FET-Input, Low Distortion OPERATIONAL AMPLIFIER

Size: px
Start display at page:

Download "FET-Input, Low Distortion OPERATIONAL AMPLIFIER"

Transcription

1 FPO FET-Input, Low Distortion OPERATIONAL AMPLIFIER FEATURES LOW DISTORTION:.3% at khz LOW NOISE: nv/ Hz HIGH SLEW RATE: 2V/µs WIDE GAIN-BANDWIDTH: 2MHz UNITY-GAIN STABLE WIDE SUPPLY RANGE: V S = ±4. to ±24V DRIVES 6Ω LOAD DUAL VERSION AVAILABLE (OPA264) APPLICATIONS PROFESSIONAL AUDIO EQUIPMENT PCM DAC I/V CONVERTER SPECTRAL ANALYSIS EQUIPMENT ACTIVE FILTERS TRANSDUCER AMPLIFIER DATA ACQUISITION DESCRIPTION (7) V+ The is a FET-input operational amplifier designed for enhanced AC performance. Very low distortion, low noise and wide bandwidth provide superior performance in high quality audio and other applications requiring excellent dynamic performance. New circuit techniques and special laser trimming of dynamic circuit performance yield very low harmonic distortion. The result is an op amp with exceptional sound quality. The low-noise FET input of the provides wide dynamic range, even with high source impedance. Offset voltage is laser-trimmed to minimize the need for interstage coupling capacitors. The is available in 8-pin plastic mini-dip and SO-8 surface-mount packages, specified for the 2 C to +8 C temperature range. () () (+) (3) ( ) (2) Distortion Rejection Circuitry () Output Stage () NOTE: () Patents Granted: #378, 9789 (4) V (6) International Airport Industrial Park Mailing Address: PO Box 4 Tucson, AZ 8734 Street Address: 673 S. Tucson Blvd. Tucson, AZ 876 Tel: (2) 746- Twx: Cable: BBRCORP Telex: FAX: (2) 889- Immediate Product Info: (8) Burr-Brown Corporation PDS-6C Printed in U.S.A. May, 99

2 SPECIFICATIONS ELECTRICAL T A = +2 C, V S = ±V unless otherwise noted. AP, AU PARAMETEONDITION MIN TYP MAX UNITS OFFSET VOLTAGE Input Offset Voltage ± ± mv Average Drift ±8 µv/ C Power Supply Rejection V S = ± to ±24V 8 db INPUT BIAS CURRENT () Input Bias Current V CM = V pa Input Offset Current V CM = V ±3 pa NOISE Input Voltage Noise Noise Density: f = Hz 2 nv/ Hz f = Hz nv/ Hz f = khz nv/ Hz f = khz nv/ Hz Voltage Noise, BW = 2Hz to 2kHz. µvp-p Input Bias Current Noise Current Noise Density, f =.Hz to 2kHz 4 fa/ Hz INPUT VOLTAGE RANGE Common-Mode Input Range ±2 ±3 V Common-Mode Rejection V CM = ±2V 8 db INPUT IMPEDANCE Differential 2 8 Ω pf Common-Mode 2 Ω pf OPEN-LOOP GAIN Open-Loop Voltage Gain = ±V, R L = kω 8 db FREQUENCY RESPONSE Gain-Bandwidth Product G = 2 MHz Slew Rate 2Vp-p, R L = kω 2 V/µs Settling Time:.% G =, V Step. µs.% µs Total Harmonic Distortion + Noise (THD+N) G =, f = khz.3 % = 3.Vrms, R L = kω OUTPUT Voltage Output R L = 6Ω ± ±2 V Current Output = ±2V ±3 ma Short Circuit Current ±4 ma Output Resistance, Open-Loop 2 Ω POWER SUPPLY Specified Operating Voltage ± V Operating Voltage Range ±4. ±24 V Current ±.3 ±6 ma TEMPERATURE RANGE Specification 2 +8 C Storage 4 +2 C Thermal Resistance (2), θ JA 9 C/W NOTES: () Typical performance, measured fully warmed-up. (2) Soldered to circuit board see text. The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user s own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems. 2

3 PIN CONFIGURATION ABSOLUTE MAXIMUM RATINGS Top View Offset Trim In +In DIP, SOIC No Internal Connection +V S Output Power Supply Voltage... ±2V Input Voltage... (V ) V to (V+)+V Output Short Circuit to Ground... Continuous Operating Temperature... 4 C to + C Storage Temperature... 4 C to +2 C Junction Temperature... + C Lead Temperature (soldering, s) AP C Lead Temperature (soldering, 3s) AU C V S 4 Offset Trim ORDERING INFORMATION ELECTROSTATIC DISCHARGE SENSITIVITY Any integrated circuit can be damaged by ESD. Burr-Brown recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet published specifications. MODEL PACKAGE TEMP. RANGE AP 8-Pin Plastic DIP 2 C to +8 C AU SO-8 Surface-Mount 2 C to +8 C PACKAGE INFORMATION PACKAGE DRAWING MODEL PACKAGE NUMBER () AP 8-Pin Plastic DIP 6 AU SO-8 Surface-Mount 82 NOTE: () For detailed drawing and dimension table, please see end of data sheet, or Appendix D of Burr-Brown IC Data Book. 3

4 TYPICAL PERFORMANCE CURVES T A = +2 C, V S = ±V unless otherwise noted. THD + N (%)... TOTAL HARMONIC DISTORTION + NOISE vs FREQUENCY = 3.Vrms kω G = V/V G = V/V Measurement BW = 8kHz See Distortion Measure- ments for description of test method. THD + N (%)... TOTAL HARMONIC DISTORTION + NOISE vs OUTPUT VOLTAGE See Distortion Measurements for description of test method. kω f = khz Measurement BW = 8kHz G = V/V. 2 k k 2k Frequency (Hz).. Output Voltage (Vp-p) Voltage Gain (db) OPEN-LOOP GAIN/PHASE vs FREQUENCY G φ Phase Shift (Degrees) Voltage Noise (nv/ Hz) k INPUT VOLTAGE AND CURRENT NOISE SPECTRAL DENSITY vs FREQUENCY Voltage Noise k Current Noise (fa/ Hz) 2 k k k M M Frequency (Hz) Current Noise k k k M Frequency (Hz) na INPUT BIAS AND INPUT OFFSET CURRENT vs TEMPERATURE na na INPUT BIAS AND INPUT OFFSET CURRENT vs INPUT COMMON-MODE VOLTAGE na Input Bias Current (pa) na na Input Bias Current Input Offset Current na Input Offset Current (pa) Input Bias Current (pa) na Input Bias Current Input Offset Current Input Offset Current (pa) Ambient Temperature ( C) Common-Mode Voltage (V) 4

5 TYPICAL PERFORMANCE CURVES (CONT) T A = +2 C, V S = ±V unless otherwise noted. na INPUT BIAS CURRENT vs TIME FROM POWER TURN-ON 2 COMMON-MODE REJECTION vs COMMON-MODE VOLTAGE Input Bias Current (pa) V S = ±24VDC V S = ±VDC V S = ±VDC Common-Mode Rejection (db) Time After Power Turn-On (min) 8 Common-Mode Voltage (V) 2 POWER SUPPLY AND COMMON-MODE REJECTION vs FREQUENCY +PSR 2 2 A OL, PSR, AND CMR vs SUPPLY VOLTAGE Power Supply Rejection (db) PSR CMR Common-Mode Rejection (db) A OL, PSR, CMR (db) 9 8 CMR PSR A OL k k k M M Frequency (Hz) Supply Voltage (±V S ) 28 GAIN-BANDWIDTH AND SLEW RATE vs SUPPLY VOLTAGE GAIN-BANDWIDTH AND SLEW RATE vs TEMPERATURE 3 Slew Rate Gain-Bandwidth (MHz) Gain-Bandwidth G = + Slew Rate Slew Rate (V/µs) Gain-Bandwidth (MHz) Gain-Bandwidth G = Slew Rate (V/µs) Supply Voltage (±V S ) Temperature ( C)

6 TYPICAL PERFORMANCE CURVES (CONT) T A = +2 C, V S = ±V unless otherwise noted. Settling Time (µs) SETTLING TIME vs CLOSED-LOOP GAIN = V Step R L = kω = pf.%.% Output Voltage (Vp-p) 3 2 MAXIMUM OUTPUT VOLTAGE SWING vs FREQUENCY V = ±V S Closed-Loop Gain (V/V) k k M M Frequency (Hz) 7 SUPPLY CURRENT vs TEMPERATURE LARGE-SIGNAL TRANSIENT RESPONSE Supply Current (ma) 6 4 V S = ±VDC V S = ±24VDC V S = ±VDC Output Voltage (V) + FPO Bleed to edge Ambient Temperature ( C) Time (µs) SMALL-SIGNAL TRANSIENT RESPONSE 6 SHORT-CIRCUIT CURRENT vs TEMPERATURE Output Voltage (mv) + Short-Circuit Current (ma) 4 3 I SC+ and I SC µs 2µs Time (µs) Ambient Temperature ( C) 6

7 TYPICAL PERFORMANCE CURVES (CONT) T A = +2 C, V S = ±V unless otherwise noted. Power Dissipation (W) POWER DISSIPATION vs SUPPLY VOLTAGE Typical high-level music R L = 6Ω Worst case sine wave R L = 6Ω No signal or no load Supply Voltage, ±V S (V) Total Power Dissipation (W) MAXIMUM POWER DISSIPATION vs TEMPERATURE Maximum Specified Operating Temperature 8 C θj-a = 9 C/W Soldered to Circuit Board (see text) Ambient Temperature ( C) APPLICATIONS INFORMATION OFFSET VOLTAGE ADJUSTMENT The offset voltage is laser-trimmed and will require no further trim for most applications. As with most amplifiers, externally trimming the remaining offset can change drift performance by about.3µv/ C for each µv of adjusted offset. The can replace many other amplifiers by leaving the external null circuit unconnected. The is unity-gain stable, making it easy to use in a wide range of circuitry. Applications with noisy or high impedance power supply lines may require decoupling capacitors close to the device pins. In most cases, a µf tantalum capacitor at each power supply pin is adequate. 2 FIGURE. Offset Voltage Trim. 3 +V CC 4 7 V CC () 6 ±mv Typical Trim Range NOTE: () kω to MΩ Trim Potentiometer (kω Recommended) DISTORTION MEASUREMENTS The distortion produced by the is below the measurement limit of virtually all commercially available equipment. A special test circuit, however, can be used to extend the measurement capabilities. Op amp distortion can be considered an internal error source which can be referred to the input. Figure 2 shows a circuit which causes the op amp distortion to be times greater than normally produced by the op amp. The addition of R 3 to the otherwise standard noninverting amplifier configuration alters the feedback factor or noise gain of the circuit. The closed-loop gain is unchanged, but the feedback available for error correction is reduced by a factor of. This extends the measurement limit, including the effects of the signal-source purity, by a factor of. Note that the input signal and load applied to the op amp are the same as with conventional feedback without R 3. Validity of this technique can be verified by duplicating measurements at high gain and/or high frequency where the distortion is within the measurement capability of the test equipment. Measurements for this data sheet were made with the Audio Precision System One which greatly simplifies such repetitive measurements. The measurement technique can, however, be performed with manual distortion measurement instruments. CAPACITIVE LOADS The dynamic characteristics of the have been optimized for commonly encountered gains, loads and operating conditions. The combination of low closed-loop gain and capacitive load will decrease the phase margin and may lead to gain peaking or oscillations. Load capacitance reacts with the op amp s open-loop output resistance to form an additional pole in the feedback loop. Figure 3 shows various circuits which preserve phase margin with capacitive load. Request Application Bulletin AB-28 for details of analysis techniques and applications circuits. For the unity-gain buffer, Figure 3a, stability is preserved by adding a phase-lead network, and C C. Voltage drop 7

8 across will reduce output voltage swing with heavy loads. An alternate circuit, Figure 3b, does not limit the output with low load impedance. It provides a small amount of positive feedback to reduce the net feedback factor. Input impedance of this circuit falls at high frequency as op amp gain rolloff reduces the bootstrap action on the compensation network. Figures 3c and 3d show compensation techniques for noninverting amplifiers. Like the follower circuits, the circuit in Figure 3d eliminates voltage drop due to load current, but at the penalty of somewhat reduced input impedance at high frequency. Figures 3e and 3f show input lead compensation networks for inverting and difference amplifier configurations. NOISE PERFORMANCE Op amp noise is described by two parameters noise voltage and noise current. The voltage noise determines the noise performance with low source impedance. Low noise bipolar-input op amps such as the OPA27 and OPA37 provide very low voltage noise. But if source impedance is greater than a few thousand ohms, the current noise of bipolar-input op amps react with the source impedance and will dominate. At a few thousand ohms source impedance and above, the will generally provide lower noise. POWER DISSIPATION The is capable of driving a 6Ω load with power supply voltages up to ±24V. Internal power dissipation is increased when operating at high power supply voltage. The typical performance curve, Power Dissipation vs Power Supply Voltage, shows quiescent dissipation (no signal or no load) as well as dissipation with a worst case continuous sine wave. Continuous high-level music signals typically produce dissipation significantly less than worst case sine waves. Copper leadframe construction used in the improves heat dissipation compared to conventional plastic packages. To achieve best heat dissipation, solder the device directly to the circuit board and use wide circuit board traces. OUTPUT CURRENT LIMIT Output current is limited by internal circuitry to approximately ±4mA at 2 C. The limit current decreases with increasing temperature as shown in the typical curves. R SIG. GAIN DIST. GAIN R R 3 kω Ω R 3 = Vp-p (3.Vrms) Ω Ω kω kω Ω Generator Output Analyzer Input Audio Precision System One Analyzer () R L kω IBM PC or Compatible FIGURE 2. Distortion Test Circuit. NOTE: () Measurement BW = 8kHz 8

9 (a) (b) C C e i C C = 2 X 2 82pF 7Ω e o pf e i C C.47µF Ω e o pf = 4 X C C = X 3 (c) (d) R kω kω R e i C C 24pF 2Ω e o e i 2Ω C C.22µF e o C C = pf = 2 X ( + /R ) pf C C = X 3 (e) (f) e R e i R 2Ω C C.22µF e o pf = 2 X ( + /R ) C C = X 3 e 2 2Ω C C.22µF R 3 R 4 = 2 X ( + /R ) C C = X 3 e o pf NOTE: Design equations and component values are approximate. User adjustment is required for optimum performance. FIGURE 3. Driving Large Capacitive Loads. 9

10 R 4 V IN R 2.7kΩ 2 R 3 kω 2 C 3 pf C 3pF C 2 2pF f p = 2kHz FIGURE 4. Three-Pole Low-Pass Filter. V IN R 6.4kΩ 4. R C 3 pf 4. 2 OPA264 Low-pass 3-pole Butterworth f 3dB = 4kHz 2 OPA264 C pf R 4.36kΩ C 2 pf See Application Bulletin AB-26 for information on GIC filters. FIGURE. Three-Pole Generalized Immittance Converter (GIC) Low-Pass Filter. 7.87kΩ 2 OPA264 kω kω V IN + pf G = 7.87kΩ khz Input Filter 2 OPA264 kω kω FIGURE 6. Differential Amplifier with Low-Pass Filter.

11 Ω kω NOTE: () C C OUT 2π R f f c Piezoelectric Transducer MΩ () G = (4dB) NOTE: () Provides input bias current return path. PCM63 2-bit D/A Converter 6 9 R F = Internal feedback resistance =.kω f C = Crossover frequency = 8MHz C () = ±3Vp To low-pass filter. FIGURE 7. High Impedance Amplifier. FIGURE 8. Digital Audio DAC I-V Amplifier. A 2 I 2 R 3 Ω R 4 Ω A I L = I + I 2 V IN I UT Load R UT = V IN (+ /R ) FIGURE 9. Using Two Op Amps to Double the Output Current to a Load.

12 SOUND QUALITY The following discussion is provided, recognizing that not all measured performance behavior explains or correlates with listening tests by audio experts. The design of the included consideration of both objective performance measurements, as well as an awareness of widely held theory on the success and failure of previous op amp designs. SOUND QUALITY The sound quality of an op amp is often the crucial selection criteria even when a data sheet claims exceptional distortion performance. By its nature, sound quality is subjective. Furthermore, results of listening tests can vary depending on application and circuit configuration. Even experienced listeners in controlled tests often reach different conclusions. Many audio experts believe that the sound quality of a high performance FET op amp is superior to that of bipolar op amps. A possible reason for this is that bipolar designs generate greater odd-order harmonics than FETs. To the human ear, odd-order harmonics have long been identified as sounding more unpleasant than even-order harmonics. FETs, like vacuum tubes, have a square-law I-V transfer function which is more linear than the exponential transfer function of a bipolar transistor. As a direct result of this square-law characteristic, FETs produce predominantly even-order harmonics. Figure shows the transfer function of a bipolar transistor and FET. Fourier transformation of both transfer functions reveals the lower odd-order harmonics of the FET amplifier stage. I C (ma) I D (ma) V BE V GS I C.6 V BE (V) I D V GS (V) FFT FFT log ( ) log ( ) V BE = khz + DC Bias f O 2f O 3f O 4f O f O Frequency (khz) Frequency (khz) V GS = khz + DC Bias f O 2f O 3f O 4f O f O R R R 7 7Ω 7Ω Ω 4kΩ (+) J J 2 J 3 J 4 ( ) R kω I 8µA R kω R 3 kω R 4 kω Q Distortion Rejection Circuitry Q3 R 8 3kΩ R 6 Ω R 9 3kΩ Output Stage THE DESIGN The uses FETs throughout the signal path, including the input stage, input-stage load, and the important phase-splitting section of the output stage. Bipolar transistors are used where their attributes, such as current capability are important, and where their transfer characteristics have minimal impact. The topology consists of a single folded-cascode gain stage followed by a unity-gain output stage. Differential input transistors J and J 2 are special large-geometry, P-channel JFETs. Input stage current is a relatively high 8µA, providing high transconductance and reducing voltage noise. Laser trimming of stage currents and careful attention to symmetry yields a nearly symmetrical slew rate of ±2V/µs. The JFET input stage holds input bias current to approximately pa or roughly 3 times lower than common bipolar-input audio op amps. This dramatically reduces noise with high-impedance circuitry. The drains of J and J 2 are cascoded by Q and Q 2, driving the input stage loads, FETs J 3 and J 4. Distortion reduction circuitry (patented) linearizes the openloop response and increases voltage gain. The 2MHz bandwidth of the further reduces distortion through the user-connected feedback loop. The output stage consists of a JFET phase-splitter loaded into high speed all-npn output drivers. Output transistors are biased by a special circuit to prevent cutoff, even with full output swing into 6Ω loads. I 2 Q 2 2µA Q 4 J FIGURE. I-V and Spectral Response of NPN and JFET. 2

Wide Bandwidth, Fast Settling Difet OPERATIONAL AMPLIFIER

Wide Bandwidth, Fast Settling Difet OPERATIONAL AMPLIFIER Wide Bandwidth, Fast Settling Difet OPERATIONAL AMPLIFIER FEATURES HIGH GAIN-BANDWIDTH: 35MHz LOW INPUT NOISE: 1nV/ Hz HIGH SLEW RATE: V/µs FAST SETTLING: 24ns to.1% FET INPUT: I B = 5pA max HIGH OUTPUT

More information

High Speed, Low Power Monolithic Op Amp AD847

High Speed, Low Power Monolithic Op Amp AD847 a FEATURES Superior Performance High Unity Gain BW: MHz Low Supply Current:.3 ma High Slew Rate: 3 V/ s Excellent Video Specifications.% Differential Gain (NTSC and PAL).9 Differential Phase (NTSC and

More information

www.jameco.com 1-800-831-4242

www.jameco.com 1-800-831-4242 Distributed by: www.jameco.com 1-800-831-4242 The content and copyrights of the attached material are the property of its owner. LF411 Low Offset, Low Drift JFET Input Operational Amplifier General Description

More information

Precision, Unity-Gain Differential Amplifier AMP03

Precision, Unity-Gain Differential Amplifier AMP03 a FEATURES High CMRR: db Typ Low Nonlinearity:.% Max Low Distortion:.% Typ Wide Bandwidth: MHz Typ Fast Slew Rate: 9.5 V/ s Typ Fast Settling (.%): s Typ Low Cost APPLICATIONS Summing Amplifiers Instrumentation

More information

LM118/LM218/LM318 Operational Amplifiers

LM118/LM218/LM318 Operational Amplifiers LM118/LM218/LM318 Operational Amplifiers General Description The LM118 series are precision high speed operational amplifiers designed for applications requiring wide bandwidth and high slew rate. They

More information

LM386 Low Voltage Audio Power Amplifier

LM386 Low Voltage Audio Power Amplifier Low Voltage Audio Power Amplifier General Description The LM386 is a power amplifier designed for use in low voltage consumer applications. The gain is internally set to 20 to keep external part count

More information

PIN CONFIGURATION FEATURES ORDERING INFORMATION ABSOLUTE MAXIMUM RATINGS. D, F, N Packages

PIN CONFIGURATION FEATURES ORDERING INFORMATION ABSOLUTE MAXIMUM RATINGS. D, F, N Packages DESCRIPTION The µa71 is a high performance operational amplifier with high open-loop gain, internal compensation, high common mode range and exceptional temperature stability. The µa71 is short-circuit-protected

More information

High Common-Mode Rejection. Differential Line Receiver SSM2141. Fax: 781/461-3113 FUNCTIONAL BLOCK DIAGRAM FEATURES. High Common-Mode Rejection

High Common-Mode Rejection. Differential Line Receiver SSM2141. Fax: 781/461-3113 FUNCTIONAL BLOCK DIAGRAM FEATURES. High Common-Mode Rejection a FEATURES High Common-Mode Rejection DC: 00 db typ 60 Hz: 00 db typ 20 khz: 70 db typ 40 khz: 62 db typ Low Distortion: 0.00% typ Fast Slew Rate: 9.5 V/ s typ Wide Bandwidth: 3 MHz typ Low Cost Complements

More information

AUDIO BALANCED LINE DRIVERS

AUDIO BALANCED LINE DRIVERS DRV DRV DRV DRV DRV AUDIO BALAED LINE DRIVERS FEATURES BALAED OUTPUT LOW DISTORTION:.% at f = khz WIDE OUTPUT SWING: Vrms into Ω HIGH CAPACITIVE LOAD DRIVE HIGH SLEW RATE: V/µs WIDE SUPPLY RANGE: ±.V to

More information

HA-5104/883. Low Noise, High Performance, Quad Operational Amplifier. Features. Description. Applications. Ordering Information. Pinout.

HA-5104/883. Low Noise, High Performance, Quad Operational Amplifier. Features. Description. Applications. Ordering Information. Pinout. HA5104/883 April 2002 Features This Circuit is Processed in Accordance to MILSTD 883 and is Fully Conformant Under the Provisions of Paragraph 1.2.1. Low Input Noise Voltage Density at 1kHz. 6nV/ Hz (Max)

More information

TDA2040. 20W Hi-Fi AUDIO POWER AMPLIFIER

TDA2040. 20W Hi-Fi AUDIO POWER AMPLIFIER 20W Hi-Fi AUDIO POWER AMPLIFIER DESCRIPTION The TDA2040 is a monolithic integrated circuit in Pentawatt package, intended for use as an audio class AB amplifier. Typically it provides 22W output power

More information

TL074 TL074A - TL074B

TL074 TL074A - TL074B A B LOW NOISE JFET QUAD OPERATIONAL AMPLIFIERS WIDE COMMONMODE (UP TO V + CC ) AND DIFFERENTIAL VOLTAGE RANGE LOW INPUT BIAS AND OFFSET CURRENT LOW NOISE e n = 15nV/ Hz (typ) OUTPUT SHORTCIRCUIT PROTECTION

More information

TL082 Wide Bandwidth Dual JFET Input Operational Amplifier

TL082 Wide Bandwidth Dual JFET Input Operational Amplifier TL082 Wide Bandwidth Dual JFET Input Operational Amplifier General Description These devices are low cost high speed dual JFET input operational amplifiers with an internally trimmed input offset voltage

More information

Description. 5k (10k) - + 5k (10k)

Description. 5k (10k) - + 5k (10k) THAT Corporation Low Noise, High Performance Microphone Preamplifier IC FEATURES Excellent noise performance through the entire gain range Exceptionally low THD+N over the full audio bandwidth Low power

More information

TS321 Low Power Single Operational Amplifier

TS321 Low Power Single Operational Amplifier SOT-25 Pin Definition: 1. Input + 2. Ground 3. Input - 4. Output 5. Vcc General Description The TS321 brings performance and economy to low power systems. With high unity gain frequency and a guaranteed

More information

LM833 LOW NOISE DUAL OPERATIONAL AMPLIFIER

LM833 LOW NOISE DUAL OPERATIONAL AMPLIFIER LOW NOISE DUAL OPERATIONAL AMPLIFIER LOW VOLTAGE NOISE: 4.5nV/ Hz HIGH GAIN BANDWIDTH PRODUCT: 15MHz HIGH SLEW RATE: 7V/µs LOW DISTORTION:.2% EXCELLENT FREQUENCY STABILITY ESD PROTECTION 2kV DESCRIPTION

More information

CA723, CA723C. Voltage Regulators Adjustable from 2V to 37V at Output Currents Up to 150mA without External Pass Transistors. Features.

CA723, CA723C. Voltage Regulators Adjustable from 2V to 37V at Output Currents Up to 150mA without External Pass Transistors. Features. CA73, CA73C Data Sheet April 1999 File Number 788. Voltage Regulators Adjustable from V to 37V at Output Currents Up to 1mA without External Pass Transistors The CA73 and CA73C are silicon monolithic integrated

More information

Rail-to-Rail, High Output Current Amplifier AD8397

Rail-to-Rail, High Output Current Amplifier AD8397 Rail-to-Rail, High Output Current Amplifier AD8397 FEATURES Dual operational amplifier Voltage feedback Wide supply range from 3 V to 24 V Rail-to-rail output Output swing to within.5 V of supply rails

More information

LF412 Low Offset Low Drift Dual JFET Input Operational Amplifier

LF412 Low Offset Low Drift Dual JFET Input Operational Amplifier LF412 Low Offset Low Drift Dual JFET Input Operational Amplifier General Description These devices are low cost high speed JFET input operational amplifiers with very low input offset voltage and guaranteed

More information

TDA2040. 20W Hi-Fi AUDIO POWER AMPLIFIER

TDA2040. 20W Hi-Fi AUDIO POWER AMPLIFIER 20W Hi-Fi AUDIO POWER AMPLIFIER DESCRIPTION The TDA2040 is a monolithic integrated circuit in Pentawatt package, intended for use as an audio class AB amplifier. Typically it provides 22W output power

More information

High Speed, Low Power Dual Op Amp AD827

High Speed, Low Power Dual Op Amp AD827 a FEATURES High Speed 50 MHz Unity Gain Stable Operation 300 V/ms Slew Rate 120 ns Settling Time Drives Unlimited Capacitive Loads Excellent Video Performance 0.04% Differential Gain @ 4.4 MHz 0.198 Differential

More information

Description. Output Stage. 5k (10k) - + 5k (10k)

Description. Output Stage. 5k (10k) - + 5k (10k) THAT Corporation Low Noise, High Performance Audio Preamplifier IC FEATURES Low Noise: 1 nv/hz input noise (60dB gain) 34 nv/hz input noise (0dB gain) (1512) Low THD+N (full audio bandwidth): 0.0005% 40dB

More information

High Speed, Low Cost, Triple Op Amp ADA4861-3

High Speed, Low Cost, Triple Op Amp ADA4861-3 High Speed, Low Cost, Triple Op Amp ADA486-3 FEATURES High speed 73 MHz, 3 db bandwidth 625 V/μs slew rate 3 ns settling time to.5% Wide supply range: 5 V to 2 V Low power: 6 ma/amplifier. db flatness:

More information

PowerAmp Design. PowerAmp Design PAD135 COMPACT HIGH VOLATGE OP AMP

PowerAmp Design. PowerAmp Design PAD135 COMPACT HIGH VOLATGE OP AMP PowerAmp Design COMPACT HIGH VOLTAGE OP AMP Rev G KEY FEATURES LOW COST SMALL SIZE 40mm SQUARE HIGH VOLTAGE 200 VOLTS HIGH OUTPUT CURRENT 10A PEAK 40 WATT DISSIPATION CAPABILITY 200V/µS SLEW RATE APPLICATIONS

More information

LM1084 5A Low Dropout Positive Regulators

LM1084 5A Low Dropout Positive Regulators 5A Low Dropout Positive Regulators General Description The LM1084 is a series of low dropout voltage positive regulators with a maximum dropout of 1.5 at 5A of load current. It has the same pin-out as

More information

APPLICATION BULLETIN

APPLICATION BULLETIN APPLICATION BULLETIN Mailing Address: PO Box 11400, Tucson, AZ 85734 Street Address: 6730 S. Tucson Blvd., Tucson, AZ 85706 Tel: (520) 746-1111 Telex: 066-6491 FAX (520) 889-1510 Product Info: (800) 548-6132

More information

LM1036 Dual DC Operated Tone/Volume/Balance Circuit

LM1036 Dual DC Operated Tone/Volume/Balance Circuit LM1036 Dual DC Operated Tone/Volume/Balance Circuit General Description The LM1036 is a DC controlled tone (bass/treble), volume and balance circuit for stereo applications in car radio, TV and audio systems.

More information

DATA SHEET. TDA1518BQ 24 W BTL or 2 x 12 watt stereo car radio power amplifier INTEGRATED CIRCUITS

DATA SHEET. TDA1518BQ 24 W BTL or 2 x 12 watt stereo car radio power amplifier INTEGRATED CIRCUITS INTEGRATED CIRCUITS DATA SHEET File under Integrated Circuits, IC01 July 1994 GENERAL DESCRIPTION The is an integrated class-b output amplifier in a 13-lead single-in-line (SIL) plastic power package.

More information

DATA SHEET. TDA8560Q 2 40 W/2 Ω stereo BTL car radio power amplifier with diagnostic facility INTEGRATED CIRCUITS. 1996 Jan 08

DATA SHEET. TDA8560Q 2 40 W/2 Ω stereo BTL car radio power amplifier with diagnostic facility INTEGRATED CIRCUITS. 1996 Jan 08 INTEGRATED CIRCUITS DATA SHEET power amplifier with diagnostic facility Supersedes data of March 1994 File under Integrated Circuits, IC01 1996 Jan 08 FEATURES Requires very few external components High

More information

MUSES8920. High Quality Audio J-FET Input Dual Operational Amplifier - 1 -

MUSES8920. High Quality Audio J-FET Input Dual Operational Amplifier - 1 - MUSES89 High Quality Audio J-FET Input Dual Operational Amplifier GENERAL DESCRIPTION The MUSES89 is a high quality Audio J-FET input dual operational amplifier. This is a mass production model of MUSES

More information

Ultralow Input Bias Current Operational Amplifier AD549*

Ultralow Input Bias Current Operational Amplifier AD549* a FEATURES Ultralow Bias Current: 6 fa max (AD49L) 2 fa max (AD49J) Input Bias Current Guaranteed Over Common-Mode Voltage Range Low Offset Voltage:.2 mv max (AD49K) 1. mv max (AD49J) Low Offset Drift:

More information

LM380 Audio Power Amplifier

LM380 Audio Power Amplifier LM380 Audio Power Amplifier General Description The LM380 is a power audio amplifier for consumer application. In order to hold system cost to a minimum, gain is internally fixed at 34 db. A unique input

More information

LF442 Dual Low Power JFET Input Operational Amplifier

LF442 Dual Low Power JFET Input Operational Amplifier LF442 Dual Low Power JFET Input Operational Amplifier General Description The LF442 dual low power operational amplifiers provide many of the same AC characteristics as the industry standard LM1458 while

More information

DESCRIPTIO. LT1226 Low Noise Very High Speed Operational Amplifier

DESCRIPTIO. LT1226 Low Noise Very High Speed Operational Amplifier FEATRES Gain of Stable GHz Gain Bandwidth V/µs Slew Rate.6nV/ Hz Input Noise Voltage V/mV Minimum DC Gain, R L = Ω mv Maximum Input Offset Voltage ±V Minimum Output Swing into Ω ide Supply Range ±.V to

More information

TL084 TL084A - TL084B

TL084 TL084A - TL084B A B GENERAL PURPOSE JFET QUAD OPERATIONAL AMPLIFIERS WIDE COMMONMODE (UP TO V + CC ) AND DIFFERENTIAL VOLTAGE RANGE LOW INPUT BIAS AND OFFSET CURRENT OUTPUT SHORTCIRCUIT PROTECTION HIGH INPUT IMPEDANCE

More information

Low Noise, Matched Dual PNP Transistor MAT03

Low Noise, Matched Dual PNP Transistor MAT03 a FEATURES Dual Matched PNP Transistor Low Offset Voltage: 100 V Max Low Noise: 1 nv/ Hz @ 1 khz Max High Gain: 100 Min High Gain Bandwidth: 190 MHz Typ Tight Gain Matching: 3% Max Excellent Logarithmic

More information

unit : mm With heat sink (see Pd Ta characteristics)

unit : mm With heat sink (see Pd Ta characteristics) Ordering number: EN1321E Monolithic Linear IC LA4261 3.5 W 2-Channel AF Power Amplifier for Home Stereos and Music Centers Features. Minimum number of external parts required (No input capacitor, bootstrap

More information

100V - 100W DMOS AUDIO AMPLIFIER WITH MUTE/ST-BY THERMAL SHUTDOWN STBY-GND

100V - 100W DMOS AUDIO AMPLIFIER WITH MUTE/ST-BY THERMAL SHUTDOWN STBY-GND TDA7294 100V - 100W DMOS AUDIO AMPLIFIER WITH MUTE/ST-BY VERY HIGH OPERATING VOLTAGE RANGE (±40V) DMOS POWER STAGE HIGH OUTPUT POWER (UP TO 100W MU- SIC POWER) MUTING/STAND-BY FUNCTIONS NO SWITCH ON/OFF

More information

DATA SHEET. TDA1510AQ 24 W BTL or 2 x 12 W stereo car radio power amplifier INTEGRATED CIRCUITS

DATA SHEET. TDA1510AQ 24 W BTL or 2 x 12 W stereo car radio power amplifier INTEGRATED CIRCUITS INTEGRATED CIRCUITS DATA SHEET 24 W BTL or 2 x 12 W stereo car radio File under Integrated Circuits, IC01 January 1992 GENERAL DESCRIPTION The is a class-b integrated output amplifier encapsulated in a

More information

Low Cost Instrumentation Amplifier AD622

Low Cost Instrumentation Amplifier AD622 Data Sheet FEATURES Easy to use Low cost solution Higher performance than two or three op amp design Unity gain with no external resistor Optional gains with one external resistor (Gain range: 2 to 000)

More information

Chapter 12: The Operational Amplifier

Chapter 12: The Operational Amplifier Chapter 12: The Operational Amplifier 12.1: Introduction to Operational Amplifier (Op-Amp) Operational amplifiers (op-amps) are very high gain dc coupled amplifiers with differential inputs; they are used

More information

Low Noise, Precision, High Speed Operational Amplifier (A VCL > 5) OP37

Low Noise, Precision, High Speed Operational Amplifier (A VCL > 5) OP37 a FEATURES Low Noise, 80 nv p-p (0.1 Hz to 10 Hz) 3 nv/ Hz @ 1 khz Low Drift, 0.2 V/ C High Speed, 17 V/ s Slew Rate 63 MHz Gain Bandwidth Low Input Offset Voltage, 10 V Excellent CMRR, 126 db (Common-Voltage

More information

Single-Supply, Rail-to-Rail, Low Power, FET Input Op Amp AD820

Single-Supply, Rail-to-Rail, Low Power, FET Input Op Amp AD820 Single-Supply, Rail-to-Rail, Low Power, FET Input Op Amp AD82 FEATURES True single-supply operation Output swings rail-to-rail Input voltage range extends below ground Single-supply capability from 5 V

More information

Equivalent Circuit. Operating Characteristics at Ta = 25 C, V CC = ±34V, R L = 8Ω, VG = 40dB, Rg = 600Ω, R L : non-inductive load STK4181V

Equivalent Circuit. Operating Characteristics at Ta = 25 C, V CC = ±34V, R L = 8Ω, VG = 40dB, Rg = 600Ω, R L : non-inductive load STK4181V Ordering number: 2137B Thick Film Hybrid IC STK4181V AF Power Amplifier (Split Power Supply) (45W + 45W min, THD = 0.08%) Features Pin-compatible with the STK4102II series. The STK4101V series use the

More information

LM101A LM201A LM301A Operational Amplifiers

LM101A LM201A LM301A Operational Amplifiers LM101A LM201A LM301A Operational Amplifiers General Description The LM101A series are general purpose operational amplifiers which feature improved performance over industry standards like the LM709 Advanced

More information

LM 358 Op Amp. If you have small signals and need a more useful reading we could amplify it using the op amp, this is commonly used in sensors.

LM 358 Op Amp. If you have small signals and need a more useful reading we could amplify it using the op amp, this is commonly used in sensors. LM 358 Op Amp S k i l l L e v e l : I n t e r m e d i a t e OVERVIEW The LM 358 is a duel single supply operational amplifier. As it is a single supply it eliminates the need for a duel power supply, thus

More information

+5 V Powered RS-232/RS-422 Transceiver AD7306

+5 V Powered RS-232/RS-422 Transceiver AD7306 a FEATURES RS- and RS- on One Chip Single + V Supply. F Capacitors Short Circuit Protection Excellent Noise Immunity Low Power BiCMOS Technology High Speed, Low Skew RS- Operation C to + C Operations APPLICATIONS

More information

LM380 Audio Power Amplifier

LM380 Audio Power Amplifier LM380 Audio Power Amplifier General Description The LM380 is a power audio amplifier for consumer application In order to hold system cost to a minimum gain is internally fixed at 34 db A unique input

More information

LM1596 LM1496 Balanced Modulator-Demodulator

LM1596 LM1496 Balanced Modulator-Demodulator LM1596 LM1496 Balanced Modulator-Demodulator General Description The LM1596 LM1496 are doubled balanced modulator-demodulators which produce an output voltage proportional to the product of an input (signal)

More information

Programmable Single-/Dual-/Triple- Tone Gong SAE 800

Programmable Single-/Dual-/Triple- Tone Gong SAE 800 Programmable Single-/Dual-/Triple- Tone Gong Preliminary Data SAE 800 Bipolar IC Features Supply voltage range 2.8 V to 18 V Few external components (no electrolytic capacitor) 1 tone, 2 tones, 3 tones

More information

LM4992 420mW Stereo Cell Phone Audio Amplifier

LM4992 420mW Stereo Cell Phone Audio Amplifier 420mW Stereo Cell Phone Audio Amplifier General Description The is a stereo audio power amplifier primarily designed for demanding applications in mobile phones and other portable communication device

More information

Reading: HH Sections 4.11 4.13, 4.19 4.20 (pgs. 189-212, 222 224)

Reading: HH Sections 4.11 4.13, 4.19 4.20 (pgs. 189-212, 222 224) 6 OP AMPS II 6 Op Amps II In the previous lab, you explored several applications of op amps. In this exercise, you will look at some of their limitations. You will also examine the op amp integrator and

More information

LM108 LM208 LM308 Operational Amplifiers

LM108 LM208 LM308 Operational Amplifiers LM108 LM208 LM308 Operational Amplifiers General Description The LM108 series are precision operational amplifiers having specifications a factor of ten better than FET amplifiers over a b55 C toa125 C

More information

DUAL/QUAD LOW NOISE OPERATIONAL AMPLIFIERS

DUAL/QUAD LOW NOISE OPERATIONAL AMPLIFIERS Order this document by MC3378/D The MC3378/9 series is a family of high quality monolithic amplifiers employing Bipolar technology with innovative high performance concepts for quality audio and data signal

More information

Making Accurate Voltage Noise and Current Noise Measurements on Operational Amplifiers Down to 0.1Hz

Making Accurate Voltage Noise and Current Noise Measurements on Operational Amplifiers Down to 0.1Hz Author: Don LaFontaine Making Accurate Voltage Noise and Current Noise Measurements on Operational Amplifiers Down to 0.1Hz Abstract Making accurate voltage and current noise measurements on op amps in

More information

TS34119 Low Power Audio Amplifier

TS34119 Low Power Audio Amplifier SOP-8 DIP-8 Pin assignment: 1. CD 8. VO2 2. FC2 7. Gnd 3. FC1 6. Vcc 4. Vin 5. VO1 General Description The TS34119 is a low power audio amplifier, it integrated circuit intended (primarily) for telephone

More information

LM3940 1A Low Dropout Regulator for 5V to 3.3V Conversion

LM3940 1A Low Dropout Regulator for 5V to 3.3V Conversion 1A Low Dropout Regulator for 5V to 3.3V Conversion General Description The LM3940 is a 1A low dropout regulator designed to provide 3.3V from a 5V supply. The LM3940 is ideally suited for systems which

More information

LH0091 True RMS to DC Converter

LH0091 True RMS to DC Converter LH0091 True RMS to DC Converter General Description The LH0091 rms to dc converter generates a dc output equal to the rms value of any input per the transfer function E OUT(DC) e 0 1 T T 0 E IN 2 (t) dt

More information

Op Amp Circuit Collection

Op Amp Circuit Collection Op Amp Circuit Collection Note: National Semiconductor recommends replacing 2N2920 and 2N3728 matched pairs with LM394 in all application circuits. Section 1 Basic Circuits Inverting Amplifier Difference

More information

LM78XX Series Voltage Regulators

LM78XX Series Voltage Regulators LM78XX Series Voltage Regulators General Description Connection Diagrams The LM78XX series of three terminal regulators is available with several fixed output voltages making them useful in a wide range

More information

MC33079. Low noise quad operational amplifier. Features. Description

MC33079. Low noise quad operational amplifier. Features. Description Low noise quad operational amplifier Datasheet production data Features Low voltage noise: 4.5 nv/ Hz High gain bandwidth product: 15 MHz High slew rate: 7 V/µs Low distortion: 0.002% Large output voltage

More information

LM138 LM338 5-Amp Adjustable Regulators

LM138 LM338 5-Amp Adjustable Regulators LM138 LM338 5-Amp Adjustable Regulators General Description The LM138 series of adjustable 3-terminal positive voltage regulators is capable of supplying in excess of 5A over a 1 2V to 32V output range

More information

NCS7101, NCV7101. 1.8 Volt Rail-to-Rail Operational Amplifier LOW VOLTAGE RAIL TO RAIL OPERATIONAL AMPLIFIER

NCS7101, NCV7101. 1.8 Volt Rail-to-Rail Operational Amplifier LOW VOLTAGE RAIL TO RAIL OPERATIONAL AMPLIFIER NCS711, NCV711 1.8 Volt RailtoRail Operational Amplifier The NCS711 operational amplifier provides railtorail operation on both the input and output. The output can swing within 5 mv of each rail. This

More information

24-Bit, 96kHz BiCMOS Sign-Magnitude DIGITAL-TO-ANALOG CONVERTER

24-Bit, 96kHz BiCMOS Sign-Magnitude DIGITAL-TO-ANALOG CONVERTER 49% FPO 24-Bit, 96kHz BiCMOS Sign-Magnitude DIGITAL-TO-ANALOG CONVERTER TM FEATURES SAMPLING FREQUEY (f S ): 16kHz to 96kHz 8X OVERSAMPLING AT 96kHz INPUT AUDIO WORD: 20-, 24-Bit HIGH PERFORMAE: Dynamic

More information

L78MxxAB L78MxxAC. Precision 500 ma regulators. Features. Description

L78MxxAB L78MxxAC. Precision 500 ma regulators. Features. Description L78MxxAB L78MxxAC Precision 500 ma regulators Features Output current to 0.5 A Output voltages of 5; 6; 8; 9; 10; 12; 15; 18; 24 V Thermal overload protection Short circuit protection Output transition

More information

Wide-Bandwidth 2 x 1 VIDEO MULTIPLEXER

Wide-Bandwidth 2 x 1 VIDEO MULTIPLEXER Wide-Bandwidth x VIDEO MULTIPLEXER FEATURES BANDWIDTH: MHz (.Vp-p) LOW INTERCHANNEL CROSSTALK: 79dB (MHz, SO); 77dB (MHz, DIP) LOW SWITCHING TRANSIENTS: mv/ mv LOW DIFFERENTIAL GAIN/PHASE ERRORS:.%,. LOW

More information

Dual Precision, Low Power BiFET Op Amp AD648 CONNECTION DIAGRAMS

Dual Precision, Low Power BiFET Op Amp AD648 CONNECTION DIAGRAMS a FEATURES DC Performance 400 A max Quiescent Current 10 pa max Bias Current, Warmed Up (AD648C) 300 V max Offset Voltage (AD648C) 3 V/ C max Drift (AD648C) 2 V p-p Noise, 0.1 Hz to 10 Hz AC Performance

More information

Features. Ordering Information. * Underbar marking may not be to scale. Part Identification

Features. Ordering Information. * Underbar marking may not be to scale. Part Identification MIC86 Teeny Ultra Low Power Op Amp General Description The MIC86 is a rail-to-rail output, input common-mode to ground, operational amplifier in Teeny SC7 packaging. The MIC86 provides 4kHz gain-bandwidth

More information

NTE923 & NTE923D Integrated Circuit Precision Voltage Regulator

NTE923 & NTE923D Integrated Circuit Precision Voltage Regulator NTE923 & NTE923D Integrated Circuit Precision Voltage Regulator Description: The NTE923 and NTE923D are voltage regulators designed primarily for series regulator applications. By themselves, these devices

More information

MC33077. Low Noise Dual Operational Amplifier

MC33077. Low Noise Dual Operational Amplifier MC3377 Low Noise Dual Operational Amplifier The MC3377 is a precision high quality, high frequency, low noise monolithic dual operational amplifier employing innovative bipolar design techniques. Precision

More information

LM381 LM381A Low Noise Dual Preamplifier

LM381 LM381A Low Noise Dual Preamplifier LM381 LM381A Low Noise Dual Preamplifier General Description The LM381 LM381A is a dual preamplifier for the amplification of low level signals in applications requiring optimum noise performance Each

More information

SINGLE-SUPPLY OPERATION OF OPERATIONAL AMPLIFIERS

SINGLE-SUPPLY OPERATION OF OPERATIONAL AMPLIFIERS SINGLE-SUPPLY OPERATION OF OPERATIONAL AMPLIFIERS One of the most common applications questions on operational amplifiers concerns operation from a single supply voltage. Can the model OPAxyz be operated

More information

6.101 Final Project Report Class G Audio Amplifier

6.101 Final Project Report Class G Audio Amplifier 6.101 Final Project Report Class G Audio Amplifier Mark Spatz 4/3/2014 1 1 Introduction For my final project, I designed and built a 150 Watt audio amplifier to replace the underpowered and unreliable

More information

UA741. General-purpose single operational amplifier. Features. Applications. Description. N DIP8 (plastic package)

UA741. General-purpose single operational amplifier. Features. Applications. Description. N DIP8 (plastic package) General-purpose single operational amplifier Datasheet - production data N DIP8 (plastic package) D SO8 (plastic micropackage) Pin connections (top view) 1 - Offset null 1 2 - Inverting input 3 - Non-inverting

More information

Understanding the Terms and Definitions of LDO Voltage Regulators

Understanding the Terms and Definitions of LDO Voltage Regulators Application Report SLVA79 - October 1999 Understanding the Terms and Definitions of ltage Regulators Bang S. Lee Mixed Signal Products ABSTRACT This report provides an understanding of the terms and definitions

More information

unit:mm 3049A-SIP12H 8.4 7.0

unit:mm 3049A-SIP12H 8.4 7.0 Ordering number:enn1277e Monolithic Linear IC LA4445 5.5W 2-Channel AF Power Amplifier Features Dual channels. Output : 5.5W 2 (typ.) Minimun number of external parts required. Small pop noise at the time

More information

unit:mm 3022A-DIP12F 0.5 0.81 2.54

unit:mm 3022A-DIP12F 0.5 0.81 2.54 Ordering number:enn1718b Monolithic Linear IC LA4550 2-Channel AF Power Amplifier for Radio, Tape Recorder Use Features Low quiescent current. On-chip 2 channels permitting use in stereo and bridge amplifier

More information

Use and Application of Output Limiting Amplifiers (HFA1115, HFA1130, HFA1135)

Use and Application of Output Limiting Amplifiers (HFA1115, HFA1130, HFA1135) Use and Application of Output Limiting Amplifiers (HFA111, HFA110, HFA11) Application Note November 1996 AN96 Introduction Amplifiers with internal voltage clamps, also known as limiting amplifiers, have

More information

Filters. Description. 7 Vcc. Ec+ Ec- Vbe MULTI- PLIER. 8 Output 4 Sym. Iadj V- 5 Iset

Filters. Description. 7 Vcc. Ec+ Ec- Vbe MULTI- PLIER. 8 Output 4 Sym. Iadj V- 5 Iset Blackmer Pre-Trimmed IC Voltage Controlled Amplifiers THAT 2180A, 2180B, 2180C FEATURES Wide Dynamic Range: >120 db Wide Gain Range: >130 db Exponential (db) Gain Control Low Distortion: < 0.01 % (2180A)

More information

AP331A XX G - 7. Lead Free G : Green. Packaging (Note 2)

AP331A XX G - 7. Lead Free G : Green. Packaging (Note 2) Features General Description Wide supply Voltage range: 2.0V to 36V Single or dual supplies: ±1.0V to ±18V Very low supply current drain (0.4mA) independent of supply voltage Low input biasing current:

More information

LM117 LM317A LM317 3-Terminal Adjustable Regulator

LM117 LM317A LM317 3-Terminal Adjustable Regulator LM117 LM317A LM317 3-Terminal Adjustable Regulator General Description The LM117 series of adjustable 3-terminal positive voltage regulators is capable of supplying in excess of 1 5A over a 1 2V to 37V

More information

Section 3. Sensor to ADC Design Example

Section 3. Sensor to ADC Design Example Section 3 Sensor to ADC Design Example 3-1 This section describes the design of a sensor to ADC system. The sensor measures temperature, and the measurement is interfaced into an ADC selected by the systems

More information

DESCRIPTION FEATURES TYPICAL APPLICATION. LT1097 Low Cost, Low Power Precision Op Amp APPLICATIONS

DESCRIPTION FEATURES TYPICAL APPLICATION. LT1097 Low Cost, Low Power Precision Op Amp APPLICATIONS LT97 Low Cost, Low Power Precision Op Amp FEATRES Offset Voltage µv Max Offset Voltage Drift µv/ C Max Bias Current pa Max Offset Current pa Max Bias and Offset Current Drift pa/ C Max Supply Current µa

More information

Advanced Monolithic Systems

Advanced Monolithic Systems Advanced Monolithic Systems FEATURES Three Terminal Adjustable or Fixed oltages* 1.5, 1.8, 2.5, 2.85, 3.3 and 5. Output Current of 1A Operates Down to 1 Dropout Line Regulation:.2% Max. Load Regulation:.4%

More information

Quad Low Offset, Low Power Operational Amplifier OP400

Quad Low Offset, Low Power Operational Amplifier OP400 Data Sheet FEATURES Low input offset voltage: 5 µv maximum Low offset voltage drift over 55 C to 25 C:.2 μv/ C maximum Low supply current (per amplifier): 725 µa maximum High open-loop gain: 5 V/mV minimum

More information

High Accuracy, Ultralow IQ, 1 A, anycap Low Dropout Regulator ADP3338

High Accuracy, Ultralow IQ, 1 A, anycap Low Dropout Regulator ADP3338 High Accuracy, Ultralow IQ, 1 A, anycap Low Dropout Regulator ADP3338 FEATURES High accuracy over line and load: ±.8% @ 25 C, ±1.4% over temperature Ultralow dropout voltage: 19 mv (typ) @ 1 A Requires

More information

LM134-LM234-LM334. Three terminal adjustable current sources. Features. Description

LM134-LM234-LM334. Three terminal adjustable current sources. Features. Description Three terminal adjustable current sources Features Operates from 1V to 40V 0.02%/V current regulation Programmable from 1µA to 10mA ±3% initial accuracy Description The LM134/LM234/LM334 are 3-terminal

More information

INTEGRATED CIRCUITS DATA SHEET. TDA7052 1 W BTL mono audio amplifier. Product specification File under Integrated Circuits, IC01

INTEGRATED CIRCUITS DATA SHEET. TDA7052 1 W BTL mono audio amplifier. Product specification File under Integrated Circuits, IC01 INTEGRATED CIRCUITS DATA SHEET TDA7052 1 W BTL mono audio amplifier File under Integrated Circuits, IC01 July 1994 GENERAL DESCRIPTION The TDA7052 is a mono output amplifier in a 8-lead dual-in-line (DIL)

More information

Dual 20W Audio Power Amplifier with Mute and Standby Modes

Dual 20W Audio Power Amplifier with Mute and Standby Modes LM1876 Overture Audio Power Amplifier Series Dual 20W Audio Power Amplifier with Mute and Standby Modes General Description The LM1876 is a stereo audio amplifier capable of delivering typically 20W per

More information

Obsolete Product(s) - Obsolete Product(s)

Obsolete Product(s) - Obsolete Product(s) 32 W hi-fi audio power amplifier Features High output power (50 W music power IEC 268.3 rules) High operating supply voltage (50 V) Single or split supply operations Very low distortion Short-circuit protection

More information

Current vs. Voltage Feedback Amplifiers

Current vs. Voltage Feedback Amplifiers Current vs. ltage Feedback Amplifiers One question continuously troubles the analog design engineer: Which amplifier topology is better for my application, current feedback or voltage feedback? In most

More information

CLASS-D VERTICAL DEFLECTION AMPLIFIER FOR TV AND MONITOR APPLICATION OUT CFLY + CFLY - BOOT VREG FEEDCAP FREQ. July 2001 1/8

CLASS-D VERTICAL DEFLECTION AMPLIFIER FOR TV AND MONITOR APPLICATION OUT CFLY + CFLY - BOOT VREG FEEDCAP FREQ. July 2001 1/8 CLASS-D VERTICAL DEFLECTION AMPLIFIER FOR TV AND MONITOR APPLICATION FEATURES PRELIMINARY DATA HIGH EFFICIENCY POWER AMPLIFIER NO HEATSINK SPLIT SUPPLY INTERNAL FLYBACK GENERATOR OUTPUT CURRENT UP TO.5

More information

28V, 2A Buck Constant Current Switching Regulator for White LED

28V, 2A Buck Constant Current Switching Regulator for White LED 28V, 2A Buck Constant Current Switching Regulator for White LED FP7102 General Description The FP7102 is a PWM control buck converter designed to provide a simple, high efficiency solution for driving

More information

Isolated AC Sine Wave Input 3B42 / 3B43 / 3B44 FEATURES APPLICATIONS PRODUCT OVERVIEW FUNCTIONAL BLOCK DIAGRAM

Isolated AC Sine Wave Input 3B42 / 3B43 / 3B44 FEATURES APPLICATIONS PRODUCT OVERVIEW FUNCTIONAL BLOCK DIAGRAM Isolated AC Sine Wave Input 3B42 / 3B43 / 3B44 FEATURES AC averaging technique used to rectify, amplify, and filter 50 Hz to 400 Hz sine-wave signals. Accepts inputs of between 20 mv to 550 V rms to give

More information

APPLICATION BULLETIN

APPLICATION BULLETIN APPLICATION BULLETIN Mailing Address: PO Box 11400 Tucson, AZ 85734 Street Address: 6730 S. Tucson Blvd. Tucson, AZ 85706 Tel: (602 746-1111 Twx: 910-952-111 Telex: 066-6491 FAX (602 889-1510 Immediate

More information

Programmable-Gain Transimpedance Amplifiers Maximize Dynamic Range in Spectroscopy Systems

Programmable-Gain Transimpedance Amplifiers Maximize Dynamic Range in Spectroscopy Systems Programmable-Gain Transimpedance Amplifiers Maximize Dynamic Range in Spectroscopy Systems PHOTODIODE VOLTAGE SHORT-CIRCUIT PHOTODIODE SHORT- CIRCUIT VOLTAGE 0mV DARK ark By Luis Orozco Introduction Precision

More information

High Voltage Current Shunt Monitor AD8212

High Voltage Current Shunt Monitor AD8212 High Voltage Current Shunt Monitor AD822 FEATURES Adjustable gain High common-mode voltage range 7 V to 65 V typical 7 V to >500 V with external pass transistor Current output Integrated 5 V series regulator

More information

Low Cost, High Speed, Rail-to-Rail, Output Op Amps ADA4851-1/ADA4851-2/ADA4851-4

Low Cost, High Speed, Rail-to-Rail, Output Op Amps ADA4851-1/ADA4851-2/ADA4851-4 Low Cost, High Speed, Rail-to-Rail, Output Op Amps ADA485-/ADA485-/ADA485-4 FEATURES Qualified for automotive applications High speed 3 MHz, 3 db bandwidth 375 V/μs slew rate 55 ns settling time to.% Excellent

More information

Kit 27. 1W TDA7052 POWER AMPLIFIER

Kit 27. 1W TDA7052 POWER AMPLIFIER Kit 27. 1W TDA7052 POWER AMPLIFIER This is a 1 watt mono amplifier Kit module using the TDA7052 from Philips. (Note, no suffix.) It is designed to be used as a building block in other projects where a

More information

TDA2822 DUAL POWER AMPLIFIER SUPPLY VOLTAGE DOWN TO 3 V LOW CROSSOVER DISTORSION LOW QUIESCENT CURRENT BRIDGE OR STEREO CONFIGURATION

TDA2822 DUAL POWER AMPLIFIER SUPPLY VOLTAGE DOWN TO 3 V LOW CROSSOVER DISTORSION LOW QUIESCENT CURRENT BRIDGE OR STEREO CONFIGURATION TDA2822 DUAL POER AMPLIFIER SUPPLY VOLTAGE DON TO 3 V. LO CROSSOVER DISTORSION LO QUIESCENT CURRENT BRIDGE OR STEREO CONFIGURATION DESCRIPTION The TDA2822 is a monolithic integrated circuit in 12+2+2 powerdip,

More information