MAC Module 1 Systems of Linear Equations and Matrices I. Learning Objectives. Upon completing this module, you should be able to:


 Brian Mosley
 11 months ago
 Views:
Transcription
1 MAC 03 Module Systems of Linear Equations and Matrices I Learning Objectives Upon completing this module, you should be able to:. Represent a system of linear equations as an augmented matrix.. Identify whether the matrix is in rowechelon form, reduced rowechelon form, both, or neither. 3. Solve systems of linear equations by using the Gaussian elimination and GaussJordan elimination methods. 4. Perform matrix operations of addition, subtraction, multiplication, and multiplication by a scalar. 5. Find the transpose and the trace of a matrix.
2 Systems of Linear Equations and Matrices I There are three major topics in this module: Introduction to Systems of Linear Equations Gaussian Elimination Matrices and Matrix Operations Rev.09 3 A Quick Review A linear equation in two variables can be written in the form ax + by = k, where a, b, and k are constants, and a and b are not equal to 0. Note: The power of the variables is always. Two or more linear equations is called a system of linear equations because they involve solving more than one linear equation at once. A system of linear equations can have either exactly one solution (unique), no solution, or infinitely many solutions. 4
3 Let s Look at a System of Two Linear Equations in Two Variables 5 Remember How to Use the Elimination Method to Solve a System of Linear Equations? Example: Use elimination to solve each system of equations, if possible. Identify the system as consistent or inconsistent. If the system is consistent, state whether the equations are dependent or independent. Support your results graphically. a) 3x y = 7 b) 5x y = 8 c) x y = 5 5x + y = 9 5x + y = 8 x y = 6 3
4 Solving a System of Linear Equations Using the Elimination Method (Cont.) Solution a) Eliminate y by adding the equations. Find y by substituting x = in either equation. The solution is (, ). The system is consistent and the equations are independent. 7 Solving a System of Linear Equations Using the Elimination Method (Cont.) b) If we add the equations we obtain the following result. The equation 0 = 0 is an identity that is always true. The two equations are equivalent. There are infinitely many solutions. {(x, y) 5x 5 y = 8} 8 4
5 Solving a System of Linear Equations Using the Elimination Method (Cont.) c) If we subtract the second equation from the first, we obtain the following result. The equation 0 = 7 is a contradiction that is never true. Therefore, there is no solution,, and the system is inconsistent. 9 Let s Look at Solving a System of Linear Equations with Three Variables Solve the following system. Solution Step : Eliminate the variable z from equation one and two and then from equation two and three. Equation Equation times 6 Add Equation Equation 3 Add 0 5
6 Solving a System of Linear Equations with Three Variables Using the Elimination Method (Cont.) Step : Take the two new equations and eliminate either variable. Find x using y =. Do you remember using this method before? Solving a System of Linear Equations with Three Variables Using the Elimination Method (Cont.) Step 3: Substitute x = and y = in any of the given equations to find z. The solution is (,, ). Simple? Let s move on. 6
7 Solve the system. Solution One More Example Step Multiply equation one by and add to equation two. Subtract equation three from equation two. Step The two equations are inconsistent because the sum of 0x + 9y cannot be both 3 and 0. Step 3 is not necessary  the system of equations has no solution. 3 How to Represent a System of Linear Equations in an Augmented Matrix? Let s represent the previous system of linear equations in an Augmented Matrix. Just keep two items in mind: How? Basically, we just need to write down the coefficients of the variables and the constants in an rectangular array of numbers. That s it The constants must be on the right most column.. The coefficients of the variables must be in the same order for each equation (or each row). 4 7
8 How to Solve a System of Linear Equations Using an Augmented Matrix? Let s start by labeling our augmented matrix with r (row ), r (row ), and r3 (row 3). Each row corresponds to an equation. What s next? r r r We want to simplify the augmented matrix into either a rowechelon form or a reduced rowechelon form. What method(s) can we use to accomplish this? We can use:. GaussJordan Elimination method to obtain a reduced rowechelon form.. Gaussian Elimination Method to obtain a rowechelon form. 5 How to Identify a Matrix that is in a RowEchelon Form or a Reduced RowEchelon Form? Pictures are worth a thousand words. Here are two pictures. Picture shows a reduced rowechelon form matrix, and Picture shows a rowechelon form matrix. represents any numbers Picture Picture See the basic differences? The reduced rowechelon form shown in Picture has a leading in each row with zero(s) above it and below it when possible. What are those s? can be any numbers. The rowechelon form has a leading with zero(s) below it, but it can have any numbers above it. 6 8
9 Properties for a Matrix in Reduced RowEchelon Form The four basic properties:. The first nonzero number in a nonzero row has to be a.. Any row with all zeros is below all nonzero rows. 3. For nonzero rows, the leading in the next row has to be farther to the right than the leading in the previous row. 4. Each column that has a leading can only have zeros everywhere else in that column. Note: A matrix that meets only the first three properties is a matrix in rowechelon form. 7 How to Solve a System of Linear Equations Using an Augmented Matrix? (Cont.) Let s look at our augmented matrix. r r r We can simplify our augmented matrix into a reduced rowechelon form  through a stepbystep elimination process. Step : We want a leading in row. We can scale row to accomplish this. 3 3 r r r r3 We want to reduce our augmented matrix into something like this
10 How to Solve a System of Linear Equations Using an Augmented Matrix? (Cont.) Step : We need zeros below our leading in row. How to make and become zeros? r r+ r r r+ r3 r Step 3: We need a leading in row. How? 5 r r r r r r r3 From Step : We want to reduce our augmented matrix into something like this How to Solve a System of Linear Equations Using an Augmented Matrix? (Cont.) Step 4: We need a zero below our leading in row. r r r + r3 r Alright, we have a rowechelon form matrix. Gaussian elimination stops at this step but then requires backsubstitution to find the solution. 0 r r r3 From Step 3: We want to reduce our augmented matrix into something like this
11 How to Solve a System of Linear Equations Using an Augmented Matrix? (Cont.) Step 5: We need zeros above our leading in row 3 from step 4. Step 6: We need a zero above our leading at row. How? r3 + r r r3 + r r r r + r r 0 0 r 0 0 r3 0 0 Now, we have a reduced rowechelon form matrix. From Step 4: We want to reduce our augmented matrix into a reduced rowechelon form How to Solve a System of Linear Equations Using an Augmented Matrix? (Cont.) What does our matrix say? Can you identify the solution?.x + 0.y + 0.z = x = 0.x +.y + 0.z = y = 0.x + 0.y +.z = z = We have just obtained the solution of the system of linear equations by using the GaussJordan Elimination Method. The GaussJordan Elimination method has reduced the augmented matrix into its reduced rowechelon form. Note: If you remember, we have already obtained the rowechelon form in step 4. Can we stop there and find the solutions for the system of Linear Equations? We will look at this situation next.
12 How to Solve a System of Linear Equations Using an Augmented Matrix? (Cont.) Let s say we stop at Step 4. Then, we will have the following equations to solve: x +.y +.z = x + y + z = 0.x +.y + 3.z = 4 y + 3z = 4 0.x + 0.y +.z = z = In this case, we can solve the system of equations by using backsubstitution. Step : Substitute z = to the second equation, we will obtain y = 43 () =  Step : Substitute z = and y =  to the first equation, we will obtain x =. Note: This method is the so called Gaussian Elimination Method with backsubstitution. 3 Matrix Notation and Terminology A matrix is a rectangular array of numbers. The numbers in the array are called the entries in the matrix. The size of the matrix is described in terms of the number of rows and the number of columns. Here is an example of size X 3 matrix, a matrix with two rows and three columns. The entry that occurs in row i and column j 0 of a matrix A will be denoted by a ij An example of a 3 x 3 matrix will have the following entries: a a a 3 A = a a a 3 = a for i, j =,, 3. a 3 a 3 a ij 33 4
13 Matrix Notation and Terminology (Cont.) Column Matrix: A matrix with only one column. Example: x matrix Row Matrix: A matrix with only one row. Example: x 3 matrix 4 3 Square Matrix: A matrix with the same number of rows and columns. Example: x matrix Two matrices are defined to be equal if they have the same size and their corresponding entries are equal. Example: a =,, b =,, c = 3, and, d = 4, 4 a c b d = Matrix Operations Let A, B, and C be matrices A = B = C = Addition: If A and B are the same size, then A + B is the matrix obtained by adding the entries of B to the entries of A. Example: A + B = a ij + b ij = a ij + b ij = (5) () =
14 Matrix Operations (Cont.) Let A, B, and C be matrices. A = B = Subtraction: If A and B are the same size, then A  B is the matrix obtained by subtracting the entries of B from the entries of A. Example: A  B = 5 0 a ij 3 4 C = 0 b ij = a ij b ij = 3 0 (5) () = Matrix Operations (Cont.) = Multiplication: If B is an m x r and C is an r x n, then the product BC is the m x n matrix. To find the entry in row m and column n of BC, we multiply the corresponding entries from the row and column together, and then add up the resulting products. Example: r BC = b ij c jk = b ijc jk = [ d ik ] = D j = BC = 0 0 ()() + (5)(0) ()(3) + (5)() ()(4) + (5)() (0)() + ()(0) (0)(3) + ()() (0)(4) + ()() = 9 0 = D 8 4
15 Matrix Operations (Cont.) Scalar Multiple: If C is any matrix and s is any scalar, then the product of sc is the matrix obtained by multiplying each entry of the matrix by s. Example: 3 4 ()() ()(3) ()(4) C = 0 = ()(0) ()() ()() = 0 sc = sc jk 9 What is a Linear Combination? A = B = 5 0 E = 0 0 Linear Combination: If A, B, and E are matrices, then 3A  B + E is called a linear combination. Example: 3A B + E = 3a ij + b ij = 3 = () e ij = 3a ij b ij + e ij =
16 What is the Transpose of a Matrix? Transpose of a matrix: If A is any m x n matrix, then the transpose, denoted by A T, is defined to be the n x m matrix that results from interchanging the rows and columns of A. Example: A = a ij = x A T = a ji = x 4 3 What is the Trace of a Matrix? Trace of a matrix: If A is any square matrix, then the trace of A, denoted by tr(a), is defined to be the sum of the entries on the main diagonal of A. If A is not a square matrix, then the trace of A is undefined. Example: A = = a ij for i, j =,, 3, 4. 4 tr(a) = a ii = = i= 3 6
17 We have learned to: What have we learned?. Represent a system of linear equations as an augmented matrix.. Identify whether the matrix is in rowechelon form, reduced rowechelon form, both, or neither. 3. Solve systems of linear equations by using the Gaussian elimination and GaussJordan elimination methods. 4. Perform matrix operations of addition, subtraction, multiplication, and multiplication by a scalar. 5. Find the transpose and the trace of a matrix. 33 Credit Some of these slides have been adapted/modified in part/whole from the text or slides of the following textbooks: Anton, Howard: Elementary Linear Algebra with Applications, 9th Edition Rockswold, Gary: Precalculus with Modeling and Visualization, 3th Edition 34 7
4.2: Systems of Linear Equations and Augmented Matrices 4.3: GaussJordan Elimination
4.2: Systems of Linear Equations and Augmented Matrices 4.3: GaussJordan Elimination 4.2/3.1 We have discussed using the substitution and elimination methods of solving a system of linear equations in
More informationChapter 4: Systems of Equations and Ineq. Lecture notes Math 1010
Section 4.1: Systems of Equations Systems of equations A system of equations consists of two or more equations involving two or more variables { ax + by = c dx + ey = f A solution of such a system is an
More information1 Systems Of Linear Equations and Matrices
1 Systems Of Linear Equations and Matrices 1.1 Systems Of Linear Equations In this section you ll learn what Systems Of Linear Equations are and how to solve them. Remember that equations of the form a
More informationCHAPTER 9: Systems of Equations and Matrices
MAT 171 Precalculus Algebra Dr. Claude Moore Cape Fear Community College CHAPTER 9: Systems of Equations and Matrices 9.1 Systems of Equations in Two Variables 9.2 Systems of Equations in Three Variables
More informationMAT Solving Linear Systems Using Matrices and Row Operations
MAT 171 8.5 Solving Linear Systems Using Matrices and Row Operations A. Introduction to Matrices Identifying the Size and Entries of a Matrix B. The Augmented Matrix of a System of Equations Forming Augmented
More information10.1 Systems of Linear Equations: Substitution and Elimination
10.1 Systems of Linear Equations: Substitution and Elimination What does it mean to be a solution to a system of equations?  It is the set of all ordered pairs (x, y) that satisfy the two equations. You
More informationLecture 11: Solving Systems of Linear Equations by Gaussian Elimination
Lecture 11: Solving Systems of Linear Equations by Gaussian Elimination Winfried Just, Ohio University February 3, 2016 Review: The coefficient matrix Consider a system of m linear equations in n variables.
More informationChapter 2 Review. Solution of Linear Systems by the Echelon Method
Chapter 2 Review Solution of Linear Systems by the Echelon Method A firstdegree equation in n unknowns is any equation of the form a 1 x 1 + a 2 x 2 + + a n x n = k, where a 1, a 2,..., a n and k are
More informationCHAPTER 9: Systems of Equations and Matrices
MAT 171 Precalculus Algebra Dr. Claude Moore Cape Fear Community College CHAPTER 9: Systems of Equations and Matrices 9.1 Systems of Equations in Two Variables 9.2 Systems of Equations in Three Variables
More informationMath 1313 Section 3.2. Section 3.2: Solving Systems of Linear Equations Using Matrices
Math Section. Section.: Solving Systems of Linear Equations Using Matrices As you may recall from College Algebra or Section., you can solve a system of linear equations in two variables easily by applying
More information1 Systems Of Linear Equations and Matrices
1 Systems Of Linear Equations and Matrices 1.1 Systems Of Linear Equations In this section you ll learn what Systems Of Linear Equations are and how to solve them. Remember that equations of the form a
More informationLecture 12: Solving Systems of Linear Equations by Gaussian Elimination
Lecture 12: Solving Systems of Linear Equations by Gaussian Elimination Winfried Just, Ohio University September 23, 2015 Review: The coefficient matrix Consider a system of m linear equations in n variables.
More informationLinear Equations in Linear Algebra
1 Linear Equations in Linear Algebra 1.1 SYSTEMS OF LINEAR EQUATIONS LINEAR EQUATION,, 1 n A linear equation in the variables equation that can be written in the form a a a b 1 1 2 2 n n a a, is an where
More informationSystems of Linear Equations
A FIRST COURSE IN LINEAR ALGEBRA An Open Text by Ken Kuttler Systems of Linear Equations Lecture Notes by Karen Seyffarth Adapted by LYRYX SERVICE COURSE SOLUTION AttributionNonCommercialShareAlike (CC
More informationMATH 2030: ASSIGNMENT 3 SOLUTIONS
MATH : ASSIGNMENT SOLUTIONS Matrix Operations Q.: pg 9, q. Write the system of linear equations as a matrix equation of the form Ax = b. x + x =, x x =, x + x = A.. x x =. x Q.: pg 9, q. Compute AB by
More information3 Systems of Linear. Equations and Matrices. Copyright Cengage Learning. All rights reserved.
3 Systems of Linear Equations and Matrices Copyright Cengage Learning. All rights reserved. 3.2 Using Matrices to Solve Systems of Equations Copyright Cengage Learning. All rights reserved. Using Matrices
More information( % . This matrix consists of $ 4 5 " 5' the coefficients of the variables as they appear in the original system. The augmented 3 " 2 2 # 2 " 3 4&
Matrices define matrix We will use matrices to help us solve systems of equations. A matrix is a rectangular array of numbers enclosed in parentheses or brackets. In linear algebra, matrices are important
More informationSystems of Linear Equations
Systems of Linear Equations Systems of Linear Equations. We consider the problem of solving linear systems of equations, such as x 1 2x 2 = 8 3x 1 + x 2 = 3 In general, we write a system of m equations
More informationOverview. Matrix Solutions to Linear Systems. Threevariable systems. Matrices. Solving a threevariable system
Overview Matrix Solutions to Linear Systems Section 8.1 When solving systems of linear equations in two variables, we utilized the following techniques: 1.Substitution 2.Elimination 3.Graphing In this
More informationChapters 2 & 3: Matrices, Systems of Linear Equations, and Determinants
Chapters 2 & 3: Matrices, Systems of Linear Equations, and Determinants Philip Gressman University of Pennsylvania Philip Gressman Math 240 002 2014C: Chapter 2 1 / 36 Matrices: Definitions, Notation,
More informationSolving Systems of Linear Equations Using Matrices
Solving Systems of Linear Equations Using Matrices What is a Matrix? A matrix is a compact grid or array of numbers. It can be created from a system of equations and used to solve the system of equations.
More information6.1 Matrix Solutions to Linear Systems
6 Matrix Solutions to Linear Systems Section 6 Notes Page In this section we will talk about matrices Matrices help to organize data They can also be used to solve equations, which is what we will mainly
More informationMath 2331 Linear Algebra
1.1 Linear System Math 2331 Linear Algebra 1.1 Systems of Linear Equations Jiwen He Department of Mathematics, University of Houston jiwenhe@math.uh.edu math.uh.edu/ jiwenhe/math2331 Jiwen He, University
More informationDecember 4, 2013 MATH 171 BASIC LINEAR ALGEBRA B. KITCHENS
December 4, 2013 MATH 171 BASIC LINEAR ALGEBRA B KITCHENS The equation 1 Lines in twodimensional space (1) 2x y = 3 describes a line in twodimensional space The coefficients of x and y in the equation
More informationSystems of Linear Equations
Systems of Linear Equations DEFINITION: A linear equation in the variables x 1,..., x n is an equation that can be written in the form a 1 x 1 +...+a n x n = b, where a 1,...,a n and b are constants, x
More informationMATRIX ALGEBRA AND SYSTEMS OF EQUATIONS
MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS Systems of Equations and Matrices Representation of a linear system The general system of m equations in n unknowns can be written a x + a 2 x 2 + + a n x n b a
More informationSection 8.2 Solving a System of Equations Using Matrices (Guassian Elimination)
Section 8. Solving a System of Equations Using Matrices (Guassian Elimination) x + y + z = x y + 4z = x 4y + z = System of Equations x 4 y = 4 z A System in matrix form x A x = b b 4 4 Augmented Matrix
More information1.2 Solving a System of Linear Equations
1.. SOLVING A SYSTEM OF LINEAR EQUATIONS 1. Solving a System of Linear Equations 1..1 Simple Systems  Basic De nitions As noticed above, the general form of a linear system of m equations in n variables
More informationUsing Matrix Elimination to Solve Three Equations With Three Unknowns
Using Matrix Elimination to Solve Three Equations With Three Unknowns Here we will be learning how to use Matrix Elimination to solve a linear system with three equation and three unknowns. Matrix Elimination
More information1 Introduction to Matrices
1 Introduction to Matrices In this section, important definitions and results from matrix algebra that are useful in regression analysis are introduced. While all statements below regarding the columns
More information1 Gaussian Elimination
Contents 1 Gaussian Elimination 1.1 Elementary Row Operations 1.2 Some matrices whose associated system of equations are easy to solve 1.3 Gaussian Elimination 1.4 GaussJordan reduction and the Reduced
More informationChapter 1 Matrices and Systems of Linear Equations
Chapter 1 Matrices and Systems of Linear Equations 1.1: Introduction to Matrices and Systems of Linear Equations 1.2: Echelon Form and GaussJordan Elimination Lecture Linear Algebra  Math 2568M on Friday,
More informationSystems of Linear Equations
Systems of Linear Equations Recall that an equation of the form Ax + By = C is a linear equation in two variables. A solution of a linear equation in two variables is an ordered pair (x, y) that makes
More information1.3 Matrices and Matrix Operations
0 CHAPTER. SYSTEMS OF LINEAR EQUATIONS AND MATRICES. Matrices and Matrix Operations.. De nitions and Notation Matrices are yet another mathematical object. Learning about matrices means learning what they
More informationMAC Module 3 System of Equations and Inequalities. Rev.S08
MAC 1105 Module 3 System of Equations and Inequalities Learning Objectives Upon completing this module, you should be able to: 1. Evaluate functions of two variables. 2. Apply the method of substitution.
More informationSolving Systems of Linear Equations
LECTURE 5 Solving Systems of Linear Equations Recall that we introduced the notion of matrices as a way of standardizing the expression of systems of linear equations In today s lecture I shall show how
More informationLecture 5: Matrix Algebra
Lecture 5: Matrix Algebra In Song Kim September 7, 2011 1 Matrix Algebra 11 Definition Matrix: A matrix is an array of mn real numbers arranged in m rows by n columns a 11 a 12 a 1n a 21 a 22 a 2n A =
More informationMATRIX ALGEBRA AND SYSTEMS OF EQUATIONS. + + x 2. x n. a 11 a 12 a 1n b 1 a 21 a 22 a 2n b 2 a 31 a 32 a 3n b 3. a m1 a m2 a mn b m
MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS 1. SYSTEMS OF EQUATIONS AND MATRICES 1.1. Representation of a linear system. The general system of m equations in n unknowns can be written a 11 x 1 + a 12 x 2 +
More informationChapter 4  Systems of Equations and Inequalities
Math 233  Spring 2009 Chapter 4  Systems of Equations and Inequalities 4.1 Solving Systems of equations in Two Variables Definition 1. A system of linear equations is two or more linear equations to
More informationMatrix Inverses. Since the linear system. can be written as. where. ,, and,
Matrix Inverses Consider the ordinary algebraic equation and its solution shown below: Since the linear system can be written as where,, and, (A = coefficient matrix, x = variable vector, b = constant
More information8.2 Systems of Linear Equations: Augmented Matrices
8. Systems of Linear Equations: Augmented Matrices 567 8. Systems of Linear Equations: Augmented Matrices In Section 8. we introduced Gaussian Elimination as a means of transforming a system of linear
More informationSolving Systems of Linear Equations. Substitution
Solving Systems of Linear Equations There are two basic methods we will use to solve systems of linear equations: Substitution Elimination We will describe each for a system of two equations in two unknowns,
More informationSolving Systems of Linear Equations; Row Reduction
Harvey Mudd College Math Tutorial: Solving Systems of Linear Equations; Row Reduction Systems of linear equations arise in all sorts of applications in many different fields of study The method reviewed
More informationMATH 304 Linear Algebra Lecture 4: Row echelon form. GaussJordan reduction.
MATH 304 Linear Algebra Lecture 4: Row echelon form GaussJordan reduction System of linear equations: a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2 a m1 x 1 + a m2 x 2
More informationMath 117 Chapter 2 Systems of Linear Equations and Matrices
Math 117 Chapter 2 Systems of Linear Equations and Matrices Flathead Valley Community College Page 1 of 28 1. Systems of Linear Equations A linear equation in n unknowns is defined by a 1 x 1 + a 2 x 2
More information4 Solving Systems of Equations by Reducing Matrices
Math 15 Sec S0601/S060 4 Solving Systems of Equations by Reducing Matrices 4.1 Introduction One of the main applications of matrix methods is the solution of systems of linear equations. Consider for example
More informationMATH10212 Linear Algebra. Systems of Linear Equations. Definition. An ndimensional vector is a row or a column of n numbers (or letters): a 1.
MATH10212 Linear Algebra Textbook: D. Poole, Linear Algebra: A Modern Introduction. Thompson, 2006. ISBN 0534405967. Systems of Linear Equations Definition. An ndimensional vector is a row or a column
More informationChapter 2 Part 2 MATRICES
Finite Math B Chapter 2 MATRICES 1 Chapter 2 Part 2 MATRICES A: Augmented Matrices and Row Operations (Lessons 2.2 pg 6870) Augmented Matrices Suppose you are given a system of equations such as: 2x y
More informationSystems of Linear Equations Introduction
Systems of Linear Equations Introduction Linear Equation a x = b Solution: Case a 0, then x = b (one solution) a Case 2 a = 0, b 0, then x (no solutions) Case 3 a = 0, b = 0, then x R (infinitely many
More informationDirect Methods for Solving Linear Systems. Linear Systems of Equations
Direct Methods for Solving Linear Systems Linear Systems of Equations Numerical Analysis (9th Edition) R L Burden & J D Faires Beamer Presentation Slides prepared by John Carroll Dublin City University
More informationMATH 304 Linear Algebra Lecture 8: Inverse matrix (continued). Elementary matrices. Transpose of a matrix.
MATH 304 Linear Algebra Lecture 8: Inverse matrix (continued). Elementary matrices. Transpose of a matrix. Inverse matrix Definition. Let A be an n n matrix. The inverse of A is an n n matrix, denoted
More informationCramer s Rule and Gauss Elimination
Outlines September 28, 2004 Outlines Part I: Review of Previous Lecture Part II: Review of Previous Lecture Outlines Part I: Review of Previous Lecture Part II: Cramer s Rule Introduction Matrix Version
More informationMore with Matrices and the Calculator Video Lecture. Sections 11.1 and 11.2
More with Matrices and the Calculator Video Lecture Sections 11.1 and 11.2 Course Learning Objectives: 1)Solve systems of linear equations using technology. 2)Perform the algebra of matrices, find inverses
More information7.1. Introduction to Matrices. Introduction. Prerequisites. Learning Outcomes. Learning Style
Introduction to Matrices 7.1 Introduction When we wish to solve large systems of simultaneous linear equations, which arise for example in the problem of finding the forces on members of a large framed
More informationLinear Equations ! 25 30 35$ & " 350 150% & " 11,750 12,750 13,750% MATHEMATICS LEARNING SERVICE Centre for Learning and Professional Development
MathsTrack (NOTE Feb 2013: This is the old version of MathsTrack. New books will be created during 2013 and 2014) Topic 4 Module 9 Introduction Systems of to Matrices Linear Equations Income = Tickets!
More informationArithmetic and Algebra of Matrices
Arithmetic and Algebra of Matrices Math 572: Algebra for Middle School Teachers The University of Montana 1 The Real Numbers 2 Classroom Connection: Systems of Linear Equations 3 Rational Numbers 4 Irrational
More information5.5. Solving linear systems by the elimination method
55 Solving linear systems by the elimination method Equivalent systems The major technique of solving systems of equations is changing the original problem into another one which is of an easier to solve
More informationMATH 304 Linear Algebra Lecture 9: Properties of determinants.
MATH 304 Linear Algebra Lecture 9: Properties of determinants. Determinants Determinant is a scalar assigned to each square matrix. Notation. The determinant of a matrix A = (a ij ) 1 i,j n is denoted
More informationHarvey Mudd College Math Tutorial: Matrix Algebra. We review here some of the basic definitions and elementary algebraic operations on matrices.
Harvey Mudd College Math Tutorial: Matrix Algebra We review here some of the basiefinitions and elementary algebraic operations on matrices There are many applications as well as much interesting theory
More information(a) The transpose of a lower triangular matrix is upper triangular, and the transpose of an upper triangular matrix is lower triangular.
Theorem.7.: (Properties of Triangular Matrices) (a) The transpose of a lower triangular matrix is upper triangular, and the transpose of an upper triangular matrix is lower triangular. (b) The product
More informationWarmUp. Find the x, y and z intercepts: Solve this 2D system by Graphing on your calculator
WarmUp Find the x, y and z intercepts: a) 3x + 4y + 6z = 24 b) 2x + 5y + 10z = 10 Solve this 2D system by Graphing on your calculator c) 2x + 3y = 45 4x + 5y = 10 Solving Systems of Equations Learning
More informationSection 6.2 Larger Systems of Linear Equations
Section 6.2 Larger Systems of Linear Equations EXAMPLE: Solve the system of linear equations. Solution: From Equation 3, you know the value z. To solve for y, substitute z = 2 into Equation 2 to obtain
More information2 Matrices and systems of linear equations
Matrices and systems of linear equations You have all seen systems of linear equations such as 3x + 4y = x y = 0. ( This system can be solved easily: Multiply the nd equation by 4, and add the two resulting
More information2 Matrices and systems of linear equations
Matrices and systems of linear equations You have all seen systems of linear equations such as 3x + 4y = 5 x y = 0. () This system can easily be solved: just multiply the nd equation by 4, and add the
More information1.5 Elementary Matrices and a Method for Finding the Inverse
.5 Elementary Matrices and a Method for Finding the Inverse Definition A n n matrix is called an elementary matrix if it can be obtained from I n by performing a single elementary row operation Reminder:
More information4. MATRICES Matrices
4. MATRICES 170 4. Matrices 4.1. Definitions. Definition 4.1.1. A matrix is a rectangular array of numbers. A matrix with m rows and n columns is said to have dimension m n and may be represented as follows:
More information= [a ij ] 2 3. Square matrix A square matrix is one that has equal number of rows and columns, that is n = m. Some examples of square matrices are
This document deals with the fundamentals of matrix algebra and is adapted from B.C. Kuo, Linear Networks and Systems, McGraw Hill, 1967. It is presented here for educational purposes. 1 Introduction In
More informationSolving System of Two equations
Solving System of Two equations Graphical Method y = x + 1 (1) y = x + 5 (2) Solving System of Two equations Graphical Method y = x + 1 (1) y = x + 5 (2) are the same equations as: x y = 1 (3) x + y =
More informationAPPLICATIONS OF MATRICES. Adj A is nothing but the transpose of the cofactor matrix [A ij ] of A.
APPLICATIONS OF MATRICES ADJOINT: Let A = [a ij ] be a square matrix of order n. Let Aij be the cofactor of a ij. Then the n th order matrix [A ij ] T is called the adjoint of A. It is denoted by adj
More informationMath 240: Linear Systems and Rank of a Matrix
Math 240: Linear Systems and Rank of a Matrix Ryan Blair University of Pennsylvania Thursday January 20, 2011 Ryan Blair (U Penn) Math 240: Linear Systems and Rank of a Matrix Thursday January 20, 2011
More information2. Systems of Linear Equations.
2. Systems of Linear Equations 2.1. Introduction to Systems of Linear Equations Linear Systems In general, we define a linear equation in the n variables x 1, x 2,, x n to be one that can be expressed
More informationProperties of Transpose
Properties of Transpose Transpose has higher precedence than multiplication and addition, so AB T = A B T and A + B T = A + B T As opposed to the bracketed expressions AB T and A + B T Example 1 1 2 1
More informationRow Echelon Form and Reduced Row Echelon Form
These notes closely follow the presentation of the material given in David C Lay s textbook Linear Algebra and its Applications (3rd edition) These notes are intended primarily for inclass presentation
More informationSystems of Linear Equations
Chapter 1 Systems of Linear Equations 1.1 Intro. to systems of linear equations Homework: [Textbook, Ex. 13, 15, 41, 47, 49, 51, 65, 73; page 11]. Main points in this section: 1. Definition of Linear
More informationSection 1: Linear Algebra
Section 1: Linear Algebra ECO4112F 2011 Linear (matrix) algebra is a very useful tool in mathematical modelling as it allows us to deal with (among other things) large systems of equations, with relative
More informationSolving a System of Equations
11 Solving a System of Equations 111 Introduction The previous chapter has shown how to solve an algebraic equation with one variable. However, sometimes there is more than one unknown that must be determined
More informationMatrices and Matrix Operations Linear Algebra MATH 2010
Matrices and Matrix Operations Linear Algebra MATH 2010 Basic Definition and Notation for Matrices If m and n are positive integers, then an mxn matrix is a rectangular array of numbers (entries) a 11
More informationDiagonal, Symmetric and Triangular Matrices
Contents 1 Diagonal, Symmetric Triangular Matrices 2 Diagonal Matrices 2.1 Products, Powers Inverses of Diagonal Matrices 2.1.1 Theorem (Powers of Matrices) 2.2 Multiplying Matrices on the Left Right by
More informationMatrices Gaussian elimination Determinants. Graphics 2011/2012, 4th quarter. Lecture 4: matrices, determinants
Lecture 4 Matrices, determinants m n matrices Matrices Definitions Addition and subtraction Multiplication Transpose and inverse a 11 a 12 a 1n a 21 a 22 a 2n A =...... a m1 a m2 a mn is called an m n
More informationLinear Algebra. Chapter 2: Systems of Linear Equations. University of Seoul School of Computer Science Minho Kim
Linear Algebra Chapter 2: Systems of Linear Equations University of Seoul School of Computer Science Minho Kim Table of contents Introduction: Triviality Introduction to Systems of Linear Equations Direct
More informationLinear Equations in Linear Algebra
1 Linear Equations in Linear Algebra 1.2 Row Reduction and Echelon Forms ECHELON FORM A rectangular matrix is in echelon form (or row echelon form) if it has the following three properties: 1. All nonzero
More information2.6 The Inverse of a Square Matrix
200/2/6 page 62 62 CHAPTER 2 Matrices and Systems of Linear Equations 0 0 2 + i i 2i 5 A = 0 9 0 54 A = i i 4 + i 2 0 60 i + i + 5i 26 The Inverse of a Square Matrix In this section we investigate the
More information4. SYSTEMS OF LINEAR EQUATIONS
. SYSTMS OF LINR QUTIONS.. Linear quations linear equation is an equation of the form a x + a x +... + a n x n = d where the a i s and d, are constants. The a i s are called coefficients, and the x i s
More informationMATH 304 Linear Algebra Lecture 6: Transpose of a matrix. Determinants.
MATH 304 Linear Algebra Lecture 6: Transpose of a matrix. Determinants. Transpose of a matrix Definition. Given a matrix A, the transpose of A, denoted A T, is the matrix whose rows are columns of A (and
More information3.4 Solving Matrix Equations with Inverses
3.4 Solving Matrix Equations with Inverses Question : How do you write a system of equations as a matrix equation? Question 2: How do you solve a matrix equation using the matrix inverse? Multiplicative
More informationAbstract: We describe the beautiful LU factorization of a square matrix (or how to write Gaussian elimination in terms of matrix multiplication).
MAT 2 (Badger, Spring 202) LU Factorization Selected Notes September 2, 202 Abstract: We describe the beautiful LU factorization of a square matrix (or how to write Gaussian elimination in terms of matrix
More informationNumerical Methods Lecture 2 Simultaneous Equations
Numerical Methods Lecture 2 Simultaneous Equations Topics: matrix operations solving systems of equations Matrix operations: Mathcad is designed to be a tool for quick and easy manipulation of matrix forms
More informationSolutions to Linear Algebra Practice Problems 1. form (because the leading 1 in the third row is not to the right of the
Solutions to Linear Algebra Practice Problems. Determine which of the following augmented matrices are in row echelon from, row reduced echelon form or neither. Also determine which variables are free
More informationPOL502: Linear Algebra
POL502: Linear Algebra Kosuke Imai Department of Politics, Princeton University December 12, 2005 1 Matrix and System of Linear Equations Definition 1 A m n matrix A is a rectangular array of numbers with
More informationEP2.2/H3.1. HigherOrder Determinants The 1 1 matrix [a] [ is ] invertible exactly when a 0. The 2 2 matrix is invertible exactly when ad bc 0.
EP22/H31 HigherOrder Determinants The 1 1 matrix [a] [ is ] invertible exactly when a 0 a b The 2 2 matrix is invertible exactly when c d ad bc 0 What about a 3 3 matrix? Is there some short of expression
More informationUNIT 2 MATRICES  I 2.0 INTRODUCTION. Structure
UNIT 2 MATRICES  I Matrices  I Structure 2.0 Introduction 2.1 Objectives 2.2 Matrices 2.3 Operation on Matrices 2.4 Invertible Matrices 2.5 Systems of Linear Equations 2.6 Answers to Check Your Progress
More information1.3 Solving Systems of Linear Equations: GaussJordan Elimination and Matrices
1.3 Solving Systems of Linear Equations: GaussJordan Elimination and Matrices We can represent a system of linear equations using an augmented matrix. In general, a matrix is just a rectangular arrays
More informationIntroduction to Linear Algebra III
Introduction to Linear Algebra III Jack Xin (Lecture) and J. Ernie Esser (Lab) Abstract Linear system, matrix and matrix operations, row echelon form, rank. 1 Linear System and Matrix A linear system:
More information1 Matrices and matrix algebra
1 Matrices and matrix algebra 11 Examples of matrices Definition: A matrix is a rectangular array of numbers and/or variables For instance 4 2 0 3 1 A 5 12 07 x 3 π 3 4 6 27 is a matrix with 3 rows and
More informationSection 6.2 Larger Systems of Linear Equations
Section 6.2 Larger Systems of Linear Equations Gaussian Elimination In general, to solve a system of linear equations using its augmented matrix, we use elementary row operations to arrive at a matrix
More informationSECTION 1.1: SYSTEMS OF LINEAR EQUATIONS
SECTION.: SYSTEMS OF LINEAR EQUATIONS THE BASICS What is a linear equation? What is a system of linear equations? What is a solution of a system? What is a solution set? When are two systems equivalent?
More information8.3. Gauss elimination. Introduction. Prerequisites. Learning Outcomes
Gauss elimination 8.3 Introduction Engineers often need to solve large systems of linear equations; for example in determining the forces in a large framework or finding currents in a complicated electrical
More information1. LINEAR EQUATIONS. A linear equation in n unknowns x 1, x 2,, x n is an equation of the form
1. LINEAR EQUATIONS A linear equation in n unknowns x 1, x 2,, x n is an equation of the form a 1 x 1 + a 2 x 2 + + a n x n = b, where a 1, a 2,..., a n, b are given real numbers. For example, with x and
More information1. Linear systems of equations. Chapters 78: Linear Algebra. Solution(s) of a linear system of equations. Row operations.
A linear system of equations of the form Sections 75 78 & 8 a x + a x + + a n x n = b a x + a x + + a n x n = b a m x + a m x + + a mn x n = b m can be written in matrix form as AX = B where a a a n x
More informationPhysics 116A Solving linear equations by Gaussian Elimination (Row Reduction)
Physics 116A Solving linear equations by Gaussian Elimination (Row Reduction) Peter Young (Dated: February 12, 2014) I. INTRODUCTION The general problem is to solve m linear equations in n variables. In
More information