of CHR Analytical Semantics Rémy Haemmerlé Universidad olitécnica de Madrid & IMDEA Software Institute, Spain TR Number CLI2/2014.0

More information

Automata-Based Verification of Temporal Properties on Running Programs Dimitra Giannakopoulou Klaus Havelund

Automata-Based Verification of Temporal Properties on Running Programs Dimitra Giannakopoulou Klaus Havelund Automata-Based Verification of Temporal Properties on Running Programs Dimitra Giannakopoulou Klaus Havelund RIACS Technical Report 01.21 August 2001 Presented at the 16 th IEEE International Conference

More information

Sets of Fibre Homotopy Classes and Twisted Order Parameter Spaces

Sets of Fibre Homotopy Classes and Twisted Order Parameter Spaces Communications in Mathematical Physics Manuscript-Nr. (will be inserted by hand later) Sets of Fibre Homotopy Classes and Twisted Order Parameter Spaces Stefan Bechtluft-Sachs, Marco Hien Naturwissenschaftliche

More information

Regular Expressions with Nested Levels of Back Referencing Form a Hierarchy

Regular Expressions with Nested Levels of Back Referencing Form a Hierarchy Regular Expressions with Nested Levels of Back Referencing Form a Hierarchy Kim S. Larsen Odense University Abstract For many years, regular expressions with back referencing have been used in a variety

More information

PETRI NET BASED SUPERVISORY CONTROL OF FLEXIBLE BATCH PLANTS. G. Mušič and D. Matko

PETRI NET BASED SUPERVISORY CONTROL OF FLEXIBLE BATCH PLANTS. G. Mušič and D. Matko PETRI NET BASED SUPERVISORY CONTROL OF FLEXIBLE BATCH PLANTS G. Mušič and D. Matko Faculty of Electrical Engineering, University of Ljubljana, Slovenia. E-mail: gasper.music@fe.uni-lj.si Abstract: The

More information

o-minimality and Uniformity in n 1 Graphs

o-minimality and Uniformity in n 1 Graphs o-minimality and Uniformity in n 1 Graphs Reid Dale July 10, 2013 Contents 1 Introduction 2 2 Languages and Structures 2 3 Definability and Tame Geometry 4 4 Applications to n 1 Graphs 6 5 Further Directions

More information

GRAPH THEORY LECTURE 4: TREES

GRAPH THEORY LECTURE 4: TREES GRAPH THEORY LECTURE 4: TREES Abstract. 3.1 presents some standard characterizations and properties of trees. 3.2 presents several different types of trees. 3.7 develops a counting method based on a bijection

More information

A CTL-Based Logic for Program Abstractions

A CTL-Based Logic for Program Abstractions A CTL-Based Logic for Program Abstractions Martin Lange 1 and Markus Latte 2 1 Dept. of Computer Science, University of Kassel, Germany 2 Dept. of Computer Science, Ludwig-Maximilians-University Munich,

More information

Formal Verification of Software

Formal Verification of Software Formal Verification of Software Sabine Broda Department of Computer Science/FCUP 12 de Novembro de 2014 Sabine Broda (DCC-FCUP) Formal Verification of Software 12 de Novembro de 2014 1 / 26 Formal Verification

More information

Fundamentals of Software Engineering

Fundamentals of Software Engineering Fundamentals of Software Engineering Model Checking with Temporal Logic Ina Schaefer Institute for Software Systems Engineering TU Braunschweig, Germany Slides by Wolfgang Ahrendt, Richard Bubel, Reiner

More information

Classification - Examples

Classification - Examples Lecture 2 Scheduling 1 Classification - Examples 1 r j C max given: n jobs with processing times p 1,...,p n and release dates r 1,...,r n jobs have to be scheduled without preemption on one machine taking

More information

Information Theory and Coding Prof. S. N. Merchant Department of Electrical Engineering Indian Institute of Technology, Bombay

Information Theory and Coding Prof. S. N. Merchant Department of Electrical Engineering Indian Institute of Technology, Bombay Information Theory and Coding Prof. S. N. Merchant Department of Electrical Engineering Indian Institute of Technology, Bombay Lecture - 17 Shannon-Fano-Elias Coding and Introduction to Arithmetic Coding

More information

Formal Specification and Verification

Formal Specification and Verification Formal Specification and Verification Stefan Ratschan Katedra číslicového návrhu Fakulta informačních technologíı České vysoké učení technické v Praze 2. 5. 2011 Stefan Ratschan (FIT ČVUT) PI-PSC 4 2.

More information

Chapter 3. Cartesian Products and Relations. 3.1 Cartesian Products

Chapter 3. Cartesian Products and Relations. 3.1 Cartesian Products Chapter 3 Cartesian Products and Relations The material in this chapter is the first real encounter with abstraction. Relations are very general thing they are a special type of subset. After introducing

More information

2. The Language of First-order Logic

2. The Language of First-order Logic 2. The Language of First-order Logic KR & R Brachman & Levesque 2005 17 Declarative language Before building system before there can be learning, reasoning, planning, explanation... need to be able to

More information

Non-deterministic Semantics and the Undecidability of Boolean BI

Non-deterministic Semantics and the Undecidability of Boolean BI 1 Non-deterministic Semantics and the Undecidability of Boolean BI DOMINIQUE LARCHEY-WENDLING, LORIA CNRS, Nancy, France DIDIER GALMICHE, LORIA Université Henri Poincaré, Nancy, France We solve the open

More information

Automata-Based Verification of Temporal Properties on Running Programs

Automata-Based Verification of Temporal Properties on Running Programs Automata-Based Verification of Temporal Properties on Running Programs Dimitra Giannakopoulou (RIACS) and Klaus Havelund (Kestrel Technologies) Automated Software Engineering Group NASA Ames Research Center,

More information

INF5140: Specification and Verification of Parallel Systems

INF5140: Specification and Verification of Parallel Systems INF5140: Specification and Verification of Parallel Systems Lecture 7 LTL into Automata and Introduction to Promela Gerardo Schneider Department of Informatics University of Oslo INF5140, Spring 2007 Gerardo

More information

On Recognizable Timed Languages FOSSACS 2004

On Recognizable Timed Languages FOSSACS 2004 On Recognizable Timed Languages Oded Maler VERIMAG Grenoble France Amir Pnueli NYU and Weizmann New York and Rehovot USA FOSSACS 2004 Nutrition Facts Classical (Untimed) Recognizability Timed Languages

More information

Gambling Systems and Multiplication-Invariant Measures

Gambling Systems and Multiplication-Invariant Measures Gambling Systems and Multiplication-Invariant Measures by Jeffrey S. Rosenthal* and Peter O. Schwartz** (May 28, 997.. Introduction. This short paper describes a surprising connection between two previously

More information

a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2.

a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2. Chapter 1 LINEAR EQUATIONS 1.1 Introduction to linear equations A linear equation in n unknowns x 1, x,, x n is an equation of the form a 1 x 1 + a x + + a n x n = b, where a 1, a,..., a n, b are given

More information

EQUATIONAL LOGIC AND ABSTRACT ALGEBRA * ABSTRACT

EQUATIONAL LOGIC AND ABSTRACT ALGEBRA * ABSTRACT EQUATIONAL LOGIC AND ABSTRACT ALGEBRA * Taje I. Ramsamujh Florida International University Mathematics Department ABSTRACT Equational logic is a formalization of the deductive methods encountered in studying

More information

Full and Complete Binary Trees

Full and Complete Binary Trees Full and Complete Binary Trees Binary Tree Theorems 1 Here are two important types of binary trees. Note that the definitions, while similar, are logically independent. Definition: a binary tree T is full

More information

Computational Models Lecture 8, Spring 2009

Computational Models Lecture 8, Spring 2009 Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown Univ. p. 1 Computational Models Lecture 8, Spring 2009 Encoding of TMs Universal Turing Machines The Halting/Acceptance

More information

E3: PROBABILITY AND STATISTICS lecture notes

E3: PROBABILITY AND STATISTICS lecture notes E3: PROBABILITY AND STATISTICS lecture notes 2 Contents 1 PROBABILITY THEORY 7 1.1 Experiments and random events............................ 7 1.2 Certain event. Impossible event............................

More information

Verification of hybrid dynamical systems

Verification of hybrid dynamical systems Verification of hybrid dynamical systems Jüri Vain Tallinn Technical University/Institute of Cybernetics vain@ioc.ee Outline What are Hybrid Systems? Hybrid automata Verification of hybrid systems Verification

More information

Model checking test models. Author: Kevin de Berk Supervisors: Prof. dr. Wan Fokkink, dr. ir. Machiel van der Bijl

Model checking test models. Author: Kevin de Berk Supervisors: Prof. dr. Wan Fokkink, dr. ir. Machiel van der Bijl Model checking test models Author: Kevin de Berk Supervisors: Prof. dr. Wan Fokkink, dr. ir. Machiel van der Bijl February 14, 2014 Abstract This thesis is about model checking testing models. These testing

More information

Reading 13 : Finite State Automata and Regular Expressions

Reading 13 : Finite State Automata and Regular Expressions CS/Math 24: Introduction to Discrete Mathematics Fall 25 Reading 3 : Finite State Automata and Regular Expressions Instructors: Beck Hasti, Gautam Prakriya In this reading we study a mathematical model

More information

MATLAB Programming. Problem 1: Sequential

MATLAB Programming. Problem 1: Sequential Division of Engineering Fundamentals, Copyright 1999 by J.C. Malzahn Kampe 1 / 21 MATLAB Programming When we use the phrase computer solution, it should be understood that a computer will only follow directions;

More information

Regular Expressions and Automata using Haskell

Regular Expressions and Automata using Haskell Regular Expressions and Automata using Haskell Simon Thompson Computing Laboratory University of Kent at Canterbury January 2000 Contents 1 Introduction 2 2 Regular Expressions 2 3 Matching regular expressions

More information

A Visualization System and Monitoring Tool to Measure Concurrency in MPICH Programs

A Visualization System and Monitoring Tool to Measure Concurrency in MPICH Programs A Visualization System and Monitoring Tool to Measure Concurrency in MPICH Programs Michael Scherger Department of Computer Science Texas Christian University Email: m.scherger@tcu.edu Zakir Hussain Syed

More information