Dynamic Calibration of Axial Fatigue Testing Machines. Why is it important and how is it accomplished?

Size: px
Start display at page:

Download "Dynamic Calibration of Axial Fatigue Testing Machines. Why is it important and how is it accomplished?"

Transcription

1 EUROLAB International Workshop: Investigation and Verification of Materials Testing Machines 89 Dynamic Calibration of Axial Fatigue Testing Machines. Why is it important and how is it accomplished? G. Dahlberg, MTS Systems Corporation, Eden Prairie, USA There can be negative direct effects on material quality, safety, and testing productivity due to errors associated with fatigue testing of materials and components. Significant errors may be present in the cyclic force amplitude measurement accuracy of fatigue testing machines. As with all material testing, materials and or components will either be under tested or over tested. There is simply no way to perform a materials test that contains zero error or has a zero value for the measurement uncertainty. Under testing a material or component may lead to safety, warranty, and liability problems due to premature failure or damage. This is of particular concern for the transportation and medical industries. Under testing conditions exist when the testing machine endlevel forces are not achieved and or the test speed, frequency, or cycle count is less than required to meet testing criteria. Over testing a material or component may lead to waste of time and material for design, fabrication, and test. Over testing is expensive and can potentially reduce competitive advantage. An over testing condition typically occurs when forces exceed the testing criteria. When errors due to acceleration or mass loading errors are present, both over testing and under testing conditions can occur within the duration of the test. Performing a dynamic calibration of the testing machine is the only effective method of quantifying measurement errors that effect dynamic system performance. National, International, and Commercial Accreditation programs will require the estimate of measurement uncertainty related to fatigue testing results. This paper examines processes specific to the calibration of Constant Amplitude Fatigue Testing Machines. The paper presents a list of contributing error sources associated with dynamic forces in constant amplitude fatigue testing machines. Methods for determining the magnitude of the errors in dynamically operated fatigue testing machines are examined. Examples of actual calibration/verification data are included. Referenced calibration/verification procedures include, ISO 4965: 1979(E) Axial load fatigue testing machines Dynamic force calibration Strain gauge technique, ASTM E467-98a Standard Practice for Verification of Constant Amplitude Dynamic Forces in an Axial Fatigue Testing System, MIL-STD-1312B Military Standard Fastener Test Methods, Boeing D Procedures for Mechanical Testing of Aircraft Structural Fasteners. Calibration - The set of operations which establish, under specified conditions, the relationship between values indicated by a measuring instrument or measuring system, or values represented by a material measure or a reference material, and the corresponding values of a quantity realized by a reference standard. (1)(2) The term Calibration has often been associated with the act of making adjustments. When in fact the calibration process provides information so that adequate adjustments can be made if required. Performing a calibration does not always require an adjustment. It is relatively easy to determine measurement uncertainty related to the static operation of a fatigue testing machine. Determining measurement uncertainty and or evaluating testing machine performance under dynamic conditions is more complex. Calibrating or verifying the performance specific to one testing criteria may not necessarily provide evidence that the system is capable of performing under dif- (1) ISO : 1992(E) (2) ANSI/NCSL Z540-1, Calibration The set of operations, which establish, under specified conditions, the relationship between values indicated by a measuring instrument or measuring system, and the corresponding standard or known values derived from the standard.

2 90 EUROLAB International Workshop: Investigation and Verification of Materials Testing Machines (3) Recommended Practice for the Analysis of the Dynamic Behaviour of Servo-Hydraulic Fatigue Testing Machines, ENC Nuclear Energy, 005/95-001, January 1995 (4) ISO 376: 1999(E), Metallic material Calibration of force-proving instruments used for the verification of uniaxial testing machines. (5) ASTM E74-00a, Standard Practice of Calibration of Force- Measuring Instruments for Verifying the Force Indication of Testing Machines. ferent conditions. It is my opinion that there will always be some amount of error present when performing cyclic testing with material testing machines. Acceleration errors occur due to deflection of the system force indicating device and the amount of mass between the moving portion of the force indication device and the specimen. This mass is normally comprised of a specimen gripping apparatus, a stud, and preloading washers. These errors may be insignificant depending on frequency, cyclic force endlevels, and machine configurations. On the other hand, dynamically induced acceleration errors can be quite large. For some tests requiring high frequency and relatively large forces, significant errors can be anticipated. Testing machines designed to run these types of tests may incorporate a mass compensation technique. This might consist of an accelerometer mounted on the moving mass, usually the grip assembly. The signal from the accelerometer is feed through conditioning electronics back into the system s control circuitry to compensate for mass loading effects. If mass compensation is normally applied during testing, calibration must be performed with the compensation applied. Testing machine elements that affect dynamic performance of fatigue testing machines: Frame stiffness Specimen stiffness Moving mass Deflection of moving mass Machine resonance Actuator friction Test parameters that affect dynamic performance of fatigue testing machines: Cyclic force endlevels Frequency Waveform shape An excellent body of work is available from the ECN, titled Recommended Practice For the Analysis of the Dynamic Behavior of Servo-Hydraulic Fatigue Testing Machines. (3) This study goes into great detail related to all elements of a testing machine used for fatigue work. Although all elements related to items listed above can contribute to measurement uncertainty, examining each element is beyond the scope of this paper. Measurement Uncertainty and Error sources related to dynamic calibration of fatigue testing machines: Uncertainty Source Static Calibration of the testing machine Static Calibration of the dynamometer and instrumentation Data Acquisition instrumentation (testing machine) Data Acquisition instrumentation (dynamometer) Temperature Operator influence Depending on the type of fatigue tests being evaluated, the error source related to the static calibration of the dynamometer and dynamometer instrumentation can vary greatly. For Tension-Tension or Compression- Compression testing where relatively low forces are required, the resolution and noise of the system may introduce errors of at least 0.5%. For testing that does full Tension-Compression cyclic tests, as long as the lowest endlevel forces are not below 10% of the system s force indicating capacity, corrections can be made to make the dynamometer indication equal to the system force indication. This will produce data relative to the static testing machine calibration and not relative to true force. One method that can reduce the uncertainty and make the calibration more closely related to true force would be to calibrate the dynamometer and instrumentation against force proving references per ISO 376 (4) or ASTM E74. (5) This is only feasible if a generic dynamometer can be used for the

3 EUROLAB International Workshop: Investigation and Verification of Materials Testing Machines 91 This calibration procedure would be difficult to use for calibrating systems used for many fastener testing applications. Many fastener tests are Tension-Tension cyclic tests and have recommended turndown ratios of 0.1. (7)(8) This means that if the maximum desired peak force for the test is to be 10 kn, the minimum test force would be 1 kn. Performing dynamic calibration below 20% of the capacity of the dynamometer is not permitted. Accuracy, stability, and repeatability of modern data signal conditesting system calibration. Fixturing would normally not be readily available to suit strain gauged specimens for force-proving calibration. It would be cost prohibitive to produce adequate fixtures for the calibration of a large number of dynamometers in this manner. The best way to assess the errors related to dynamic forces applied to a specimen during test is to perform a two channel method of dynamic system calibration. The equipment used in performing a two channel calibration process consists of a strain gauged specimen commonly referred to as a dynamometer, dynamometer conditioning electronics, and a two channel data acquisition instrument for acquiring dynamic force data from the dynamometer and the testing system s conditioned force indicating device. A typical system used to measure the output of the dynamometer and achieve high resolution and accuracy is an automated data acquisition system utilizing a digital computer combined with an analog to digital (A to D) converter and associated input conditioning. The per channel sampling rate of the digital computer system must be sufficiently fast to collect the peak dynamometer signal within 0.2% of the true peak. If the dynamometer signal is free of noise and is a sine wave function, this would require 50 data points per sine wave cycle to ensure that the peak dynamometer signal values are within 0.2% of the acquired data. (6) It is strongly recommended that dynamic calibration be performed for each combination of specimen material type, stiffness, geometry and system configuration. Where is it not practical to test all expected configurations, it is recommended that tests be performed for configuration(s) with the largest expected acceleration errors. In all cases it is recommended that actual specimens be gauged for use as dynamometers. If a wide variety of specimens are usually tested with the fatigue testing machine, it may be sufficient to calibrate the machine with the softest and then the stiffest specimen. Calibration of the testing system during use can provide confidence that fatigue tests are being run with in expectations. When the dynamic calibration of a fatigue testing machine results in an out of tolerance condition, it is then important to be able to identify the sources of error contributing to the machine s performance. A major assumption is made when calibrating dynamic fatigue testing machines. It is assumed that there is precise correlation between force data acquired with a strain gauged device when static and dynamic forces are applied. I believe this assumption to be true. We have performed interchangeability tests with various dynamic specimens and force-proving devices demonstrating repeatability under static and dynamic conditions. This provides traceability for the dynamometer through transfer calibration against the testing machine s statically calibrated force-proving device. This however is not true for the dynamometer instrumentation. Electronic instrumentation must be calibrated with adequate waveform reference standards to ensure traceability. Methods of calibrating fatigue testing machines under dynamic operation: ISO 4965, Axial load fatigue testing machines Dynamic force calibration Strain gauge technique (6) ASTM E467-98a, Section A (7) MIL-STD-1312B, Military Standard, Fastener Test Methods. (8) D2-2860, Boeing Company, Procedures for Mechanical Testing of Aircraft Structural Fasteners

4 92 EUROLAB International Workshop: Investigation and Verification of Materials Testing Machines (9) ISO 4965, Section 11.2 Accuracy. (10) ASTM E467, Section 5.2. (11) ASTM E467, Section 9. Accuracy. tioning and data acquisition systems allow for tests with endlevels much below 20%. Stated in section Apply the mean force and the various dynamic force ranges, and at each dynamic condition check the operating frequency and record the maximum and minimum values of the fluctuating electrical strain output from the calibration bar. The section requires the frequency to be checked but does not specify how or with what accuracy this check should be performed. Also, the section requires that the maximum and minimum values from the calibration bar be obtained but there is no mention of obtaining values from the testing machine. This would imply a single channel method but Section 11.2 states, The results obtained from the procedure derived in 10.2 shall be compared with the force readings (corrected as necessary, see 4.2) indicated by the machine. This might mean that a second data acquisition channel is connected to the testing system s conditioned force indicating device for simultaneous acquisition of the dynamometer and system force indicating signals. Or it may be referring to a chart recorder or a peak/valley recording device. The text is not clear. The document goes on to require the preparation of basic calibration curves comparing the machine indication of force versus the dynamometer indication of force. This is required in Section 13. The errors in the maximum and minimum forces under consideration shall not exceed 2% of the maximum tensile or compressive force of the machine scale in use. This requirement for accuracy is not absolute as the error in the calibration equipment is not taken into account. (9) ATSM E467, Standard Practice for Verification of Constant Amplitude Dynamic Forces in an Axial Fatigue Testing System The Standard Practice is not titled a calibration so I will use the term verification while describing the process even though the process qualifies as a calibration by definition. A full dynamic verification per ASTM E467 currently requires a dynamometer, dynamometer conditioning electronics, a two channel data acquisition system, and a conditioned force indicating output connection from the testing system. The overall accuracy of the dynamometer and the associated instrumentation shall contribute less than 25% of the total error of the dynamic measurement being made. (10) As fatigue testing manufacturers change designs in an attempt to reduce system costs, it is very likely that fatigue testing systems in the future will not come configured with a standard analog conditioned output from the system force indicating device. The E467 procedure consists of programming the fatigue testing machine for combinations of cyclic force endlevels and frequencies relative to actual specimen testing. With the dynamometer fixtured in the testing machine the machine is started and simultaneous data from the dynamometer s conditioning electronics and the testing systems force indicating device is acquired. A software routine then examines paired data for each cycle and computes amplitude and force indication errors. The maximum errors are then provided in the verification report. This practice recommends the following error tolerance, expressed as the percentage of the span for that cycle: (11) Maximum Dynamic Endlevel Error (Peak or Valley) = ± 1.0%

5 EUROLAB International Workshop: Investigation and Verification of Materials Testing Machines 93 Example 1, shows the results of a dynamic verification performed in compliance with ASTM E467. I have not included a copy of the client, system configuration, and dynamometer configuration page. Example 1 Dynamic Verification Report per ASTM E467 Dynamic Verification Results Dynamometer Static Verification Applied Load (Lbs. Force) Indicated Force (Lbs.) Dynamometer Force (Lbs.) Error (Lbs.) Error (% of Indicated Force) Max. Ind. Endlevel -5% of Ind. Span Max Ind. Endlevel Max. Ind. Endlevel +5% of Ind. Span Min. Ind. Endlevel +5% of Ind. Span Min. Ind. Endlevel Min. Ind. Endlevel -5% of Ind. Span Dynamic Verification Data Freq. Max. Ind. Span Peak Error Peak Error Min. Ind. Span Valley Error Valley Error Average Span Repeatability Pass/Fail (Hz) (Lbs.) (Lbs.) (% of Span) (Lbs.) (Lbs.) (% of Span) (Lbs.) (% of Avg. Span) Pass Pass Pass Pass Pass Pass Pass Fail Test Setup and Data Acquisition Sampling Information Test Frequency Samples/second Samples/Cycle Test Duration Sec Wave Shape Mean Force (LBS) Sine Sine Sine Sine Sine Sine Sine Sine 10780

6 94 EUROLAB International Workshop: Investigation and Verification of Materials Testing Machines Dynamic Verification Error Convergence Graph

7 EUROLAB International Workshop: Investigation and Verification of Materials Testing Machines 95 ASTM E467 Annex (12) A1. Estimate of system inertial Errors A1.1 Conditions of Use A1.1.1 The body of Practice E467 describes in detail the testing necessary to do a full verification of a test machine s dynamic force measurement capability. Due to its relative complexity, and the need to do a dynamic verification each time specimen stiffness/grip weight/crosshead height and frequency are changed, this annex was created. This annex provides a method for estimating the force measurement errors resulting from acceleration of any mass between the specimen gage section and the force transducer sensing element. As long as inertial errors are the dominant source of dynamic error this method provides a reasonable verification of dynamic accuracy. The annex goes on to state in section A1.2 that, If the estimated force error is greater than 0.5% of the loading span, then the error must be quantified by experimental verification as described in the main part of Practices E467. The annex describes two methods for computing this error. Method (A1.1) Accelerometer method: An accelerometer is attached to the fixturing at the position of maximum displacement between the force transducer and the specimen. Using the maximum acceleration indicated, along with the fixturing weight, calculate the force error as: Fi = W/g a where: Fi = the inertial force, W = the weight of the inertial mass, g = gravitational acceleration, and a = the inertial mass acceleration. Method (A1.2) Displacement Method A1.5.1 For purely sinusoidal motion of the force transducer and alternative method is to measure the displacement of the force trans- ducer and calculate an error. This may be calculated by: Fi = Ma = -M(2. π. f) 2. X where: M = the inertial mass, F = the operating frequency, Hz, X = the inertial mass displacement, and a = the inertial mass acceleration. I am not aware of any one currently using either of the methods described in the annex. I had hoped to have had time to perform these methods prior to preparing this paper and was unable to line up an adequate machine for the evaluation. The methods are based on solid theory and should prove correct. Selecting an accelerometer with the appropriate sensitivity may prove difficult. There may however be additional methods utilizing modeling software that could be substituted under certain conditions. ASTM E467 specifically states that the fatigue testing system s control accuracy is not verified with the practice. This is an important point because some test require that endlevels are constant with in stated specifications. (13) Evidence of control accuracy can be obtained from the dynamometer data acquired during an E467 verification but it is not required at this time. When excessive acceleration induced errors are present it may be possible to select an alternate frequency or endlevel force for testing. The fastener testing industry in the US is required to test fasteners used in commercial and military aircraft. Currently two standards are being adhered to, Boeing Company s D specification and MIL-STD 1312B. Fastener manufacturers and testing laboratories often want to test at the highest forces and frequencies possible to reduce the time necessary to perform tests for qualification of material. This allows material to move through the manufacturing and acceptance process (12) Italicized text taken directly from ASTM E 467. (13) ASTM E466-96, Standard Practice for Conducting Force Controlled Constant Amplitude Axial Fatigue Tests of Metallic Materials, Section 7.3.

8 96 EUROLAB International Workshop: Investigation and Verification of Materials Testing Machines faster. In these cases, testing laboratories can adjust their testing protocol so testing machines will operate over force endlevels and frequencies that minimize the level of dynamic induced errors. Example 2, shows the results of a single channel verification method performed incompliance with MIL-STD 1312B, Appendix C, Alignment and Load Verification of Axial- Load Fatigue Testing Machines. I have not included copies of pages that show the client, system configuration, dynamometer configuration, or the static calibration of the dynamometer. Example 2 Dynamic Verification (Range 1) Dynamometer ID#: Range: Lbf. Frequency: 4 Hz Dynamometer Indication (Range 1) Static (Lbf.) Dynamic (Lbf.) Errors (%) Minimum Maximum Minimum Maximum Amplitude(p-v) Max. Load (DynMax DynMin) (StaticDynMax StaticDynMin) X 100 Dynamometer Indication Amplitude Error = (StaticDynMax StaticDynMin) Maximum Load Error(%) = (DynMax StaticDynMax) X 100 StaticDynMax The remainder of this example is not required for compliance with the calibration standard but provides valuable additional information related to the dynamic performance of the system.

9 EUROLAB International Workshop: Investigation and Verification of Materials Testing Machines 97 System Indication (Range 1) Static (Lbf.) Dynamic (Lbf.) Errors (%) Minimum Maximum Minimum Maximum Amplitude (p-v) Max. Load Dynamic Waveform Analysis (Range 1) (All force values are Lbf.) Minimum Peaks Minimum Valleys Peak Cycles Valley Cycles Average Peaks Average Valleys Max. Amplitude (p-v) Min. Amplitude (p-v) Std. Deviation Peaks Standard Deviation Valleys Average Amplitude (p-v) Std. Dev. Amplitude System Indication readings are acquired from the testing machine using the peak /valley meter feature available through the testing system software. The Static minimum and maximum values are entered as the system programmed endlevels. The Dynamic minimum and maximum values are entered from the peak/valley meter running on the testing machine. This provides some level of confidence in the system s data acquisition accuracy.

10 98 EUROLAB International Workshop: Investigation and Verification of Materials Testing Machines Many United States MIL-STD practices are being superseded by industry and or commercial standard practices. The ASTM committee that has the responsibility for revising E467 meets twice a year. I expect that with in the next year, E467 will include a single channel verification method for use with constant amplitude fatigue systems. Conclusions: 1.) Dynamic calibration of fatigue testing machines is a complex task. Automated calibration data is acquired, reduced, and reported. Software must be available to process and report the data. 2.) Dynamic calibration of fatigue testing machines is expensive and time consuming. 3.) Performing a dynamic calibration of a fatigue testing machine is the only way to adequately assess measurement uncertainty and errors associated with the performance of cyclic fatigue tests. 4.) Until recently, accreditation bodies have largely overlooked the need for testing laboratories to perform dynamic calibration of fatigue testing machines. It is my opinion that accreditation pressures will increase and adequate methods of determining measurement uncertainty for fatigue testing machines under dynamic operating conditions will be required. Bibliography [1] ISO 4965: 1979(E), Axial load fatigue testing machines Dynamic force calibration Strain gauge technique. [2] ASTM E467-98a, Standard Practice for Verification of Constant Amplitude Dynamic Forces in an Axial Fatigue Testing System. ASTM Volume [3] MIL-STD-1312B, Military Standard Fastener Test Methods and Appendix C, Alignment and Load Verification of Axial-Load Fatigue Testing Machines, 1984 [4] Boeing Co. D2-2860, Procedures for Mechanical Testing of Aircraft Structural Fasteners, 1970 [5] ISO : 1992(E), Quality assurance requirements for measuring equipment Part 1: Metrological confirmation system for measuring equipment. [6] ANSI/NCSL Z Calibration Laboratories and Measuring and Test Equipment General Requirements. [7] ISO 376: 1999(E), Metallic materials Calibration of force-proving instruments used for the verification of uniaxial testing machines. [8] ASTM E74-00a, Standard Practice of Calibration of Force-Measuring Instruments for Verifying the Force indication of Testing Machines. ASTM Volume [9] ASTM E466-96, Standard Practice for Conducting Force Controlled Constant Amplitude Axial Fatigue Tests of Metallic Material. ASTM Volume [10] Recommended Practice for the Analysis of the Dynamic Behaviour of Servo-Hydraulic Fatigue Testing Machines, edited by G.L. Tjoa, ECN Nuclear Energy, 005/95-001, January Netherlands Energy Research Foundation ECN.

11 EUROLAB International Workshop: Investigation and Verification of Materials Testing Machines 99

Force measurement. Forces VECTORIAL ISSUES ACTION ET RÉACTION ISOSTATISM

Force measurement. Forces VECTORIAL ISSUES ACTION ET RÉACTION ISOSTATISM Force measurement Forces VECTORIAL ISSUES In classical mechanics, a force is defined as "an action capable of modifying the quantity of movement of a material point". Therefore, a force has the attributes

More information

Active Vibration Isolation of an Unbalanced Machine Spindle

Active Vibration Isolation of an Unbalanced Machine Spindle UCRL-CONF-206108 Active Vibration Isolation of an Unbalanced Machine Spindle D. J. Hopkins, P. Geraghty August 18, 2004 American Society of Precision Engineering Annual Conference Orlando, FL, United States

More information

DIGITAL DISPLACEMENT RISING STEP LOAD LRA/RSL TEST EQUIPMENT

DIGITAL DISPLACEMENT RISING STEP LOAD LRA/RSL TEST EQUIPMENT DIGITAL DISPLACEMENT RISING STEP LOAD LRA/RSL TEST EQUIPMENT BACKGROUND AND PRODUCT DESCRIPTIONS Fracture Diagnostics provides state-of-the-art test equipment, utilizing the Rising Step Load testing technique.

More information

Similar benefits are also derived through modal testing of other space structures.

Similar benefits are also derived through modal testing of other space structures. PAGE 1 OF 5 PREFERRED RELIABILITY PRACTICES MODAL TESTING: MEASURING DYNAMIC STRUCTURAL CHARACTERISTICS Practice: Modal testing is a structural testing practice that provides low levels of mechanical excitation

More information

Engineering & Testing Services. Hydraulic Fitting Design and Hydro-Mechanical Testing

Engineering & Testing Services. Hydraulic Fitting Design and Hydro-Mechanical Testing Engineering & Testing Services Hydraulic Fitting Design and Hydro-Mechanical Testing Aerofit, Inc. APT Laboratory 1425 South Acacia Avenue Fullerton, CA 92831 Main: 714-521-5060 Fax: 714-535-9862 Our Company

More information

AN EXPLANATION OF JOINT DIAGRAMS

AN EXPLANATION OF JOINT DIAGRAMS AN EXPLANATION OF JOINT DIAGRAMS When bolted joints are subjected to external tensile loads, what forces and elastic deformation really exist? The majority of engineers in both the fastener manufacturing

More information

Hollow Cylinder Apparatus (GDS SS-HCA)

Hollow Cylinder Apparatus (GDS SS-HCA) HCA:1 Options available for SS-HCA Axial Load/Torque 1kN/1Nm 1kN/2Nm 12kN/2Nm 15kN/4Nm Dynamic upgrade frequencies Hollow Cylinder Apparatus (GDS SS-HCA).5Hz 2Hz 1Hz 5Hz Sample Height/Outer Ø/Inner Ø 2/1/6mm

More information

SHORE A DUROMETER AND ENGINEERING PROPERTIES

SHORE A DUROMETER AND ENGINEERING PROPERTIES SHORE A DUROMETER AND ENGINEERING PROPERTIES Written by D.L. Hertz, Jr. and A.C. Farinella Presented at the Fall Technical Meeting of The New York Rubber Group Thursday, September 4, 1998 by D.L. Hertz,

More information

Methods to predict fatigue in CubeSat structures and mechanisms

Methods to predict fatigue in CubeSat structures and mechanisms Methods to predict fatigue in CubeSat structures and mechanisms By Walter Holemans (PSC), Floyd Azure (PSC) and Ryan Hevner (PSC) Page 1 Outline Problem Statement What is fatigue? Cyclic loading and strength

More information

FREQUENCY RESPONSE ANALYZERS

FREQUENCY RESPONSE ANALYZERS FREQUENCY RESPONSE ANALYZERS Dynamic Response Analyzers Servo analyzers When you need to stabilize feedback loops to measure hardware characteristics to measure system response BAFCO, INC. 717 Mearns Road

More information

Objectives. Experimentally determine the yield strength, tensile strength, and modules of elasticity and ductility of given materials.

Objectives. Experimentally determine the yield strength, tensile strength, and modules of elasticity and ductility of given materials. Lab 3 Tension Test Objectives Concepts Background Experimental Procedure Report Requirements Discussion Objectives Experimentally determine the yield strength, tensile strength, and modules of elasticity

More information

Series 2100. Direct Load Creep Testing Systems. Maximum Reliability at Minimum Cost

Series 2100. Direct Load Creep Testing Systems. Maximum Reliability at Minimum Cost Series 2100 Direct Load Creep Testing Systems Maximum Reliability at Minimum Cost ATS Series 2100 Direct Load Creep Testing Systems offer an economical solution to performing direct load creep and stress

More information

Fatigue and Fracture Testing Solutions

Fatigue and Fracture Testing Solutions Fatigue and Fracture Testing Solutions Productivity-enhancing modules for use with MTS TestSuite Multipurpose Software Fatigue Modules Low-Cycle Fatigue High-Cycle Fatigue Advanced Low-Cycle Fatigue Advanced

More information

Acceleration levels of dropped objects

Acceleration levels of dropped objects Acceleration levels of dropped objects cmyk Acceleration levels of dropped objects Introduction his paper is intended to provide an overview of drop shock testing, which is defined as the acceleration

More information

THE COMPOSITE DISC - A NEW JOINT FOR HIGH POWER DRIVESHAFTS

THE COMPOSITE DISC - A NEW JOINT FOR HIGH POWER DRIVESHAFTS THE COMPOSITE DISC - A NEW JOINT FOR HIGH POWER DRIVESHAFTS Dr Andrew Pollard Principal Engineer GKN Technology UK INTRODUCTION There is a wide choice of flexible couplings for power transmission applications,

More information

Uncertainty of Force Measurements

Uncertainty of Force Measurements European Association of National Metrology Institutes Uncertainty of Force Measurements EURAMET cg-4 Version.0 (03/011) Previously EA-10/04 Calibration Guide EURAMET cg-4 Version.0 (03/011) UNCERTAINTY

More information

IAS CALIBRATION and TESTING LABORATORY ACCREDITATION PROGRAMS DEFINITIONS

IAS CALIBRATION and TESTING LABORATORY ACCREDITATION PROGRAMS DEFINITIONS REFERENCES NIST Special Publication 330 IAS CALIBRATION and TESTING LABORATORY ACCREDITATION PROGRAMS DEFINITIONS Revised October 2013 International vocabulary of metrology Basic and general concepts and

More information

CRITERIA FOR PRELOADED BOLTS

CRITERIA FOR PRELOADED BOLTS National Aeronautics and Space Administration Lyndon B. Johnson Space Center Houston, Texas 77058 REVISION A JULY 6, 1998 REPLACES BASELINE SPACE SHUTTLE CRITERIA FOR PRELOADED BOLTS CONTENTS 1.0 INTRODUCTION..............................................

More information

TEST REPORT. Rendered to: LMT-Mercer Group, Inc. For: PRODUCT: 4" x 4" and 5" x 5" PVC Porch Posts with Aluminum Reinforcing

TEST REPORT. Rendered to: LMT-Mercer Group, Inc. For: PRODUCT: 4 x 4 and 5 x 5 PVC Porch Posts with Aluminum Reinforcing TEST REPORT Rendered to: LMT-Mercer Group, Inc. For: PRODUCT: 4" x 4" and 5" x 5" PVC Porch Posts with Aluminum Reinforcing Report No.: Report Date: 01/28/14 Test Record Retention Date: 12/20/17 130 Derry

More information

SFI SPECIFICATION 28.1 EFFECTIVE: SEPTEMBER 23, 2011 *

SFI SPECIFICATION 28.1 EFFECTIVE: SEPTEMBER 23, 2011 * SFI SPECIFICATION 28.1 EFFECTIVE: SEPTEMBER 23, 2011 * PRODUCT: Polymer (Foam-Filled) Fuel Cells 1.0 GENERAL INFORMATION 1.1 This SFI Specification establishes uniform test procedures and minimum standards

More information

CALIBRATION PRINCIPLES

CALIBRATION PRINCIPLES 1 CALIBRATION PRINCIPLES After completing this chapter, you should be able to: Define key terms relating to calibration and interpret the meaning of each. Understand traceability requirements and how they

More information

Objective To conduct Charpy V-notch impact test and determine the ductile-brittle transition temperature of steels.

Objective To conduct Charpy V-notch impact test and determine the ductile-brittle transition temperature of steels. IMPACT TESTING Objective To conduct Charpy V-notch impact test and determine the ductile-brittle transition temperature of steels. Equipment Coolants Standard Charpy V-Notched Test specimens Impact tester

More information

RANDOM VIBRATION AN OVERVIEW by Barry Controls, Hopkinton, MA

RANDOM VIBRATION AN OVERVIEW by Barry Controls, Hopkinton, MA RANDOM VIBRATION AN OVERVIEW by Barry Controls, Hopkinton, MA ABSTRACT Random vibration is becoming increasingly recognized as the most realistic method of simulating the dynamic environment of military

More information

Precision Miniature Load Cell. Models 8431, 8432 with Overload Protection

Precision Miniature Load Cell. Models 8431, 8432 with Overload Protection w Technical Product Information Precision Miniature Load Cell with Overload Protection 1. Introduction The load cells in the model 8431 and 8432 series are primarily designed for the measurement of force

More information

METHOD STATEMENT HIGH STRIAN DYNAMIC TESTING OF PILE. Prepared by

METHOD STATEMENT HIGH STRIAN DYNAMIC TESTING OF PILE. Prepared by METHOD STATEMENT HIGH STRIAN DYNAMIC TESTING OF PILE Prepared by Infratech ASTM CO., LTD. Contents Chapter Description Page Contents...... 1 List of Appendix. 1 1. Introduction.. 2 2. Test Method..2 3.

More information

HOW ACCURATE ARE THOSE THERMOCOUPLES?

HOW ACCURATE ARE THOSE THERMOCOUPLES? HOW ACCURATE ARE THOSE THERMOCOUPLES? Deggary N. Priest Priest & Associates Consulting, LLC INTRODUCTION Inevitably, during any QC Audit of the Laboratory s calibration procedures, the question of thermocouple

More information

Calibration Solutions. be certain.

Calibration Solutions. be certain. Calibration Solutions be certain. MTS CALIBRATION SERVICES OPTIMIZE THE VALIDITY OF YOUR TEST DATA AND THE EFFICIENCY OF YOUR TEST LAB. OUR ACCREDITED ONSITE CALIBRATION AND METROLOGY LABORATORY; AS WELL

More information

Transducer Mounting and Test Setup Configurations. Rick Bono The Modal Shop

Transducer Mounting and Test Setup Configurations. Rick Bono The Modal Shop Transducer Mounting and Test Setup Configurations Rick Bono The Modal Shop 1 Transducer Mounting Mechanical connection method Stud mount Adhesive mount Magnetic mount Press-fit friction mount Test parameter

More information

The Determination of Uncertainties in Charpy Impact Testing

The Determination of Uncertainties in Charpy Impact Testing Manual of Codes of Practice for the Determination of Uncertainties in Mechanical Tests on Metallic Materials Code of Practice No. 06 The Determination of Uncertainties in Charpy Impact Testing M.A. Lont

More information

Time Domain and Frequency Domain Techniques For Multi Shaker Time Waveform Replication

Time Domain and Frequency Domain Techniques For Multi Shaker Time Waveform Replication Time Domain and Frequency Domain Techniques For Multi Shaker Time Waveform Replication Thomas Reilly Data Physics Corporation 1741 Technology Drive, Suite 260 San Jose, CA 95110 (408) 216-8440 This paper

More information

Mechanical Testing Equipment at MSSI

Mechanical Testing Equipment at MSSI TITLE DESCRIPTION Tinius/Olsen Screw- Driven Straining Frame Equipped with ±25 kn and ±1 kn load cells for static testing at relatively low load levels (calibration: load cells: Jan. 2007, 100SC: Nov.

More information

Decoding an Accelerometer Specification. What Sensor Manufacturer s Don t Tell You! David Lally VP Engineering PCB Piezotronics, Inc.

Decoding an Accelerometer Specification. What Sensor Manufacturer s Don t Tell You! David Lally VP Engineering PCB Piezotronics, Inc. Decoding an Accelerometer Specification Sheet What Sensor Manufacturer s Don t Tell You! David Lally VP Engineering PCB Piezotronics, Inc. IMAC-XXVII February 2008 1 Overview Specification Sheet Provides

More information

GMC 2013: Piping Misalignment and Vibration Related Fatigue Failures

GMC 2013: Piping Misalignment and Vibration Related Fatigue Failures GMC 2013: Piping Misalignment and Vibration Related Fatigue Failures www.betamachinery.com Authors/Presenters: Gary Maxwell, General Manager, BETA Machinery Analysis Brian Howes, Chief Engineer, BETA Machinery

More information

TEST PROCEDURE FOR FIELD WITHDRAWAL RESISTANCE TESTING

TEST PROCEDURE FOR FIELD WITHDRAWAL RESISTANCE TESTING TESTING APPLICATION STANDARD (TAS) No. 105-98 TEST PROCEDURE FOR FIELD WITHDRAWAL RESISTANCE TESTING 1. Scope 1.1 This Testing Application Standard (TAS) covers procedures for withdrawal resistance testing

More information

testing equipment for quality management Programme summary. METROLOGY Tensile and Pressure Testing Machines Measuring Devices Display Devices

testing equipment for quality management Programme summary. METROLOGY Tensile and Pressure Testing Machines Measuring Devices Display Devices testing equipment for quality management Programme summary. METROLOGY Sheet metal testing Surface testing Corrosion testing Tensile and Pressure Testing Machines Measuring Devices Display Devices The physical

More information

ELECTRON SPIN RESONANCE Last Revised: July 2007

ELECTRON SPIN RESONANCE Last Revised: July 2007 QUESTION TO BE INVESTIGATED ELECTRON SPIN RESONANCE Last Revised: July 2007 How can we measure the Landé g factor for the free electron in DPPH as predicted by quantum mechanics? INTRODUCTION Electron

More information

Comparison of the Response of a Simple Structure to Single Axis and Multiple Axis Random Vibration Inputs

Comparison of the Response of a Simple Structure to Single Axis and Multiple Axis Random Vibration Inputs Comparison of the Response of a Simple Structure to Single Axis and Multiple Axis Random Vibration Inputs Dan Gregory Sandia National Laboratories Albuquerque NM 87185 (505) 844-9743 Fernando Bitsie Sandia

More information

1.Adapted from Gordon, J.E., Structures or why things don t fall down, Da Capo Press, Inc., New York, N.Y., 1978, Chapter 15.

1.Adapted from Gordon, J.E., Structures or why things don t fall down, Da Capo Press, Inc., New York, N.Y., 1978, Chapter 15. Lecture 4: Cyclic loading and fatigue Safe working life: 1 All structures will be broken or destroyed in the end just as all people will die in the end. It is the purpose of medicine and engineering to

More information

OMCL Network of the Council of Europe QUALITY MANAGEMENT DOCUMENT

OMCL Network of the Council of Europe QUALITY MANAGEMENT DOCUMENT OMCL Network of the Council of Europe QUALITY MANAGEMENT DOCUMENT PA/PH/OMCL (12) 77 7R QUALIFICATION OF EQUIPMENT ANNEX 8: QUALIFICATION OF BALANCES Full document title and reference Document type Qualification

More information

Subminiature Load Cell Model 8417

Subminiature Load Cell Model 8417 w Technical Product Information Subminiature Load Cell 1. Introduction... 2 2. Preparing for use... 2 2.1 Unpacking... 2 2.2 Using the instrument for the first time... 2 2.3 Grounding and potential connection...

More information

An Overview of Calibration Methods and Procedures for Process and Inventory Weigh Systems

An Overview of Calibration Methods and Procedures for Process and Inventory Weigh Systems BLH NOBEL Weighing Systems Brands of VPG Process Weighing Solutions for Process Weighing and Force Measurement Handbook TC0010 Procedures for Process and Inventory Weigh Systems Allen-Bradley Automation

More information

Sentinel I28 and Blackbelt Mass Flow Calibration and Verification

Sentinel I28 and Blackbelt Mass Flow Calibration and Verification Service Bulletin: #001 Date: August 2012 Sentinel I28 and Blackbelt Mass Flow Calibration and Verification Summary This Application Bulletin will give a short synopsis of the purpose of a calibration and

More information

The Fundamentals of Spring Testing

The Fundamentals of Spring Testing The Fundamentals of Spring Testing starrett.com Starrett SMS Series A Better Solution for Testing and Measuring Compression and Extension Springs INTRODUCTION The design, manufacture and use of springs

More information

By Authority Of THE UNITED STATES OF AMERICA Legally Binding Document

By Authority Of THE UNITED STATES OF AMERICA Legally Binding Document By Authority Of THE UNITED STATES OF AMERICA Legally Binding Document By the Authority Vested By Part 5 of the United States Code 552(a) and Part 1 of the Code of Regulations 51 the attached document has

More information

FXA 2008. UNIT G484 Module 2 4.2.3 Simple Harmonic Oscillations 11. frequency of the applied = natural frequency of the

FXA 2008. UNIT G484 Module 2 4.2.3 Simple Harmonic Oscillations 11. frequency of the applied = natural frequency of the 11 FORCED OSCILLATIONS AND RESONANCE POINTER INSTRUMENTS Analogue ammeter and voltmeters, have CRITICAL DAMPING so as to allow the needle pointer to reach its correct position on the scale after a single

More information

Guidelines on the Calibration of Static Torque Measuring Devices

Guidelines on the Calibration of Static Torque Measuring Devices European Association of National Metrology Institutes Guidelines on the Calibration of Static Torque Measuring Devices EURAMET cg-14 Version.0 (03/011) Previously EA-10/14 Calibration Guide EURAMET cg-14

More information

E. K. A. ADVANCED PHYSICS LABORATORY PHYSICS 3081, 4051 NUCLEAR MAGNETIC RESONANCE

E. K. A. ADVANCED PHYSICS LABORATORY PHYSICS 3081, 4051 NUCLEAR MAGNETIC RESONANCE E. K. A. ADVANCED PHYSICS LABORATORY PHYSICS 3081, 4051 NUCLEAR MAGNETIC RESONANCE References for Nuclear Magnetic Resonance 1. Slichter, Principles of Magnetic Resonance, Harper and Row, 1963. chapter

More information

Operational Amplifier - IC 741

Operational Amplifier - IC 741 Operational Amplifier - IC 741 Tabish December 2005 Aim: To study the working of an 741 operational amplifier by conducting the following experiments: (a) Input bias current measurement (b) Input offset

More information

PERFORMANCE TEST REPORT. Rendered to: FORMTECH ENTERPRISES, INC. SERIES/MODEL: Truline PRODUCT TYPE: PVC Seawall

PERFORMANCE TEST REPORT. Rendered to: FORMTECH ENTERPRISES, INC. SERIES/MODEL: Truline PRODUCT TYPE: PVC Seawall PERFORMANCE TEST REPORT Rendered to: FORMTECH ENTERPRISES, INC. SERIES/MODEL: Truline PRODUCT TYPE: PVC Seawall Report No.: Test Dates: 04/17/12 Through: 04/18/12 Report Date: 06/13/12 130 Derry Court

More information

ME 354, MECHANICS OF MATERIALS LABORATORY

ME 354, MECHANICS OF MATERIALS LABORATORY ME 354, MECHANICS OF MATERIALS LABORATORY 01 Januarly 2000 / mgj MECHANICAL PROPERTIES AND PERFORMANCE OF MATERIALS: HARDNESS TESTING* PURPOSE The purpose of this exercise is to obtain a number of experimental

More information

GOM Optical Measuring Techniques. Deformation Systems and Applications

GOM Optical Measuring Techniques. Deformation Systems and Applications GOM Optical Measuring Techniques Deformation Systems and Applications ARGUS Forming Analysis ARGUS Deformation analysis in sheet metal and forming industry Forming Characteristics of Sheet Metals Material

More information

The elements used in commercial codes can be classified in two basic categories:

The elements used in commercial codes can be classified in two basic categories: CHAPTER 3 Truss Element 3.1 Introduction The single most important concept in understanding FEA, is the basic understanding of various finite elements that we employ in an analysis. Elements are used for

More information

Lab 1: The Digital Oscilloscope

Lab 1: The Digital Oscilloscope PHYSICS 220 Physical Electronics Lab 1: The Digital Oscilloscope Object: To become familiar with the oscilloscope, a ubiquitous instrument for observing and measuring electronic signals. Apparatus: Tektronix

More information

Picture 1 Lead Color Code Lead Function V-Link Function V-Link Pin Table 2 Picture 2 Node Commander software

Picture 1 Lead Color Code Lead Function V-Link Function V-Link Pin Table 2 Picture 2 Node Commander software TN-W0026 MicroStrain Technical Note Connecting and Calibrating a Load Cell with V-Link V-Link and Futek LSB300 Load Cell (Applies to V-Link, SG-Link, SG-Link OEM, HS-Link ) Overview MicroStrain s V-Link

More information

The simulation of machine tools can be divided into two stages. In the first stage the mechanical behavior of a machine tool is simulated with FEM

The simulation of machine tools can be divided into two stages. In the first stage the mechanical behavior of a machine tool is simulated with FEM 1 The simulation of machine tools can be divided into two stages. In the first stage the mechanical behavior of a machine tool is simulated with FEM tools. The approach to this simulation is different

More information

The Calculation of G rms

The Calculation of G rms The Calculation of G rms QualMark Corp. Neill Doertenbach The metric of G rms is typically used to specify and compare the energy in repetitive shock vibration systems. However, the method of arriving

More information

Noise. CIH Review PDC March 2012

Noise. CIH Review PDC March 2012 Noise CIH Review PDC March 2012 Learning Objectives Understand the concept of the decibel, decibel determination, decibel addition, and weighting Know the characteristics of frequency that are relevant

More information

In-situ Load Testing to Evaluate New Repair Techniques

In-situ Load Testing to Evaluate New Repair Techniques In-situ Load Testing to Evaluate New Repair Techniques W.J. Gold 1 and A. Nanni 2 1 Assistant Research Engineer, Univ. of Missouri Rolla, Dept. of Civil Engineering 2 V&M Jones Professor, Univ. of Missouri

More information

International Journal of Engineering Research-Online A Peer Reviewed International Journal Articles available online http://www.ijoer.

International Journal of Engineering Research-Online A Peer Reviewed International Journal Articles available online http://www.ijoer. RESEARCH ARTICLE ISSN: 2321-7758 DESIGN AND DEVELOPMENT OF A DYNAMOMETER FOR MEASURING THRUST AND TORQUE IN DRILLING APPLICATION SREEJITH C 1,MANU RAJ K R 2 1 PG Scholar, M.Tech Machine Design, Nehru College

More information

SCOPE OF ACCREDITATION TO ISO/IEC 17025:2005 & ANSI/NCSL Z540-1-1994. ALLTITE, INC. 1600 Murdock, Wichita, KS 67214 Bruce Demaree Phone: 800 498 6721

SCOPE OF ACCREDITATION TO ISO/IEC 17025:2005 & ANSI/NCSL Z540-1-1994. ALLTITE, INC. 1600 Murdock, Wichita, KS 67214 Bruce Demaree Phone: 800 498 6721 SCOPE OF ACCREDITATION TO ISO/IEC 17025:2005 & ANSI/NCSL Z540-1-1994 ALLTITE, INC. 1600 Murdock, Wichita, KS 67214 Bruce Demaree Phone: 800 498 6721 CALIBRATION Valid To: September 30, 2016 Certificate

More information

SIGNAL GENERATORS and OSCILLOSCOPE CALIBRATION

SIGNAL GENERATORS and OSCILLOSCOPE CALIBRATION 1 SIGNAL GENERATORS and OSCILLOSCOPE CALIBRATION By Lannes S. Purnell FLUKE CORPORATION 2 This paper shows how standard signal generators can be used as leveled sine wave sources for calibrating oscilloscopes.

More information

The Pressure Velocity (PV) Relationship for Lead Screws

The Pressure Velocity (PV) Relationship for Lead Screws The Pressure Velocity (PV) Relationship for Lead Screws Robert Lipsett, Engineering Manager Thomson Industries, Inc. Wood Dale, IL 540-633-3549 www.thomsonlinear.com The Pressure Velocity (PV) factor is

More information

The use of Operating Deflection Shapes (ODS) to model the vibration of sanders and polishers HSL/2006/104. Project Leader: Author(s): Science Group:

The use of Operating Deflection Shapes (ODS) to model the vibration of sanders and polishers HSL/2006/104. Project Leader: Author(s): Science Group: Harpur Hill, Buxton Derbyshire, SK17 9JN T: +44 (0)1298 218000 F: +44 (0)1298 218590 W: www.hsl.gov.uk The use of Operating Deflection Shapes (ODS) to model the vibration of sanders and polishers HSL/2006/104

More information

4 SENSORS. Example. A force of 1 N is exerted on a PZT5A disc of diameter 10 mm and thickness 1 mm. The resulting mechanical stress is:

4 SENSORS. Example. A force of 1 N is exerted on a PZT5A disc of diameter 10 mm and thickness 1 mm. The resulting mechanical stress is: 4 SENSORS The modern technical world demands the availability of sensors to measure and convert a variety of physical quantities into electrical signals. These signals can then be fed into data processing

More information

THE STRAIN GAGE PRESSURE TRANSDUCER

THE STRAIN GAGE PRESSURE TRANSDUCER THE STRAIN GAGE PRESSURE TRANSDUCER Pressure transducers use a variety of sensing devices to provide an electrical output proportional to applied pressure. The sensing device employed in the transducers

More information

MINIMUM AUTOMOTIVE QUALITY MANAGEMENT SYSTEM REQUIREMENTS FOR SUB-TIER SUPPLIERS

MINIMUM AUTOMOTIVE QUALITY MANAGEMENT SYSTEM REQUIREMENTS FOR SUB-TIER SUPPLIERS MINIMUM AUTOMOTIVE QUALITY MANAGEMENT SYSTEM REQUIREMENTS FOR SUB-TIER SUPPLIERS CONTENTS 1. CONTROL PLANS 2. PROCESS APPROACH 3. PERFORMANCE 4. INTERNAL AUDITING 5. CONTROL OF NON-CONFORMING PRODUCT 6.

More information

METHOD OF STATEMENT FOR STATIC LOADING TEST

METHOD OF STATEMENT FOR STATIC LOADING TEST Compression Test, METHOD OF STATEMENT FOR STATIC LOADING TEST Tension Test and Lateral Test According to the American Standards ASTM D1143 07, ASTM D3689 07, ASTM D3966 07 and Euro Codes EC7 Table of Contents

More information

Procon Engineering. Technical Document PELR 1002. TERMS and DEFINITIONS

Procon Engineering. Technical Document PELR 1002. TERMS and DEFINITIONS Procon Engineering Technical Document PELR 1002 TERMS and DEFINITIONS The following terms are widely used in the weighing industry. Informal comment on terms is in italics and is not part of the formal

More information

Is load testing during initial acceptance inspection still the contemporary method?

Is load testing during initial acceptance inspection still the contemporary method? Is load testing during initial acceptance inspection still the contemporary method? Alfons Petry TUV Industry Service TUV South Group, Germany Key words: Safety, commissioning test, load test, ADIASYSTEM,

More information

Lymon C. Reese & Associates LCR&A Consulting Services Tests of Piles Under Axial Load

Lymon C. Reese & Associates LCR&A Consulting Services Tests of Piles Under Axial Load Lymon C. Reese & Associates LCR&A Consulting Services Tests of Piles Under Axial Load Nature of Services The company has a long history of performance of tests of piles and pile groups under a variety

More information

Signal to Noise Instrumental Excel Assignment

Signal to Noise Instrumental Excel Assignment Signal to Noise Instrumental Excel Assignment Instrumental methods, as all techniques involved in physical measurements, are limited by both the precision and accuracy. The precision and accuracy of a

More information

C. PROCEDURE APPLICATION (FITNET)

C. PROCEDURE APPLICATION (FITNET) C. PROCEDURE APPLICATION () 495 INTRODUCTION ASSESSMENT OF SCC ASSESSMENT OF CORROSION FATIGUE STRESS CORROSION AND CORROSION FATIGUE ANALYSIS ASSESSMENT OF LOCAL THINNED AREAS 496 INTRODUCTION INTRODUCTION

More information

Impedance 50 (75 connectors via adapters)

Impedance 50 (75 connectors via adapters) VECTOR NETWORK ANALYZER PLANAR TR1300/1 DATA SHEET Frequency range: 300 khz to 1.3 GHz Measured parameters: S11, S21 Dynamic range of transmission measurement magnitude: 130 db Measurement time per point:

More information

Tensile Testing Laboratory

Tensile Testing Laboratory Tensile Testing Laboratory By Stephan Favilla 0723668 ME 354 AC Date of Lab Report Submission: February 11 th 2010 Date of Lab Exercise: January 28 th 2010 1 Executive Summary Tensile tests are fundamental

More information

COMPUTATIONAL ACCURACY ANALYSIS OF A COORDINATE MEASURING MACHINE UNDER STATIC LOAD

COMPUTATIONAL ACCURACY ANALYSIS OF A COORDINATE MEASURING MACHINE UNDER STATIC LOAD COMPUTATIONAL ACCURACY ANALYSIS OF A COORDINATE MEASURING MACHINE UNDER STATIC LOAD Andre R. Sousa 1 ; Daniela A. Bento 2 CEFET/SC Federal Center of Technological Education Santa Catarina Av. Mauro Ramos,

More information

The accelerometer designed and realized so far is intended for an. aerospace application. Detailed testing and analysis needs to be

The accelerometer designed and realized so far is intended for an. aerospace application. Detailed testing and analysis needs to be 86 Chapter 4 Accelerometer Testing 4.1 Introduction The accelerometer designed and realized so far is intended for an aerospace application. Detailed testing and analysis needs to be conducted to qualify

More information

CH 6: Fatigue Failure Resulting from Variable Loading

CH 6: Fatigue Failure Resulting from Variable Loading CH 6: Fatigue Failure Resulting from Variable Loading Some machine elements are subjected to static loads and for such elements static failure theories are used to predict failure (yielding or fracture).

More information

Measurement Types in Machinery Monitoring

Measurement Types in Machinery Monitoring February 2014 Measurement Types in Machinery Monitoring Online machinery monitoring for rotating equipment is typically divided into two categories: 1. Protection Monitoring 2. Prediction Monitoring This

More information

COMMUNICATING using MEASUREMENTS In Engineering we use a great many measuring instruments.

COMMUNICATING using MEASUREMENTS In Engineering we use a great many measuring instruments. COMMUNICATING using MEASUREMENTS In Engineering we use a great many measuring instruments. Scales Verniers Micrometers Gauges Comparators Thermometers Thermistors + Indicator Thermocouples + Indicator

More information

Loop Calibration and Maintenance

Loop Calibration and Maintenance Loop Calibration and Maintenance Application Note Introduction Process instrumentation requires periodic calibration and maintenance to ensure that it is operating correctly. This application note contains

More information

There are as many reasons to test metals as there are metals:

There are as many reasons to test metals as there are metals: Testing Their Mettle Metals testing procedures ensure quality in raw materials and finished products BY BILL O NEIL, ADRIAN RIDDICK, FRANK LIO, PAUL KING, CHRIS WILSON, AND PATTY HARTZELL There are as

More information

TEST REPORT. Rendered to: HOMELAND VINYL PRODUCTS, INC. For:

TEST REPORT. Rendered to: HOMELAND VINYL PRODUCTS, INC. For: TEST REPORT Rendered to: HOMELAND VINYL PRODUCTS, INC. For: PRODUCT: Gorilla Column PVC Porch Post System with PVC Base / Cap Plates, PVC Bushings and 2-3/8 in Diameter and 3-1/2 in Diameter Galvanized

More information

RANGE OF HYDRAULIC BOLT TENSIONERS

RANGE OF HYDRAULIC BOLT TENSIONERS RANGE OF HYDRAULIC BOLT TENSIONERS TensionMax The Next Generation of Bolt Tensioners has Arrived Hydratight, one of the world s leading bolt tensioning and joint integrity companies, introduces TensionMax.

More information

Numerical Analysis of Independent Wire Strand Core (IWSC) Wire Rope

Numerical Analysis of Independent Wire Strand Core (IWSC) Wire Rope Numerical Analysis of Independent Wire Strand Core (IWSC) Wire Rope Rakesh Sidharthan 1 Gnanavel B K 2 Assistant professor Mechanical, Department Professor, Mechanical Department, Gojan engineering college,

More information

Calibration Service Selection Guide

Calibration Service Selection Guide Calibration Service Selection Guide Certification of Accreditation available for download at www.ricelake.com/accreditation. Answer Questions to determine the calibration service you need Need accredited*

More information

Ultrasonic Load Monitoring

Ultrasonic Load Monitoring Ultrasonic Load Monitoring Who We Are One Company, Total Support, Complete Solutions Over many years, Hydratight has provided world-class bolted joint solutions and continues to set international standards

More information

ENERGYand WORK (PART I and II) 9-MAC

ENERGYand WORK (PART I and II) 9-MAC ENERGYand WORK (PART I and II) 9-MAC Purpose: To understand work, potential energy, & kinetic energy. To understand conservation of energy and how energy is converted from one form to the other. Apparatus:

More information

Schedule of Accreditation issued by United Kingdom Accreditation Service 2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK

Schedule of Accreditation issued by United Kingdom Accreditation Service 2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK 2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK Unit 7 Contact: Mr S C Sparks Solent Industrial Estate Tel: +44 (0)1489 790296 Hedge End Fax: +44 (0)1489 790294 Southampton E-Mail: info@southcal.co.uk

More information

Closed-Loop Motion Control Simplifies Non-Destructive Testing

Closed-Loop Motion Control Simplifies Non-Destructive Testing Closed-Loop Motion Control Simplifies Non-Destructive Testing Repetitive non-destructive testing (NDT) applications abound, and designers should consider using programmable motion controllers to power

More information

Fatigue Performance Evaluation of Forged Steel versus Ductile Cast Iron Crankshaft: A Comparative Study (EXECUTIVE SUMMARY)

Fatigue Performance Evaluation of Forged Steel versus Ductile Cast Iron Crankshaft: A Comparative Study (EXECUTIVE SUMMARY) Fatigue Performance Evaluation of Forged Steel versus Ductile Cast Iron Crankshaft: A Comparative Study (EXECUTIVE SUMMARY) Ali Fatemi, Jonathan Williams and Farzin Montazersadgh Professor and Graduate

More information

Mobile field balancing reduces vibrations in energy and power plants. Published in VGB PowerTech 07/2012

Mobile field balancing reduces vibrations in energy and power plants. Published in VGB PowerTech 07/2012 Mobile field balancing reduces vibrations in energy and power plants Published in VGB PowerTech 07/2012 Dr. Edwin Becker PRÜFTECHNIK Condition Monitoring PRÜFTECHNIK Condition Monitoring GmbH 85737 Ismaning

More information

To measure an object length, note the number of divisions spanned by the object then multiply by the conversion factor for the magnification used.

To measure an object length, note the number of divisions spanned by the object then multiply by the conversion factor for the magnification used. STAGE MICROMETERS Introduction Whenever there is a need to make measurements with an eyepiece graticule, there is also a need to ensure that the microscope is calibrated. The use of a stage micrometer

More information

Electronic Communications Committee (ECC) within the European Conference of Postal and Telecommunications Administrations (CEPT)

Electronic Communications Committee (ECC) within the European Conference of Postal and Telecommunications Administrations (CEPT) Page 1 Electronic Communications Committee (ECC) within the European Conference of Postal and Telecommunications Administrations (CEPT) ECC RECOMMENDATION (06)01 Bandwidth measurements using FFT techniques

More information

Application Note Noise Frequently Asked Questions

Application Note Noise Frequently Asked Questions : What is? is a random signal inherent in all physical components. It directly limits the detection and processing of all information. The common form of noise is white Gaussian due to the many random

More information

CORRECTION OF DYNAMIC WHEEL FORCES MEASURED ON ROAD SIMULATORS

CORRECTION OF DYNAMIC WHEEL FORCES MEASURED ON ROAD SIMULATORS Pages 1 to 35 CORRECTION OF DYNAMIC WHEEL FORCES MEASURED ON ROAD SIMULATORS Bohdan T. Kulakowski and Zhijie Wang Pennsylvania Transportation Institute The Pennsylvania State University University Park,

More information

Uniaxial Tension and Compression Testing of Materials. Nikita Khlystov Daniel Lizardo Keisuke Matsushita Jennie Zheng

Uniaxial Tension and Compression Testing of Materials. Nikita Khlystov Daniel Lizardo Keisuke Matsushita Jennie Zheng Uniaxial Tension and Compression Testing of Materials Nikita Khlystov Daniel Lizardo Keisuke Matsushita Jennie Zheng 3.032 Lab Report September 25, 2013 I. Introduction Understanding material mechanics

More information

Mechanical Property Changes in Steel during the Pipe Making Process Brent Keil 1

Mechanical Property Changes in Steel during the Pipe Making Process Brent Keil 1 381 Mechanical Property Changes in Steel during the Pipe Making Process Brent Keil 1 Abstract Welded Steel Pipe (WSP) is arguably the most widely utilized pipe material for the transmission of water throughout

More information

Determination of g using a spring

Determination of g using a spring INTRODUCTION UNIVERSITY OF SURREY DEPARTMENT OF PHYSICS Level 1 Laboratory: Introduction Experiment Determination of g using a spring This experiment is designed to get you confident in using the quantitative

More information

SUPPLEMENTAL TECHNICAL SPECIFICATIONS BI-DIRECTIONAL STATIC LOAD TESTING OF DRILLED SHAFTS

SUPPLEMENTAL TECHNICAL SPECIFICATIONS BI-DIRECTIONAL STATIC LOAD TESTING OF DRILLED SHAFTS July 14, 2015 1.0 GENERAL BI-DIRECTIONAL STATIC LOAD TESTING OF DRILLED SHAFTS This work shall consist of furnishing all materials, equipment, labor, and incidentals necessary for conducting bi-directional

More information

TESTBOX SHAKE TABLE USER MANUAL

TESTBOX SHAKE TABLE USER MANUAL TESTBOX SHAKE TABLE USER MANUAL Writer: Eren AYDIN Date: 05.02.2014 Version: 1.0 Index 1. HARDWARE... 3 1.1 GENERAL OVERVİEW... 3 1.2 CONNECTİONS AND STARTUP... 3 2. SOFTWARE... 6 2.1 SETUP... 6 2.2 IP

More information