Note that the words divisor and factor are equivalent. They have the same meaning.

Size: px
Start display at page:

Download "Note that the words divisor and factor are equivalent. They have the same meaning."

Transcription

1 2 MODULE 5. FACTORING 5a Common Factors The Greatest Common Factor We begin this section with definitions of factors and divisors. Because 24 = 2 12, both 2 and 12 are factors of 24. However, note that 2 is also a divisor of 24, because when you divide 24 by 2 you get 12, with a remainder of zero. Similarly, 12 is also a divisor of 24, because when you divide 24 by 12 you get 2, with a remainder of zero. Factors and divisors. Suppose m and n are integers. Then m is a divisor (factor) ofn if and only if there exists another integer k so that n = m k. Note that the words divisor and factor are equivalent. They have the same meaning. EXAMPLE 1. List the positive divisors (factors) of 24. Solution: First, list all possible ways that we can express 24 as a product of two positive integers: 24 = 1 24 or 24 = 2 12 or 24 = 3 8 or 24 = 4 6 Therefore, the positive divisors (factors) of 24 are 1, 2, 3, 4, 6, 8, and 24. EXAMPLE 2. common. List the positive divisors (factors) that 36 and 48 have in Solution: First, list all positive divisors (factors) of 36 and 48 separately, then box the divisors that are in common. Divisors of 36 are: 1, 2, 3, 4, 6, 9, 12, 18, 36 Divisors of 48 are: 1, 2, 3, 4, 6, 8, 12, 16, 24, 48 Therefore, the common positive divisors (factors) of 36 and 48 are 1, 2, 3, 4, 6, and 12.

2 5A. COMMON FACTORS 3 Greatest common divisor. The greatest common divisor (factor) of a and b is the largest positive number that divides evenly (no remainder) both a and b. The greatest common divisor of a and b is denoted by the symbolism gcd(a, b). We will also use the abbreviation gcf(a, b) to represents the greatest common factor of a and b. Remember, greatest common divisor and greatest common factor have the same meaning. In Example 2, we listed the common positive divisors of 36 and 48. The largest of these common divisors was 12. Hence, the greatest common divisor (factor) of 36 and 48 is 12, written gcd(36, 48) = 12. With smaller numbers, it is usually easy to identify the greatest common divisor (factor). EXAMPLE 3. State the greatest common divisor (factor) of each of the following pairs of numbers: (a) 18 and 24, (b) 30 and 40, and (c) 16 and 24. Solution: In each case, we must find the largest possible positive integer that divides evenly into both the given numbers. a) The largest positive integer that divides evenly into both 18 and 24 is 6. Thus, gcd(18, 24) = 6. b) The largest positive integer that divides evenly into both 30 and 40 is 10. Thus, gcd(30, 40) = 10. c) The largest positive integer that divides evenly into both 16 and 24 is 8. Thus, gcd(16, 24) = 6. With larger numbers, it is harder to identify the greatest common divisor (factor). However, prime factorization will save the day! EXAMPLE 4. Find the greatest common divisor (factor) of 360 and 756. Solution: Prime factor 360 and 756, writing your answer in exponential form

3 4 MODULE 5. FACTORING Thus: 360 = = To find the greatest common divisor (factor), list each factor that appears in common to the highest power that appears in common. In this case, the factors 2 and 3 appear in common, with 2 2 being the highest power of 2 and 3 2 being the highest power of 3 that appear in common. Therefore, the greatest common divisor of 360 and 756 is: GCD = =4 9 =36 Therefore, the greatest common divisor (factor) is gcd(360, 756) = 36. Note what happens when we write each of the given numbers as a product of the greatest common factor and a second factor: 360 = = In each case, note how the second second factors (10 and 21) contain no additional common factors. Finding the Greatest Common Factor of Monomials Example 4 reveals the technique used to find the greatest common factor of two or more monomials. Finding the GCF of two or more monomials. To find the greatest common factor of two or more monomials, proceed as follows: 1. Find the greatest common factor (divisor) of the coefficients of the given monomials. Use prime factorization if necessary. 2. List each variable that appears in common in the given monomials. 3. Raise each variable that appears in common to the highest power that appears in common among the given monomials.

4 5A. COMMON FACTORS 5 ou Try It! EXAMPLE 5. Find the greatest common factor of 6x 3 y 3 and 9x 2 y 5. Solution: To find the GCF of 6x 3 y 3 and 9x 2 y 5,wenotethat: 1. The greatest common factor (divisor) of 6 and 9 is The monomials 6x 3 y 3 and 9x 2 y 5 have the variables x and y in common. 3. The highest power of x in common is x 2. The highest power of y in common is y 3. Thus, the greatest common factor is gcf(6x 3 y 3, 9x 2 y 5 )=3x 2 y 3. Note what happens when we write each of the given monomials as a product of the greatest common factor and a second monomial: 6x 3 y 3 = 3x 2 y 3 2x 9x 2 y 5 = 3x 2 y 3 3y Note how the set of second monomial factors (2x and 3y) contain no additional common factors. EXAMPLE 6. Find the greatest common factor of 12x 4,18x 3,and30x 2. Solution: To find the GCF of 12x 4,18x 3,and30x 2,wenotethat: 1. The greatest common factor (divisor) of 12, 18, and 30 is The monomials 12x 4,18x 3,and30x 2 have the variable x in common. 3. The highest power of x in common is x 2. Thus, the greatest common factor is gcf(12x 4, 18x 3, 30x 2 )=6x 2. Note what happens when we write each of the given monomials as a product of the greatest common factor and a second monomial: 12x 4 = 6x 2 2x 2 18x 3 = 6x 2 3x 30x 2 = 6x 2 5 Note how the set of second monomial factors (2x 2, 3x, and 5) contain no additional common factors.

5 6 MODULE 5. FACTORING Factor Out the GCF Previously we multiplied a monomial and polynomial by distributing the monomial times each term in the polynomial. 2x(3x 2 +4x 7) = 2x 3x 2 + 2x 4x 2x 7 =6x 3 +8x 2 14x In this section we reverse that multiplication process. THat is, you are given the final product and are asked to find original multiplication problem. In the case 6x 3 +8x 2 14x, thegreatestcommonfactorof6x 3,8x 2,and14x is 2x. We then use the distributive property to factor out 2x from each term of the polynomial. 6x 3 +8x 2 14x = 2x 3x 2 + 2x 4x 2x 7 = 2x(3x 2 +4x 7) Factoring. Factoring is unmultiplying. You are given the product, then asked to find the original multiplication problem. First rule of factoring. If the terms of the given polynomial have a greatest common factor (GCF), then factor out the GCF. EXAMPLE 7. Factor: 6x 2 +10x +14 Solution: The greatest common factor (GCF) of 6x 2,10x and 14 is 2. Factor out the GCF. 6x 2 +10x +14=2 3x x = 2(3x 2 +5x +7) Checking your work. check your work. Every time you factor a polynomial, remultiply to Check: Multiply. Distribute the 2. 2(3x 2 +5x +7) = 2 3x x =6x 2 +10x +14 That s the original polynomial, so we factored correctly.

6 5A. COMMON FACTORS 7 ou Try It! EXAMPLE 8. Factor: 12y 5 32y 4 +8y 2 Solution: The greatest common factor (GCF) of 12y 5,32y 4 and 8y 2 is 4y 2. Factor out the GCF. 12y 5 32y 4 +8y 2 = 4y 2 3y 3 4y 2 8y 2 + 4y 2 2 = 4y 2 (3y 3 8y 2 +2) Check: Multiply. Distribute the monomial 4y 2. 4y 2 (3y 3 8y 2 +2) = 4y 2 3y 3 4y 2 8y 2 + 4y 2 2 =12y 5 32y 4 +8y 2 That s the original polynomial. We have factored correctly. EXAMPLE 9. Factor: 12a 3 b +24a 2 b 2 +12ab 3 Solution: The greatest common factor (GCF) of 12a 3 b,24a 2 b 2 and 12ab 3 is 12ab. FactorouttheGCF. 12a 3 b +24a 2 b 2 +12ab 3 = 12ab a 2 12ab 2ab + 12ab b 2 = 12ab(a 2 +2ab + b 2 ) Check: Multiply. Distribute the monomial 12ab. 12ab(a 2 +2ab + b 2 ) = 12ab a 2 12ab 2ab + 12ab b 2 =12a 3 b +24a 2 b 2 +12ab 3 That s the original polynomial. We have factored correctly. Speeding Things Up a Bit After showing your work on a number of examples such as those in Examples 7, 8, and 9, you ll need to learn how to perform the process mentally. EXAMPLE 10. Factor each of the following polynomials: (a) 24x + 32, (b) 5x 3 10x 2 10x, and(c)2x 4 y +2x 3 y 2 6x 2 y 3. Solution: In each case, factor out the greatest common factor (GCF):

7 8 MODULE 5. FACTORING a) The GCF of 24x and 32 is 8. Thus, 24x +32=8(3x +4) b) The GCF of 5x 3,10x 2,and10x is 5x. Thus: 5x 3 10x 2 10x =5x(x 2 2x 2) c) The GCF of 2x 4 y,2x 3 y 2,and6x 2 y 3 is 2x 2 y.thus: 2x 4 y +2x 3 y 2 6x 2 y 3 =2x 2 y(x 2 + xy 3y 2 ) When mentally factoring out the GCF, it is even more important that you check your results. The check can also be done mentally. For example, in checking the third result, mentally distribute 2x 2 y times each term of x 2 + xy 3y 2. For example, multiplying 2x 2 y times the first term x 2 produces 2x 4 y,thefirst term in the original polynomial. 2x 2 y (x 2 + xy 3y 2 )=2x 4 y +2x 3 y 2 6x 2 y 3 Continue in this manner by checking the product of 2x 2 y with each term of x 2 + xy 3y 2. Make sure that each result agrees with the corresponding term of the original polynomial. The distributive property allows us to pull the GCF out in front or to pull it out in back. In symbols: ab + ac = a(b + c) or ba + ca =(b + c)a EXAMPLE 11. Factor: 2x(3x +2)+5(3x +2) Solution: In this case, the greatest common factor (GCF) is 3x +2. 2x(3x +2)+5(3x +2)=2x (3x +2)+5 (3x +2) =(2x +5)(3x +2) EXAMPLE 12. Factor: 15a(a + b) 12(a + b) Solution: In this case, the greatest common factor (GCF) is 3(a + b). 15a(a + b) 12(a + b) =3(a + b) 5a 3(a + b) 4 = 3(a + b)(5a 4)

8 5A. COMMON FACTORS 9 Alternate solution: It is possible that you might fail to notice that 15 and 12 are divisible by 3, factoring out only a common factor a + b. 15a(a + b) 12(a + b) =15a (a + b) 12 (a + b) =(15a 12)(a + b) However, you now need to notice that you can continue, factoring out a 3 from both 15a and 12. =3(5a 4)(a + b) Note that the order of factors differs from the first solution, but because of the commutative property of multiplication, the order does not matter. The answers are the same. Factoring by Grouping The final factoring skill in this section involves four-term expressions. The technique for factoring a four-term expression is called factoring by grouping. EXAMPLE 13. Factor: 2x 2 +3x +2xy +3y Solution: We group the first and second terms, noting that we can factor an x out of both of these terms. Then we group the third and fourth terms, noting that we can factor a y out of both of these terms. 2x 2 +3x +2xy +3y = x (2x +3)+ y (2x +3) Now we note that we can factor a 2x +3outofbothoftheseterms. =(x + y)(2x +3) EXAMPLE 14. Factor: ac bd + ad bc Solution: In the current order, there really isn t any common factor in the first and second terms that we can factor out, nor is there a common factor in the third and fourth terms that we can factor out. ac bd + ad bc

9 10 MODULE 5. FACTORING Upon rearranging the terms, we note that we can factor out an a from the first and second terms and a b from the third and fourth terms. ac + ad bd bc = a (c + d) + b ( d c) However, this is not helpful, because it does not produce a common factor. Let s try factoring a b from the third and fourth terms instead. ac + ad bd bc = a (c + d) b (d + c) At first glance, this still doesn t seem helpful until we realize that d + c is the same as c + d. = a (c + d) b (c + d) Now we can factor a c + d out of both of these terms. =(a b)(c + d) EXAMPLE 15. Factor: 2xy 2xz + yz y 2 Solution: Note that we can factor a 2x out of the first two terms and a y out of the second two terms. 2xy 2xz + yz y 2 =2x (y z) + y (z y) However, this is not helpful, because it does not produce a common factor. Let s try factoring a y from the third and fourth terms instead. 2xy 2xz + yz y 2 =2x (y z) y (y z) That produced a common factor of y z, which we can now factor out. =(2x + y)(y z)

1.3 Polynomials and Factoring

1.3 Polynomials and Factoring 1.3 Polynomials and Factoring Polynomials Constant: a number, such as 5 or 27 Variable: a letter or symbol that represents a value. Term: a constant, variable, or the product or a constant and variable.

More information

In the above, the number 19 is an example of a number because its only positive factors are one and itself.

In the above, the number 19 is an example of a number because its only positive factors are one and itself. Math 100 Greatest Common Factor and Factoring by Grouping (Review) Factoring Definition: A factor is a number, variable, monomial, or polynomial which is multiplied by another number, variable, monomial,

More information

Factoring Trinomials of the Form x 2 bx c

Factoring Trinomials of the Form x 2 bx c 4.2 Factoring Trinomials of the Form x 2 bx c 4.2 OBJECTIVES 1. Factor a trinomial of the form x 2 bx c 2. Factor a trinomial containing a common factor NOTE The process used to factor here is frequently

More information

FACTORING OUT COMMON FACTORS

FACTORING OUT COMMON FACTORS 278 (6 2) Chapter 6 Factoring 6.1 FACTORING OUT COMMON FACTORS In this section Prime Factorization of Integers Greatest Common Factor Finding the Greatest Common Factor for Monomials Factoring Out the

More information

The Euclidean Algorithm

The Euclidean Algorithm The Euclidean Algorithm A METHOD FOR FINDING THE GREATEST COMMON DIVISOR FOR TWO LARGE NUMBERS To be successful using this method you have got to know how to divide. If this is something that you have

More information

Factoring - Grouping

Factoring - Grouping 6.2 Factoring - Grouping Objective: Factor polynomials with four terms using grouping. The first thing we will always do when factoring is try to factor out a GCF. This GCF is often a monomial like in

More information

The Greatest Common Factor; Factoring by Grouping

The Greatest Common Factor; Factoring by Grouping 296 CHAPTER 5 Factoring and Applications 5.1 The Greatest Common Factor; Factoring by Grouping OBJECTIVES 1 Find the greatest common factor of a list of terms. 2 Factor out the greatest common factor.

More information

6.6 Factoring Strategy

6.6 Factoring Strategy 456 CHAPTER 6. FACTORING 6.6 Factoring Strategy When you are concentrating on factoring problems of a single type, after doing a few you tend to get into a rhythm, and the remainder of the exercises, because

More information

When factoring, we look for greatest common factor of each term and reverse the distributive property and take out the GCF.

When factoring, we look for greatest common factor of each term and reverse the distributive property and take out the GCF. Factoring: reversing the distributive property. The distributive property allows us to do the following: When factoring, we look for greatest common factor of each term and reverse the distributive property

More information

6.1 The Greatest Common Factor; Factoring by Grouping

6.1 The Greatest Common Factor; Factoring by Grouping 386 CHAPTER 6 Factoring and Applications 6.1 The Greatest Common Factor; Factoring by Grouping OBJECTIVES 1 Find the greatest common factor of a list of terms. 2 Factor out the greatest common factor.

More information

MATH 10034 Fundamental Mathematics IV

MATH 10034 Fundamental Mathematics IV MATH 0034 Fundamental Mathematics IV http://www.math.kent.edu/ebooks/0034/funmath4.pdf Department of Mathematical Sciences Kent State University January 2, 2009 ii Contents To the Instructor v Polynomials.

More information

SIMPLIFYING ALGEBRAIC FRACTIONS

SIMPLIFYING ALGEBRAIC FRACTIONS Tallahassee Community College 5 SIMPLIFYING ALGEBRAIC FRACTIONS In arithmetic, you learned that a fraction is in simplest form if the Greatest Common Factor (GCF) of the numerator and the denominator is

More information

Definitions 1. A factor of integer is an integer that will divide the given integer evenly (with no remainder).

Definitions 1. A factor of integer is an integer that will divide the given integer evenly (with no remainder). Math 50, Chapter 8 (Page 1 of 20) 8.1 Common Factors Definitions 1. A factor of integer is an integer that will divide the given integer evenly (with no remainder). Find all the factors of a. 44 b. 32

More information

In algebra, factor by rewriting a polynomial as a product of lower-degree polynomials

In algebra, factor by rewriting a polynomial as a product of lower-degree polynomials Algebra 2 Notes SOL AII.1 Factoring Polynomials Mrs. Grieser Name: Date: Block: Factoring Review Factor: rewrite a number or expression as a product of primes; e.g. 6 = 2 3 In algebra, factor by rewriting

More information

5.1 FACTORING OUT COMMON FACTORS

5.1 FACTORING OUT COMMON FACTORS C H A P T E R 5 Factoring he sport of skydiving was born in the 1930s soon after the military began using parachutes as a means of deploying troops. T Today, skydiving is a popular sport around the world.

More information

Chapter 5. Rational Expressions

Chapter 5. Rational Expressions 5.. Simplify Rational Expressions KYOTE Standards: CR ; CA 7 Chapter 5. Rational Expressions Definition. A rational expression is the quotient P Q of two polynomials P and Q in one or more variables, where

More information

Greatest Common Factor (GCF) Factoring

Greatest Common Factor (GCF) Factoring Section 4 4: Greatest Common Factor (GCF) Factoring The last chapter introduced the distributive process. The distributive process takes a product of a monomial and a polynomial and changes the multiplication

More information

Operations with Algebraic Expressions: Multiplication of Polynomials

Operations with Algebraic Expressions: Multiplication of Polynomials Operations with Algebraic Expressions: Multiplication of Polynomials The product of a monomial x monomial To multiply a monomial times a monomial, multiply the coefficients and add the on powers with the

More information

Factoring. Factoring Monomials Monomials can often be factored in more than one way.

Factoring. Factoring Monomials Monomials can often be factored in more than one way. Factoring Factoring is the reverse of multiplying. When we multiplied monomials or polynomials together, we got a new monomial or a string of monomials that were added (or subtracted) together. For example,

More information

NSM100 Introduction to Algebra Chapter 5 Notes Factoring

NSM100 Introduction to Algebra Chapter 5 Notes Factoring Section 5.1 Greatest Common Factor (GCF) and Factoring by Grouping Greatest Common Factor for a polynomial is the largest monomial that divides (is a factor of) each term of the polynomial. GCF is the

More information

Factoring - Greatest Common Factor

Factoring - Greatest Common Factor 6.1 Factoring - Greatest Common Factor Objective: Find the greatest common factor of a polynomial and factor it out of the expression. The opposite of multiplying polynomials together is factoring polynomials.

More information

How To Factor By Gcf In Algebra 1.5

How To Factor By Gcf In Algebra 1.5 7-2 Factoring by GCF Warm Up Lesson Presentation Lesson Quiz Algebra 1 Warm Up Simplify. 1. 2(w + 1) 2. 3x(x 2 4) 2w + 2 3x 3 12x Find the GCF of each pair of monomials. 3. 4h 2 and 6h 2h 4. 13p and 26p

More information

Greatest Common Factor and Least Common Multiple

Greatest Common Factor and Least Common Multiple Greatest Common Factor and Least Common Multiple Intro In order to understand the concepts of Greatest Common Factor (GCF) and Least Common Multiple (LCM), we need to define two key terms: Multiple: Multiples

More information

Factoring Algebra- Chapter 8B Assignment Sheet

Factoring Algebra- Chapter 8B Assignment Sheet Name: Factoring Algebra- Chapter 8B Assignment Sheet Date Section Learning Targets Assignment Tues 2/17 Find the prime factorization of an integer Find the greatest common factor (GCF) for a set of monomials.

More information

SPECIAL PRODUCTS AND FACTORS

SPECIAL PRODUCTS AND FACTORS CHAPTER 442 11 CHAPTER TABLE OF CONTENTS 11-1 Factors and Factoring 11-2 Common Monomial Factors 11-3 The Square of a Monomial 11-4 Multiplying the Sum and the Difference of Two Terms 11-5 Factoring the

More information

Pre-Calculus II Factoring and Operations on Polynomials

Pre-Calculus II Factoring and Operations on Polynomials Factoring... 1 Polynomials...1 Addition of Polynomials... 1 Subtraction of Polynomials...1 Multiplication of Polynomials... Multiplying a monomial by a monomial... Multiplying a monomial by a polynomial...

More information

Factoring a Difference of Two Squares. Factoring a Difference of Two Squares

Factoring a Difference of Two Squares. Factoring a Difference of Two Squares 284 (6 8) Chapter 6 Factoring 87. Tomato soup. The amount of metal S (in square inches) that it takes to make a can for tomato soup is a function of the radius r and height h: S 2 r 2 2 rh a) Rewrite this

More information

Factoring Polynomials

Factoring Polynomials UNIT 11 Factoring Polynomials You can use polynomials to describe framing for art. 396 Unit 11 factoring polynomials A polynomial is an expression that has variables that represent numbers. A number can

More information

Factoring and Applications

Factoring and Applications Factoring and Applications What is a factor? The Greatest Common Factor (GCF) To factor a number means to write it as a product (multiplication). Therefore, in the problem 48 3, 4 and 8 are called the

More information

Factoring Special Polynomials

Factoring Special Polynomials 6.6 Factoring Special Polynomials 6.6 OBJECTIVES 1. Factor the difference of two squares 2. Factor the sum or difference of two cubes In this section, we will look at several special polynomials. These

More information

Factoring Methods. Example 1: 2x + 2 2 * x + 2 * 1 2(x + 1)

Factoring Methods. Example 1: 2x + 2 2 * x + 2 * 1 2(x + 1) Factoring Methods When you are trying to factor a polynomial, there are three general steps you want to follow: 1. See if there is a Greatest Common Factor 2. See if you can Factor by Grouping 3. See if

More information

Factoring Flow Chart

Factoring Flow Chart Factoring Flow Chart greatest common factor? YES NO factor out GCF leaving GCF(quotient) how many terms? 4+ factor by grouping 2 3 difference of squares? perfect square trinomial? YES YES NO NO a 2 -b

More information

FACTORING ax 2 bx c. Factoring Trinomials with Leading Coefficient 1

FACTORING ax 2 bx c. Factoring Trinomials with Leading Coefficient 1 5.7 Factoring ax 2 bx c (5-49) 305 5.7 FACTORING ax 2 bx c In this section In Section 5.5 you learned to factor certain special polynomials. In this section you will learn to factor general quadratic polynomials.

More information

Prime Factorization, Greatest Common Factor (GCF), and Least Common Multiple (LCM)

Prime Factorization, Greatest Common Factor (GCF), and Least Common Multiple (LCM) Prime Factorization, Greatest Common Factor (GCF), and Least Common Multiple (LCM) Definition of a Prime Number A prime number is a whole number greater than 1 AND can only be divided evenly by 1 and itself.

More information

Factoring (pp. 1 of 4)

Factoring (pp. 1 of 4) Factoring (pp. 1 of 4) Algebra Review Try these items from middle school math. A) What numbers are the factors of 4? B) Write down the prime factorization of 7. C) 6 Simplify 48 using the greatest common

More information

17 Greatest Common Factors and Least Common Multiples

17 Greatest Common Factors and Least Common Multiples 17 Greatest Common Factors and Least Common Multiples Consider the following concrete problem: An architect is designing an elegant display room for art museum. One wall is to be covered with large square

More information

0.8 Rational Expressions and Equations

0.8 Rational Expressions and Equations 96 Prerequisites 0.8 Rational Expressions and Equations We now turn our attention to rational expressions - that is, algebraic fractions - and equations which contain them. The reader is encouraged to

More information

3.1. RATIONAL EXPRESSIONS

3.1. RATIONAL EXPRESSIONS 3.1. RATIONAL EXPRESSIONS RATIONAL NUMBERS In previous courses you have learned how to operate (do addition, subtraction, multiplication, and division) on rational numbers (fractions). Rational numbers

More information

5 means to write it as a product something times something instead of a sum something plus something plus something.

5 means to write it as a product something times something instead of a sum something plus something plus something. Intermediate algebra Class notes Factoring Introduction (section 6.1) Recall we factor 10 as 5. Factoring something means to think of it as a product! Factors versus terms: terms: things we are adding

More information

Sect 6.1 - Greatest Common Factor and Factoring by Grouping

Sect 6.1 - Greatest Common Factor and Factoring by Grouping Sect 6.1 - Greatest Common Factor and Factoring by Grouping Our goal in this chapter is to solve non-linear equations by breaking them down into a series of linear equations that we can solve. To do this,

More information

This is Factoring and Solving by Factoring, chapter 6 from the book Beginning Algebra (index.html) (v. 1.0).

This is Factoring and Solving by Factoring, chapter 6 from the book Beginning Algebra (index.html) (v. 1.0). This is Factoring and Solving by Factoring, chapter 6 from the book Beginning Algebra (index.html) (v. 1.0). This book is licensed under a Creative Commons by-nc-sa 3.0 (http://creativecommons.org/licenses/by-nc-sa/

More information

Simplifying Algebraic Fractions

Simplifying Algebraic Fractions 5. Simplifying Algebraic Fractions 5. OBJECTIVES. Find the GCF for two monomials and simplify a fraction 2. Find the GCF for two polynomials and simplify a fraction Much of our work with algebraic fractions

More information

6.3 FACTORING ax 2 bx c WITH a 1

6.3 FACTORING ax 2 bx c WITH a 1 290 (6 14) Chapter 6 Factoring e) What is the approximate maximum revenue? f) Use the accompanying graph to estimate the price at which the revenue is zero. y Revenue (thousands of dollars) 300 200 100

More information

expression is written horizontally. The Last terms ((2)( 4)) because they are the last terms of the two polynomials. This is called the FOIL method.

expression is written horizontally. The Last terms ((2)( 4)) because they are the last terms of the two polynomials. This is called the FOIL method. A polynomial of degree n (in one variable, with real coefficients) is an expression of the form: a n x n + a n 1 x n 1 + a n 2 x n 2 + + a 2 x 2 + a 1 x + a 0 where a n, a n 1, a n 2, a 2, a 1, a 0 are

More information

FACTORING POLYNOMIALS

FACTORING POLYNOMIALS 296 (5-40) Chapter 5 Exponents and Polynomials where a 2 is the area of the square base, b 2 is the area of the square top, and H is the distance from the base to the top. Find the volume of a truncated

More information

Copy in your notebook: Add an example of each term with the symbols used in algebra 2 if there are any.

Copy in your notebook: Add an example of each term with the symbols used in algebra 2 if there are any. Algebra 2 - Chapter Prerequisites Vocabulary Copy in your notebook: Add an example of each term with the symbols used in algebra 2 if there are any. P1 p. 1 1. counting(natural) numbers - {1,2,3,4,...}

More information

6.5 Factoring Special Forms

6.5 Factoring Special Forms 440 CHAPTER 6. FACTORING 6.5 Factoring Special Forms In this section we revisit two special product forms that we learned in Chapter 5, the first of which was squaring a binomial. Squaring a binomial.

More information

15.1 Factoring Polynomials

15.1 Factoring Polynomials LESSON 15.1 Factoring Polynomials Use the structure of an expression to identify ways to rewrite it. Also A.SSE.3? ESSENTIAL QUESTION How can you use the greatest common factor to factor polynomials? EXPLORE

More information

BEGINNING ALGEBRA ACKNOWLEDMENTS

BEGINNING ALGEBRA ACKNOWLEDMENTS BEGINNING ALGEBRA The Nursing Department of Labouré College requested the Department of Academic Planning and Support Services to help with mathematics preparatory materials for its Bachelor of Science

More information

Factoring - Factoring Special Products

Factoring - Factoring Special Products 6.5 Factoring - Factoring Special Products Objective: Identify and factor special products including a difference of squares, perfect squares, and sum and difference of cubes. When factoring there are

More information

Factoring Polynomials

Factoring Polynomials Factoring Polynomials Factoring Factoring is the process of writing a polynomial as the product of two or more polynomials. The factors of 6x 2 x 2 are 2x + 1 and 3x 2. In this section, we will be factoring

More information

Factoring Quadratic Expressions

Factoring Quadratic Expressions Factoring the trinomial ax 2 + bx + c when a = 1 A trinomial in the form x 2 + bx + c can be factored to equal (x + m)(x + n) when the product of m x n equals c and the sum of m + n equals b. (Note: the

More information

Math 25 Activity 6: Factoring Advanced

Math 25 Activity 6: Factoring Advanced Instructor! Math 25 Activity 6: Factoring Advanced Last week we looked at greatest common factors and the basics of factoring out the GCF. In this second activity, we will discuss factoring more difficult

More information

By reversing the rules for multiplication of binomials from Section 4.6, we get rules for factoring polynomials in certain forms.

By reversing the rules for multiplication of binomials from Section 4.6, we get rules for factoring polynomials in certain forms. SECTION 5.4 Special Factoring Techniques 317 5.4 Special Factoring Techniques OBJECTIVES 1 Factor a difference of squares. 2 Factor a perfect square trinomial. 3 Factor a difference of cubes. 4 Factor

More information

Section 6.1 Factoring Expressions

Section 6.1 Factoring Expressions Section 6.1 Factoring Expressions The first method we will discuss, in solving polynomial equations, is the method of FACTORING. Before we jump into this process, you need to have some concept of what

More information

Click on the links below to jump directly to the relevant section

Click on the links below to jump directly to the relevant section Click on the links below to jump directly to the relevant section What is algebra? Operations with algebraic terms Mathematical properties of real numbers Order of operations What is Algebra? Algebra is

More information

Factoring. Factoring Polynomial Equations. Special Factoring Patterns. Factoring. Special Factoring Patterns. Special Factoring Patterns

Factoring. Factoring Polynomial Equations. Special Factoring Patterns. Factoring. Special Factoring Patterns. Special Factoring Patterns Factoring Factoring Polynomial Equations Ms. Laster Earlier, you learned to factor several types of quadratic expressions: General trinomial - 2x 2-5x-12 = (2x + 3)(x - 4) Perfect Square Trinomial - x

More information

MATH 90 CHAPTER 6 Name:.

MATH 90 CHAPTER 6 Name:. MATH 90 CHAPTER 6 Name:. 6.1 GCF and Factoring by Groups Need To Know Definitions How to factor by GCF How to factor by groups The Greatest Common Factor Factoring means to write a number as product. a

More information

Math 10C. Course: Polynomial Products and Factors. Unit of Study: Step 1: Identify the Outcomes to Address. Guiding Questions:

Math 10C. Course: Polynomial Products and Factors. Unit of Study: Step 1: Identify the Outcomes to Address. Guiding Questions: Course: Unit of Study: Math 10C Polynomial Products and Factors Step 1: Identify the Outcomes to Address Guiding Questions: What do I want my students to learn? What can they currently understand and do?

More information

Chapter R.4 Factoring Polynomials

Chapter R.4 Factoring Polynomials Chapter R.4 Factoring Polynomials Introduction to Factoring To factor an expression means to write the expression as a product of two or more factors. Sample Problem: Factor each expression. a. 15 b. x

More information

Factor Polynomials Completely

Factor Polynomials Completely 9.8 Factor Polynomials Completely Before You factored polynomials. Now You will factor polynomials completely. Why? So you can model the height of a projectile, as in Ex. 71. Key Vocabulary factor by grouping

More information

Tool 1. Greatest Common Factor (GCF)

Tool 1. Greatest Common Factor (GCF) Chapter 4: Factoring Review Tool 1 Greatest Common Factor (GCF) This is a very important tool. You must try to factor out the GCF first in every problem. Some problems do not have a GCF but many do. When

More information

POLYNOMIALS and FACTORING

POLYNOMIALS and FACTORING POLYNOMIALS and FACTORING Exponents ( days); 1. Evaluate exponential expressions. Use the product rule for exponents, 1. How do you remember the rules for exponents?. How do you decide which rule to use

More information

CM2202: Scientific Computing and Multimedia Applications General Maths: 2. Algebra - Factorisation

CM2202: Scientific Computing and Multimedia Applications General Maths: 2. Algebra - Factorisation CM2202: Scientific Computing and Multimedia Applications General Maths: 2. Algebra - Factorisation Prof. David Marshall School of Computer Science & Informatics Factorisation Factorisation is a way of

More information

Quotient Rings and Field Extensions

Quotient Rings and Field Extensions Chapter 5 Quotient Rings and Field Extensions In this chapter we describe a method for producing field extension of a given field. If F is a field, then a field extension is a field K that contains F.

More information

Monomial Factors. Sometimes the expression to be factored is simple enough to be able to use straightforward inspection.

Monomial Factors. Sometimes the expression to be factored is simple enough to be able to use straightforward inspection. The Mathematics 11 Competency Test Monomial Factors The first stage of factoring an algebraic expression involves the identification of any factors which are monomials. We will describe the process by

More information

How To Solve Factoring Problems

How To Solve Factoring Problems 05-W4801-AM1.qxd 8/19/08 8:45 PM Page 241 Factoring, Solving Equations, and Problem Solving 5 5.1 Factoring by Using the Distributive Property 5.2 Factoring the Difference of Two Squares 5.3 Factoring

More information

Algebra I Vocabulary Cards

Algebra I Vocabulary Cards Algebra I Vocabulary Cards Table of Contents Expressions and Operations Natural Numbers Whole Numbers Integers Rational Numbers Irrational Numbers Real Numbers Absolute Value Order of Operations Expression

More information

Algebra Cheat Sheets

Algebra Cheat Sheets Sheets Algebra Cheat Sheets provide you with a tool for teaching your students note-taking, problem-solving, and organizational skills in the context of algebra lessons. These sheets teach the concepts

More information

Negative Integer Exponents

Negative Integer Exponents 7.7 Negative Integer Exponents 7.7 OBJECTIVES. Define the zero exponent 2. Use the definition of a negative exponent to simplify an expression 3. Use the properties of exponents to simplify expressions

More information

Boolean Algebra Part 1

Boolean Algebra Part 1 Boolean Algebra Part 1 Page 1 Boolean Algebra Objectives Understand Basic Boolean Algebra Relate Boolean Algebra to Logic Networks Prove Laws using Truth Tables Understand and Use First Basic Theorems

More information

1.5. Factorisation. Introduction. Prerequisites. Learning Outcomes. Learning Style

1.5. Factorisation. Introduction. Prerequisites. Learning Outcomes. Learning Style Factorisation 1.5 Introduction In Block 4 we showed the way in which brackets were removed from algebraic expressions. Factorisation, which can be considered as the reverse of this process, is dealt with

More information

Name Intro to Algebra 2. Unit 1: Polynomials and Factoring

Name Intro to Algebra 2. Unit 1: Polynomials and Factoring Name Intro to Algebra 2 Unit 1: Polynomials and Factoring Date Page Topic Homework 9/3 2 Polynomial Vocabulary No Homework 9/4 x In Class assignment None 9/5 3 Adding and Subtracting Polynomials Pg. 332

More information

Using the ac Method to Factor

Using the ac Method to Factor 4.6 Using the ac Method to Factor 4.6 OBJECTIVES 1. Use the ac test to determine factorability 2. Use the results of the ac test 3. Completely factor a trinomial In Sections 4.2 and 4.3 we used the trial-and-error

More information

Solution to Homework 2

Solution to Homework 2 Solution to Homework 2 Olena Bormashenko September 23, 2011 Section 1.4: 1(a)(b)(i)(k), 4, 5, 14; Section 1.5: 1(a)(b)(c)(d)(e)(n), 2(a)(c), 13, 16, 17, 18, 27 Section 1.4 1. Compute the following, if

More information

CHAPTER 5. Number Theory. 1. Integers and Division. Discussion

CHAPTER 5. Number Theory. 1. Integers and Division. Discussion CHAPTER 5 Number Theory 1. Integers and Division 1.1. Divisibility. Definition 1.1.1. Given two integers a and b we say a divides b if there is an integer c such that b = ac. If a divides b, we write a

More information

A Systematic Approach to Factoring

A Systematic Approach to Factoring A Systematic Approach to Factoring Step 1 Count the number of terms. (Remember****Knowing the number of terms will allow you to eliminate unnecessary tools.) Step 2 Is there a greatest common factor? Tool

More information

On the generation of elliptic curves with 16 rational torsion points by Pythagorean triples

On the generation of elliptic curves with 16 rational torsion points by Pythagorean triples On the generation of elliptic curves with 16 rational torsion points by Pythagorean triples Brian Hilley Boston College MT695 Honors Seminar March 3, 2006 1 Introduction 1.1 Mazur s Theorem Let C be a

More information

CHAPTER 7: FACTORING POLYNOMIALS

CHAPTER 7: FACTORING POLYNOMIALS CHAPTER 7: FACTORING POLYNOMIALS FACTOR (noun) An of two or more quantities which form a product when multiplied together. 1 can be rewritten as 3*, where 3 and are FACTORS of 1. FACTOR (verb) - To factor

More information

1.4. Arithmetic of Algebraic Fractions. Introduction. Prerequisites. Learning Outcomes

1.4. Arithmetic of Algebraic Fractions. Introduction. Prerequisites. Learning Outcomes Arithmetic of Algebraic Fractions 1.4 Introduction Just as one whole number divided by another is called a numerical fraction, so one algebraic expression divided by another is known as an algebraic fraction.

More information

Homework until Test #2

Homework until Test #2 MATH31: Number Theory Homework until Test # Philipp BRAUN Section 3.1 page 43, 1. It has been conjectured that there are infinitely many primes of the form n. Exhibit five such primes. Solution. Five such

More information

MATH 13150: Freshman Seminar Unit 10

MATH 13150: Freshman Seminar Unit 10 MATH 13150: Freshman Seminar Unit 10 1. Relatively prime numbers and Euler s function In this chapter, we are going to discuss when two numbers are relatively prime, and learn how to count the numbers

More information

Online EFFECTIVE AS OF JANUARY 2013

Online EFFECTIVE AS OF JANUARY 2013 2013 A and C Session Start Dates (A-B Quarter Sequence*) 2013 B and D Session Start Dates (B-A Quarter Sequence*) Quarter 5 2012 1205A&C Begins November 5, 2012 1205A Ends December 9, 2012 Session Break

More information

Academic Success Centre

Academic Success Centre 250) 960-6367 Factoring Polynomials Sometimes when we try to solve or simplify an equation or expression involving polynomials the way that it looks can hinder our progress in finding a solution. Factorization

More information

Factoring Whole Numbers

Factoring Whole Numbers 2.2 Factoring Whole Numbers 2.2 OBJECTIVES 1. Find the factors of a whole number 2. Find the prime factorization for any number 3. Find the greatest common factor (GCF) of two numbers 4. Find the GCF for

More information

FACTORISATION YEARS. A guide for teachers - Years 9 10 June 2011. The Improving Mathematics Education in Schools (TIMES) Project

FACTORISATION YEARS. A guide for teachers - Years 9 10 June 2011. The Improving Mathematics Education in Schools (TIMES) Project 9 10 YEARS The Improving Mathematics Education in Schools (TIMES) Project FACTORISATION NUMBER AND ALGEBRA Module 33 A guide for teachers - Years 9 10 June 2011 Factorisation (Number and Algebra : Module

More information

Factoring Polynomials

Factoring Polynomials Factoring a Polynomial Expression Factoring a polynomial is expressing the polynomial as a product of two or more factors. Simply stated, it is somewhat the reverse process of multiplying. To factor polynomials,

More information

Section 4.1 Rules of Exponents

Section 4.1 Rules of Exponents Section 4.1 Rules of Exponents THE MEANING OF THE EXPONENT The exponent is an abbreviation for repeated multiplication. The repeated number is called a factor. x n means n factors of x. The exponent tells

More information

Algebra 1 Chapter 08 review

Algebra 1 Chapter 08 review Name: Class: Date: ID: A Algebra 1 Chapter 08 review Multiple Choice Identify the choice that best completes the statement or answers the question. Simplify the difference. 1. (4w 2 4w 8) (2w 2 + 3w 6)

More information

FINDING THE LEAST COMMON DENOMINATOR

FINDING THE LEAST COMMON DENOMINATOR 0 (7 18) Chapter 7 Rational Expressions GETTING MORE INVOLVED 7. Discussion. Evaluate each expression. a) One-half of 1 b) One-third of c) One-half of x d) One-half of x 7. Exploration. Let R 6 x x 0 x

More information

Polynomials. Key Terms. quadratic equation parabola conjugates trinomial. polynomial coefficient degree monomial binomial GCF

Polynomials. Key Terms. quadratic equation parabola conjugates trinomial. polynomial coefficient degree monomial binomial GCF Polynomials 5 5.1 Addition and Subtraction of Polynomials and Polynomial Functions 5.2 Multiplication of Polynomials 5.3 Division of Polynomials Problem Recognition Exercises Operations on Polynomials

More information

CS 103X: Discrete Structures Homework Assignment 3 Solutions

CS 103X: Discrete Structures Homework Assignment 3 Solutions CS 103X: Discrete Structures Homework Assignment 3 s Exercise 1 (20 points). On well-ordering and induction: (a) Prove the induction principle from the well-ordering principle. (b) Prove the well-ordering

More information

6.1 Add & Subtract Polynomial Expression & Functions

6.1 Add & Subtract Polynomial Expression & Functions 6.1 Add & Subtract Polynomial Expression & Functions Objectives 1. Know the meaning of the words term, monomial, binomial, trinomial, polynomial, degree, coefficient, like terms, polynomial funciton, quardrtic

More information

SECTION 0.6: POLYNOMIAL, RATIONAL, AND ALGEBRAIC EXPRESSIONS

SECTION 0.6: POLYNOMIAL, RATIONAL, AND ALGEBRAIC EXPRESSIONS (Section 0.6: Polynomial, Rational, and Algebraic Expressions) 0.6.1 SECTION 0.6: POLYNOMIAL, RATIONAL, AND ALGEBRAIC EXPRESSIONS LEARNING OBJECTIVES Be able to identify polynomial, rational, and algebraic

More information

Algebra 2 PreAP. Name Period

Algebra 2 PreAP. Name Period Algebra 2 PreAP Name Period IMPORTANT INSTRUCTIONS FOR STUDENTS!!! We understand that students come to Algebra II with different strengths and needs. For this reason, students have options for completing

More information

SIMPLIFYING SQUARE ROOTS

SIMPLIFYING SQUARE ROOTS 40 (8-8) Chapter 8 Powers and Roots 8. SIMPLIFYING SQUARE ROOTS In this section Using the Product Rule Rationalizing the Denominator Simplified Form of a Square Root In Section 8. you learned to simplify

More information

SECTION P.5 Factoring Polynomials

SECTION P.5 Factoring Polynomials BLITMCPB.QXP.0599_48-74 /0/0 0:4 AM Page 48 48 Chapter P Prerequisites: Fundamental Concepts of Algebra Technology Eercises Critical Thinking Eercises 98. The common cold is caused by a rhinovirus. The

More information

Pigeonhole Principle Solutions

Pigeonhole Principle Solutions Pigeonhole Principle Solutions 1. Show that if we take n + 1 numbers from the set {1, 2,..., 2n}, then some pair of numbers will have no factors in common. Solution: Note that consecutive numbers (such

More information