CHAPTER 6. Chemical Bonds

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "CHAPTER 6. Chemical Bonds"

Transcription

1 CHAPTER 6 Chemical Bonds

2 Valence Electrons 1. Electrons farthest away from the nucleus. The electrons in the highest occupied energy level of an atom of that element. 2. They play a key role in chemical reactions. They are used to form chemical bonds 3. The valence electrons increase from left to right in a period. 4. May be transferred from one atom to another or they may be shared between atoms. 5. The number of valence electrons in an atom can range from 1 to When the highest occupied energy level of an atom is filled with electrons (8 electrons except for H & He), the atom is stable and not likely to react. That is why the Noble Gases are not very reactive. Their highest energy level is filled with 8 valence electrons 7. Each element has a typical number of valence electrons.

3 Electron Dot Diagram (used to show how many valence electrons each element has) C O H! Ne A model of an atom in which the dots around each element symbol represent the number of valence electron that the element has in its highest energy level is called an Electron Dot Diagram. (Lewis dot diagram). Carbon has 4 valence electron therefore this is shown by 4 dots around C. Neon is stable- highest occupied energy level is full- it has 8 valence electrons.

4 Making Bonds Atoms are most stable when they have 8 valence electrons in the highest energy level, with the exception of Hydrogen and Helium, which are full with 2 VE in their one energy level. Typically, atoms gain, lose, or share electrons to achieve a stable electron configuration. Some elements achieve stable electron configurations through the transfer of electrons between atoms. This occurs between a metal and a nonmetal and the bond is called an ionic bond. The compound formed is called an Ionic compound. Some elements achieve stable electron configuration by sharing electrons. This occurs between a nonmetal and a nonmetal and the bond is called a covalent bond.

5 Forming Ionic Bonds Elements that transfer electrons form ionic bonds. Ionic Bonds Occur between metals & nonmetals Example: Na sodium (metal) has 1 VE Cl chlorine (nonmetal) has 7 VE Sodium can give its 1 valence electron to Chlorine then sodium would have no electrons in that shell, it would disappear and it highest occupied energy level would then have 8 and chlorine would have 8 and they would both be more stable. When an atom gains or loses an electron, the number of protons is no longer equal to the number of electrons. The charge on the atom is not balanced and therefore becomes a charged ION. An ion is an atom that has a net electric charge of either positive or negative. An ion with a negative charge is called an anion and an ion with a positive charge is called a cation.

6

7 Ionization It takes energy to lose electrons and this energy is called Ionization energy. Cations (positive ions) form when electron gain enough energy to escape from the atom. The energy allows electrons to overcome the attraction of the protons in the nucleus. The amount of energy used to remove an electron is called ionization. Ionization increases from left to right on a Periodic Table. It takes more energy to remove an electron from a nonmetal than from a metal in the same period.

8 The positive ion (cation) is a metal element. The negative ion (anion) is a nonmetal element. A particle with a negative charge will attract a particle with a positive charge. So when an anion and cation are close together, a chemical bond forms between them and holds the compound together. A chemical bond is the force that holds atoms together. An ionic bond is the force that holds cations (+) and anions (-) together. An ionic bond forms when electrons are transferred from one atom to another. 4 steps to show formation of ionic bond: STEP 1: Electron Dot STEP 4: Show Neutral Compound NaCl STEP 2: Transfer of electrons STEP 3: Show ions formed

9 When more then one element is needed to transfer electrons: A magnesium atom cannot reach a stable electron configuration by reacting with just one chlorine. It must transfer 2 valence electrons that are in its highest energy level to become stable. Therefore it will need 2 chlorine atoms. The formula for the compound formed is MgCl 2 and is called magnesium chloride. The subscript 2 indicates that there are two chloride ions for each magnesium ion. MgCl 2

10 Ionic Bonding

11 IONIC COMPOUNDS Compounds that contain ionic bonds are ionic compounds, represented by a chemical formula. A chemical formula is a notation that shows what elements a compound contains and the ratio of the atoms or ions of these elements in the compound. The properties of an ionic compound can be explained by the strong attractions among ions within a crystal lattice. Ionic Compound Properties: 1. Conducts electricity in melted state or dissolved state ONLY (ions free to flow) 2. High melting points 3. Forms when electrons are transferred 4. Has crystal shape ( orderly, 3-dimensional, lattice structure) therefore tends to shatters when struck 5. Ionic bonds hold compound together 6. Bond between metal and nonmetal NaCl-Sodium Chloride is salt

12 Practice Ionic Bonding 1. Na + Cl! 2. Mg + O! 3. Na + F! 4. Li + O! 5. Mg + S! 6. Al + Cl

13 Sec 2 COVALENT BONDS Covalent bonds form when 2 atoms share a pair of valence electrons.this occurs between a nonmetal and a nonmetal. 1 paired shared is called a single bond. 2 pairs of electrons shared forms double bonds, and 3 pairs shared form triple bonds. (F- F O=O N N ) Covalent bonds are formed between 2 or more nonmetals. EX: F + F F:F or F-F (pair of dots, are 2 electrons; it is replaced by a line to represent a bond.) Now both F have 8 valence electrons. They have formed a molecule. A molecule is a neutral group of atoms that are joined together by one or more covalent bonds. Every atom can have 8 VE with the exception of hydrogen and helium. They can have no more than 2 electrons and form 1 bond. YouTube - Covalent Bond

14 Covalent Bonding

15 5 Steps to show covalent bonding: STEP 1: Electron Dot STEP 2: Place electrons to be shared between atoms STEP 3: Circle to show electrons being shared H-H STEP 4: Replace pair of shared electrons with bond line STEP 5: Write final Molecular compound H2 Cl-Cl Cl2 The attraction between the shared electrons and the protons in each nucleus hold the atoms together in a covalent bond. If 2 pair of electron ( 4 electrons) are sharing it forms Double Bonds (O 2 ) If 3 pair of electrons are shared it forms triple bonds (N 2 )

16 MOLECULAR COMPOUNDS (covalently bonded compounds) 1. Have low melting points 2. Poor conductors of electricity because they do not form charged ions. 3. Form when electrons are shared. 4. Force holding them together are weaker. 5. Are covalently bonded 6. Bond between nonmetal and nonmetal

17 Practice Covalent Bonding 1. H + O! 2. N + H! 3. C + O! 4. N + N! 5. O + O

18 In Covalent Bonds, where atoms share electrons, some atoms pull more strongly on the shared electrons than other atoms do. As a result, the electrons move closer to one atom causing the atoms to have a very slight electrical charge, forming a polar covalent bond. H-Cl Cl2 Electrons not shared equally the bond is POLAR covalent bond. Chlorine has a stronger attraction to the shared electrons. It is more electronegative. Atoms in a Polar covalent bond carry a slight electrical charge shown by a - Greek lowercase delta letter. + When electrons are shared and pulled equally bond is NON-POLAR covalent bond. There is NO slight charge. or

19 Attracting shared electrons: Electronegativity The larger the value of the electronegativity, the greater the atom s strength to attract a bonding pair of electrons. With a few exceptions, the electronegativity of an atom increase, from left to right, in a period, and decrease, from top to bottom, in a family. Decreasing Increasing

20 The covalent bonds between the hydrogen and oxygen atoms in a water molecule are called intramolecular bonds. (The prefix intra- comes from the Latin stem meaning "within or inside."

21 A long dash represents two electrons being shared

22 POLAR COMPOUNDS EX: water Has a stronger attraction between molecules than nonpolar molecular compounds. Slightly charged molecule The bonds between the neighboring water molecules in ice or water are called intermolecular bonds, from the Latin stem meaning "between." NONPOLAR COMPOUNDS Ex: oil Does not dissolve well in water No Charge The type of atoms in a molecule and its shape are factors that determine whether a molecule is polar or nonpolar. Polar and Nonpolar compounds usually do not mix well. Attractions between polar molecules are stronger than attractions between nonpolar molecules. Does not have strong attractions between the molecules

23 POLAR Molecules NONPOLAR Molecules

24 Polar molecular compounds, like water can dissolve Ionic compounds as well as other Polar Molecular Compounds Table Salt Dissolving in Water Any substance that is made up of ions (ionic compounds) or molecules that have polar covalent bonds can dissolve in water, due to waters polar properties (having a slight charge). This idea also explains why some substances do not dissolve in water. Oil, for example, is a nonpolar molecule. Because there is no net electrical charge across an oil molecule, it is not attracted to water molecules and therefore does not dissolve in water.

25 Compound Review Molecular Compounds have covalently bonded atoms. (shared electrons) Ionic Compounds have ionic bonds holding the atoms together.( electrons transferred) Forces holding molecular compounds together are weaker than forces holding ionic compounds together.

26 Molecular Compound Ionic Compound

27 Ionic compounds have a stronger force holding them together due to this opposite charge attraction, therefore they have a higher melting point and it would take a lot more energy to break their bonds than it would a molecular compound composed of covalent bonds.

28

29 Sec 3 Naming Ionic Compounds When naming ionic compounds the positive ion comes first followed by the negative ion. The negative ion s name ending changes to---ide. If the negative ion is a single element, the end of its name changes to ide. Ex: MgO contains magnesium and oxygen. Its name is Magnesium Oxide. The metal (cation) is named first followed by the nonmetal (anion). But If the negative ion (anion) is polyatomic, its name is unchanged. Ex: Na 2 CO 3 is sodium carbonate. Polyatomic ions- are made up of more then one element that is covalently bonded and acts as a unit.) Carbonate, CO 3 is a polyatomic acting as the nonmetal bonding with the metal sodium (Na). Most polyatomic ions are anions (negative ions), acting as a nonmetal unit EX: OH -, NO 3-, SO 4 2- ( see table on page 173) Formulas of ionic compounds are used to describe the ratio of the ions in the compound. We use element symbols with subscripts added to indicate the ratio of the ions in the compound. A compound made from only 2 kind of elements is a binary compound. EX: NaCl, BaCl 2, KCl,

30 Writing Binary Formulas for Ionic Compounds Write the element symbol(s) for the cation on the left and the anion on the right. Now balance the formula out so that there is a net charge of zero. A simple way to balance out an equation is to use the! Criss-Cross method.!! For Example: Al +3 O -2! Aluminum has a charge of 3+ and Oxygen has a charge of-2! Criss-Cross each charge Al2O3 Aluminum Oxide Li +, Br - would be LiBr! Fe +3, O -2 would be Fe2O3

31 Naming Binary Molecular Compounds (covalent) When naming Binary Compounds of Covalently bonded Molecular compounds you use the prefix method. Examples: H 2 O two hydrogen and one oxygen-named dihydrogen monoxide! SO 2 there is one sulfur and two oxygen atoms in this compound. the name would be monosulfur dioxide---the prefix mono often is not used for the first element in the name, so a more common name for this compound would be----sulfur Dioxide! N 2 O 5 there are two nitrogen atoms and 5 oxygen atoms in this compound, the name would be Dinitrogen Pentoxide

32 Naming Molecular Compounds The element that is most metallic (of the nonmetallic compound) is read first. If both are in the same group the more metallic element is the one closer to the bottom of the group. The second element s ending is changed to ide. EX: Carbon Dioxide. CO 2 Since there are 2 oxygens the prefix Di- is used. The name and formula of a molecular compound describes the type and number of atoms in a molecule of the compound. Greek Prefixes for Naming Molecular Compounds 1. Mono- 7 Hepta- 2. Di- 8 Octa- 3. Tri- 9 Nona- 4. Tetra- 10 Deca- 5. Penta- 6. Hexa- (covalent compounds)

33 Sec 4 Properties of Metals The properties of metals are related to the bonds within the metals. Normally metals achieve stable electron configuration by losing electrons and a nonmetal accepts it. But what if there is no nonmetal around to accept the electrons? In metals, the valence electrons are free to move among the metal atoms. They are referred to as a pool of shared electrons. A metallic bond will form between the metal cation and this pool of shared electrons that surround it. Even though the pool of electrons are moving the number of electron do not change. So the metal atoms remain neutral. The more valence electrons a metal has to contribute to this pool of electrons the stronger the bond will be. Alkali metals only have 1 valence electron to contribute so they form weak metallic bonds between each of their atoms. These metals are very soft. Transition metal have more valence electrons to contribute and therefore are harder and have higher melting points than other metals. The mobility of electrons within a metal lattice explains some of the properties of metals. Because this pool of electrons can flow from one place to another it makes metals good conductors of electricity. An electric current can be carried through a metal by the free flow of these electrons. This also helps explain why metals are malleable and ductile.

34 Metallic Bonding

35 Al Aluminum ion Pool of valence electrons In a metal, cations are surrounded by shared valence electrons. If a metal is struck by a hammer the ions are still surrounded by electrons and it will not shatter. In a metal, valence electrons are free to move among the atoms.

36 Alloys A substance composed of two or more metals or of a metal and a nonmetal united usually by being fused together and dissolving in each other when molten (melted state). Alloys have properties of metals. An alloy is used to make tools become strong and non reactive to water and air. In every alloy at least one of the elements is a metal. Copper Alloys- Bronze made of copper and tin. Together the metals are much harder and stronger than by themselves. Iron Alloys- Brass- made of copper and zinc. It is shinier and softer than bronze. Steel is an alloy of mainly iron and carbon. Stainless steel- alloy of iron and chromium almost no carbon. Aluminum alloys- aluminum mixed with manganese or copper makes aluminum stronger.! Scientists can design alloys with specific properties by varying the types and amounts of elements in an alloy.

Type of Chemical Bonds

Type of Chemical Bonds Type of Chemical Bonds Covalent bond Polar Covalent bond Ionic bond Hydrogen bond Metallic bond Van der Waals bonds. Covalent Bonds Covalent bond: bond in which one or more pairs of electrons are shared

More information

Bonding in Elements and Compounds. Covalent

Bonding in Elements and Compounds. Covalent Bonding in Elements and Compounds Structure of solids, liquids and gases Types of bonding between atoms and molecules Ionic Covalent Metallic Many compounds between metals & nonmetals (salts), e.g. Na,

More information

Reading Preview. Key Terms covalent bond molecule double bond triple bond molecular compound polar bond nonpolar bond

Reading Preview. Key Terms covalent bond molecule double bond triple bond molecular compound polar bond nonpolar bond Section 4 4 bjectives After this lesson, students will be able to L.1.4.1 State what holds covalently bonded s together. L.1.4.2 Identify the properties of molecular compounds. L.1.4.3 Explain how unequal

More information

Chapter 13 - LIQUIDS AND SOLIDS

Chapter 13 - LIQUIDS AND SOLIDS Chapter 13 - LIQUIDS AND SOLIDS Problems to try at end of chapter: Answers in Appendix I: 1,3,5,7b,9b,15,17,23,25,29,31,33,45,49,51,53,61 13.1 Properties of Liquids 1. Liquids take the shape of their container,

More information

Chemistry Post-Enrolment Worksheet

Chemistry Post-Enrolment Worksheet Name: Chemistry Post-Enrolment Worksheet The purpose of this worksheet is to get you to recap some of the fundamental concepts that you studied at GCSE and introduce some of the concepts that will be part

More information

Part B 2. Allow a total of 15 credits for this part. The student must answer all questions in this part.

Part B 2. Allow a total of 15 credits for this part. The student must answer all questions in this part. Part B 2 Allow a total of 15 credits for this part. The student must answer all questions in this part. 51 [1] Allow 1 credit for 3 Mg(s) N 2 (g) Mg 3 N 2 (s). Allow credit even if the coefficient 1 is

More information

Candidate Style Answer

Candidate Style Answer Candidate Style Answer Chemistry A Unit F321 Atoms, Bonds and Groups High banded response This Support Material booklet is designed to accompany the OCR GCE Chemistry A Specimen Paper F321 for teaching

More information

Bonds. Bond Length. Forces that hold groups of atoms together and make them function as a unit. Bond Energy. Chapter 8. Bonding: General Concepts

Bonds. Bond Length. Forces that hold groups of atoms together and make them function as a unit. Bond Energy. Chapter 8. Bonding: General Concepts Bonds hapter 8 Bonding: General oncepts Forces that hold groups of atoms together and make them function as a unit. Bond Energy Bond Length It is the energy required to break a bond. The distance where

More information

ATOMS. Multiple Choice Questions

ATOMS. Multiple Choice Questions Chapter 3 ATOMS AND MOLECULES Multiple Choice Questions 1. Which of the following correctly represents 360 g of water? (i) 2 moles of H 2 0 (ii) 20 moles of water (iii) 6.022 10 23 molecules of water (iv)

More information

EXPERIMENT 9 Dot Structures and Geometries of Molecules

EXPERIMENT 9 Dot Structures and Geometries of Molecules EXPERIMENT 9 Dot Structures and Geometries of Molecules INTRODUCTION Lewis dot structures are our first tier in drawing molecules and representing bonds between the atoms. The method was first published

More information

(1) e.g. H hydrogen that has lost 1 electron c. anion - negatively charged atoms that gain electrons 16-2. (1) e.g. HCO 3 bicarbonate anion

(1) e.g. H hydrogen that has lost 1 electron c. anion - negatively charged atoms that gain electrons 16-2. (1) e.g. HCO 3 bicarbonate anion GS106 Chemical Bonds and Chemistry of Water c:wou:gs106:sp2002:chem.wpd I. Introduction A. Hierarchy of chemical substances 1. atoms of elements - smallest particles of matter with unique physical and

More information

CHAPTER 10: INTERMOLECULAR FORCES: THE UNIQUENESS OF WATER Problems: 10.2, 10.6,10.15-10.33, 10.35-10.40, 10.56-10.60, 10.101-10.

CHAPTER 10: INTERMOLECULAR FORCES: THE UNIQUENESS OF WATER Problems: 10.2, 10.6,10.15-10.33, 10.35-10.40, 10.56-10.60, 10.101-10. CHAPTER 10: INTERMOLECULAR FORCES: THE UNIQUENESS OF WATER Problems: 10.2, 10.6,10.15-10.33, 10.35-10.40, 10.56-10.60, 10.101-10.102 10.1 INTERACTIONS BETWEEN IONS Ion-ion Interactions and Lattice Energy

More information

Calculating Atoms, Ions, or Molecules Using Moles

Calculating Atoms, Ions, or Molecules Using Moles TEKS REVIEW 8B Calculating Atoms, Ions, or Molecules Using Moles TEKS 8B READINESS Use the mole concept to calculate the number of atoms, ions, or molecules in a sample TEKS_TXT of material. Vocabulary

More information

Chapter 1: Moles and equations. Learning outcomes. you should be able to:

Chapter 1: Moles and equations. Learning outcomes. you should be able to: Chapter 1: Moles and equations 1 Learning outcomes you should be able to: define and use the terms: relative atomic mass, isotopic mass and formula mass based on the 12 C scale perform calculations, including

More information

5s Solubility & Conductivity

5s Solubility & Conductivity 5s Solubility & Conductivity OBJECTIVES To explore the relationship between the structures of common household substances and the kinds of solvents in which they dissolve. To demonstrate the ionic nature

More information

Amount of Substance. http://www.avogadro.co.uk/definitions/elemcompmix.htm

Amount of Substance. http://www.avogadro.co.uk/definitions/elemcompmix.htm Page 1 of 14 Amount of Substance Key terms in this chapter are: Element Compound Mixture Atom Molecule Ion Relative Atomic Mass Avogadro constant Mole Isotope Relative Isotopic Mass Relative Molecular

More information

Sugar or Salt? Ionic and Covalent Bonds

Sugar or Salt? Ionic and Covalent Bonds Lab 11 Sugar or Salt? Ionic and Covalent Bonds TN Standard 2.1: The student will investigate chemical bonding. Have you ever accidentally used salt instead of sugar? D rinking tea that has been sweetened

More information

Test Review Periodic Trends and The Mole

Test Review Periodic Trends and The Mole Test Review Periodic Trends and The Mole The Mole SHOW ALL WORK ON YOUR OWN PAPER FOR CREDIT!! 1 2 (NH42SO2 %N 24.1 %H 6.9 %S 27.6 %O 41.3 % Al %C 35.3 %H 4.4 %O 47.1 Al(C2H3O23 13.2 3 How many moles are

More information

EXAMPLE EXERCISE 4.1 Change of Physical State

EXAMPLE EXERCISE 4.1 Change of Physical State EXAMPLE EXERCISE 4.1 Change of Physical State State the term that applies to each of the following changes of physical state: (a) Snow changes from a solid to a liquid. (b) Gasoline changes from a liquid

More information

Study Guide For Chapter 7

Study Guide For Chapter 7 Name: Class: Date: ID: A Study Guide For Chapter 7 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. The number of atoms in a mole of any pure substance

More information

W1 WORKSHOP ON STOICHIOMETRY

W1 WORKSHOP ON STOICHIOMETRY INTRODUCTION W1 WORKSHOP ON STOICHIOMETRY These notes and exercises are designed to introduce you to the basic concepts required to understand a chemical formula or equation. Relative atomic masses of

More information

Summer Holidays Questions

Summer Holidays Questions Summer Holidays Questions Chapter 1 1) Barium hydroxide reacts with hydrochloric acid. The initial concentration of the 1 st solution its 0.1M and the volume is 100ml. The initial concentration of the

More information

Mole Notes.notebook. October 29, 2014

Mole Notes.notebook. October 29, 2014 1 2 How do chemists count atoms/formula units/molecules? How do we go from the atomic scale to the scale of everyday measurements (macroscopic scale)? The gateway is the mole! But before we get to the

More information

MOLES AND MOLE CALCULATIONS

MOLES AND MOLE CALCULATIONS 35 MOLES ND MOLE CLCULTIONS INTRODUCTION The purpose of this section is to present some methods for calculating both how much of each reactant is used in a chemical reaction, and how much of each product

More information

Unit 12 Practice Test

Unit 12 Practice Test Name: Class: Date: ID: A Unit 12 Practice Test Multiple Choice Identify the choice that best completes the statement or answers the question. 1) A solid has a very high melting point, great hardness, and

More information

Composition of nucleus. Priority Vocabulary: Electron, Proton, Neutron, Nucleus, Isotopes, Atomic Number, Atomic Mass, Element, Electron Shell,

Composition of nucleus. Priority Vocabulary: Electron, Proton, Neutron, Nucleus, Isotopes, Atomic Number, Atomic Mass, Element, Electron Shell, Lake County, Lakeview, 9 th grade, Physical Science, Brent Starr Standard: H1P1 Explain how atomic structure is related to the properties of elements and their position in the Periodic Table. Explain how

More information

Woods Chem-1 Lec-02 10-1 Atoms, Ions, Mole (std) Page 1 ATOMIC THEORY, MOLECULES, & IONS

Woods Chem-1 Lec-02 10-1 Atoms, Ions, Mole (std) Page 1 ATOMIC THEORY, MOLECULES, & IONS Woods Chem-1 Lec-02 10-1 Atoms, Ions, Mole (std) Page 1 ATOMIC THEORY, MOLECULES, & IONS Proton: A positively charged particle in the nucleus Atomic Number: We differentiate all elements by their number

More information

Chapter 2 Polar Covalent Bonds: Acids and Bases

Chapter 2 Polar Covalent Bonds: Acids and Bases John E. McMurry www.cengage.com/chemistry/mcmurry Chapter 2 Polar Covalent Bonds: Acids and Bases Modified by Dr. Daniela R. Radu Why This Chapter? Description of basic ways chemists account for chemical

More information

Moles. Balanced chemical equations Molar ratios Mass Composition Empirical and Molecular Mass Predicting Quantities Equations

Moles. Balanced chemical equations Molar ratios Mass Composition Empirical and Molecular Mass Predicting Quantities Equations Moles Balanced chemical equations Molar ratios Mass Composition Empirical and Molecular Mass Predicting Quantities Equations Micro World atoms & molecules Macro World grams Atomic mass is the mass of an

More information

Getting the most from this book...4 About this book...5

Getting the most from this book...4 About this book...5 Contents Getting the most from this book...4 About this book....5 Content Guidance Topic 1 Atomic structure and the periodic table...8 Topic 2 Bonding and structure...14 Topic 2A Bonding....14 Topic 2B

More information

ATOMS AND BONDS. Bonds

ATOMS AND BONDS. Bonds ATOMS AND BONDS Atoms of elements are the simplest units of organization in the natural world. Atoms consist of protons (positive charge), neutrons (neutral charge) and electrons (negative charge). The

More information

STOICHIOMETRY UNIT 1 LEARNING OUTCOMES. At the end of this unit students will be expected to:

STOICHIOMETRY UNIT 1 LEARNING OUTCOMES. At the end of this unit students will be expected to: STOICHIOMETRY LEARNING OUTCOMES At the end of this unit students will be expected to: UNIT 1 THE MOLE AND MOLAR MASS define molar mass and perform mole-mass inter-conversions for pure substances explain

More information

INTERMOLECULAR FORCES

INTERMOLECULAR FORCES INTERMOLECULAR FORCES Intermolecular forces- forces of attraction and repulsion between molecules that hold molecules, ions, and atoms together. Intramolecular - forces of chemical bonds within a molecule

More information

SCH 4C1 Unit 2 Problem Set Questions taken from Frank Mustoe et all, "Chemistry 11", McGraw-Hill Ryerson, 2001

SCH 4C1 Unit 2 Problem Set Questions taken from Frank Mustoe et all, Chemistry 11, McGraw-Hill Ryerson, 2001 SCH 4C1 Unit 2 Problem Set Questions taken from Frank Mustoe et all, "Chemistry 11", McGraw-Hill Ryerson, 2001 1. A small pin contains 0.0178 mol of iron. How many atoms of iron are in the pin? 2. A sample

More information

Forensic Science Standards and Benchmarks

Forensic Science Standards and Benchmarks Forensic Science Standards and Standard 1: Understands and applies principles of scientific inquiry Power : Identifies questions and concepts that guide science investigations Uses technology and mathematics

More information

AP Chapter 1, 2, & 3: Atoms, Molecules, and Mass Relationships Name

AP Chapter 1, 2, & 3: Atoms, Molecules, and Mass Relationships Name AP Chapter 1, 2, & 3: Atoms, Molecules, and Mass Relationships Name Warm-Ups (Show your work for credit) Date 1. Date 2. Date 3. Date 4. Date 5. Date 6. Date 7. Date 8. AP Chapter 1, 2, & 3: Atoms & Molecules,

More information

Chemistry Final Study Guide

Chemistry Final Study Guide Name: Class: Date: Chemistry Final Study Guide Multiple Choice Identify the choice that best completes the statement or answers the question. 1. The electrons involved in the formation of a covalent bond

More information

Secondary School Students Misconceptions of Covalent Bonding

Secondary School Students Misconceptions of Covalent Bonding TÜRK FEN EĞİTİMİ DERGİSİ Yıl 7, Sayı 2, Haziran 2010 N Journal of TURKISH SCIENCE EDUCATION Volume 7, Issue 2, June 2010 http://www.tused.org Secondary School Students Misconceptions of Covalent Bonding

More information

602X10 21 602,000,000,000, 000,000,000,000 6.02X10 23. Pre- AP Chemistry Chemical Quan44es: The Mole. Diatomic Elements

602X10 21 602,000,000,000, 000,000,000,000 6.02X10 23. Pre- AP Chemistry Chemical Quan44es: The Mole. Diatomic Elements Pre- AP Chemistry Chemical Quan44es: The Mole Mole SI unit of measurement that measures the amount of substance. A substance exists as representa9ve par9cles. Representa9ve par9cles can be atoms, molecules,

More information

CHAPTER 3 Calculations with Chemical Formulas and Equations. atoms in a FORMULA UNIT

CHAPTER 3 Calculations with Chemical Formulas and Equations. atoms in a FORMULA UNIT CHAPTER 3 Calculations with Chemical Formulas and Equations MOLECULAR WEIGHT (M. W.) Sum of the Atomic Weights of all atoms in a MOLECULE of a substance. FORMULA WEIGHT (F. W.) Sum of the atomic Weights

More information

Chemical Bonds. Chemical Bonds. The Nature of Molecules. Energy and Metabolism < < Covalent bonds form when atoms share 2 or more valence electrons.

Chemical Bonds. Chemical Bonds. The Nature of Molecules. Energy and Metabolism < < Covalent bonds form when atoms share 2 or more valence electrons. The Nature of Molecules Chapter 2 Energy and Metabolism Chapter 6 Chemical Bonds Molecules are groups of atoms held together in a stable association. Compounds are molecules containing more than one type

More information

Chemistry 65 Chapter 6 THE MOLE CONCEPT

Chemistry 65 Chapter 6 THE MOLE CONCEPT THE MOLE CONCEPT Chemists find it more convenient to use mass relationships in the laboratory, while chemical reactions depend on the number of atoms present. In order to relate the mass and number of

More information

1. When the following equation is balanced, the coefficient of Al is. Al (s) + H 2 O (l)? Al(OH) 3 (s) + H 2 (g)

1. When the following equation is balanced, the coefficient of Al is. Al (s) + H 2 O (l)? Al(OH) 3 (s) + H 2 (g) 1. When the following equation is balanced, the coefficient of Al is. Al (s) + H 2 O (l)? Al(OH) (s) + H 2 (g) A) 1 B) 2 C) 4 D) 5 E) Al (s) + H 2 O (l)? Al(OH) (s) + H 2 (g) Al (s) + H 2 O (l)? Al(OH)

More information

Moles. Moles. Moles. Moles. Balancing Eqns. Balancing. Balancing Eqns. Symbols Yields or Produces. Like a recipe:

Moles. Moles. Moles. Moles. Balancing Eqns. Balancing. Balancing Eqns. Symbols Yields or Produces. Like a recipe: Like a recipe: Balancing Eqns Reactants Products 2H 2 (g) + O 2 (g) 2H 2 O(l) coefficients subscripts Balancing Eqns Balancing Symbols (s) (l) (aq) (g) or Yields or Produces solid liquid (pure liquid)

More information

PART I: MULTIPLE CHOICE (30 multiple choice questions. Each multiple choice question is worth 2 points)

PART I: MULTIPLE CHOICE (30 multiple choice questions. Each multiple choice question is worth 2 points) CHEMISTRY 123-07 Midterm #1 Answer key October 14, 2010 Statistics: Average: 74 p (74%); Highest: 97 p (95%); Lowest: 33 p (33%) Number of students performing at or above average: 67 (57%) Number of students

More information

NaCl Lattice Science Activities

NaCl Lattice Science Activities NaCl Lattice Science Activities STEM: The Science of Salt Using a Salt Lattice Model Teacher Notes Science Activities A Guided-Inquiry Approach Using the 3D Molecular Designs NaCl Lattice Model Classroom

More information

Non-Covalent Bonds (Weak Bond)

Non-Covalent Bonds (Weak Bond) Non-Covalent Bonds (Weak Bond) Weak bonds are those forces of attraction that, in biological situations, do not take a large amount of energy to break. For example, hydrogen bonds are broken by energies

More information

Matter. Atomic weight, Molecular weight and Mole

Matter. Atomic weight, Molecular weight and Mole Matter Atomic weight, Molecular weight and Mole Atomic Mass Unit Chemists of the nineteenth century realized that, in order to measure the mass of an atomic particle, it was useless to use the standard

More information

Chapter 1 The Atomic Nature of Matter

Chapter 1 The Atomic Nature of Matter Chapter 1 The Atomic Nature of Matter 6. Substances that cannot be decomposed into two or more simpler substances by chemical means are called a. pure substances. b. compounds. c. molecules. d. elements.

More information

The Mole. Chapter 2. Solutions for Practice Problems

The Mole. Chapter 2. Solutions for Practice Problems Chapter 2 The Mole Note to teacher: You will notice that there are two different formats for the Sample Problems in the student textbook. Where appropriate, the Sample Problem contains the full set of

More information

INTI COLLEGE MALAYSIA A? LEVEL PROGRAMME CHM 111: CHEMISTRY MOCK EXAMINATION: DECEMBER 2000 SESSION. 37 74 20 40 60 80 m/e

INTI COLLEGE MALAYSIA A? LEVEL PROGRAMME CHM 111: CHEMISTRY MOCK EXAMINATION: DECEMBER 2000 SESSION. 37 74 20 40 60 80 m/e CHM111(M)/Page 1 of 5 INTI COLLEGE MALAYSIA A? LEVEL PROGRAMME CHM 111: CHEMISTRY MOCK EXAMINATION: DECEMBER 2000 SESSION SECTION A Answer ALL EIGHT questions. (52 marks) 1. The following is the mass spectrum

More information

Chapter 4. Chemical Composition. Chapter 4 Topics H 2 S. 4.1 Mole Quantities. The Mole Scale. Molar Mass The Mass of 1 Mole

Chapter 4. Chemical Composition. Chapter 4 Topics H 2 S. 4.1 Mole Quantities. The Mole Scale. Molar Mass The Mass of 1 Mole Chapter 4 Chemical Composition Chapter 4 Topics 1. Mole Quantities 2. Moles, Masses, and Particles 3. Determining Empirical Formulas 4. Chemical Composition of Solutions Copyright The McGraw-Hill Companies,

More information

MOLECULAR MASS AND FORMULA MASS

MOLECULAR MASS AND FORMULA MASS 1 MOLECULAR MASS AND FORMULA MASS Molecular mass = sum of the atomic weights of all atoms in the molecule. Formula mass = sum of the atomic weights of all atoms in the formula unit. 2 MOLECULAR MASS AND

More information

Name Date Class CHEMICAL QUANTITIES. SECTION 10.1 THE MOLE: A MEASUREMENT OF MATTER (pages 287 296)

Name Date Class CHEMICAL QUANTITIES. SECTION 10.1 THE MOLE: A MEASUREMENT OF MATTER (pages 287 296) 10 CHEMICAL QUANTITIES SECTION 10.1 THE MOLE: A MEASUREMENT OF MATTER (pages 287 296) This section defines the mole and explains how the mole is used to measure matter. It also teaches you how to calculate

More information

Chapter 13 & 14 Practice Exam

Chapter 13 & 14 Practice Exam Name: Class: Date: Chapter 13 & 14 Practice Exam Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Acids generally release H 2 gas when they react with a.

More information

Ch. 10 The Mole I. Molar Conversions

Ch. 10 The Mole I. Molar Conversions Ch. 10 The Mole I. Molar Conversions I II III IV A. What is the Mole? A counting number (like a dozen) Avogadro s number (N A ) 1 mole = 6.022 10 23 representative particles B. Mole/Particle Conversions

More information

Chapter 11 Intermolecular Forces, Liquids, and Solids

Chapter 11 Intermolecular Forces, Liquids, and Solids Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten Chapter 11, Liquids, and Solids States of Matter The fundamental difference between states of

More information

Moles, Molecules, and Grams Worksheet Answer Key

Moles, Molecules, and Grams Worksheet Answer Key Moles, Molecules, and Grams Worksheet Answer Key 1) How many are there in 24 grams of FeF 3? 1.28 x 10 23 2) How many are there in 450 grams of Na 2 SO 4? 1.91 x 10 24 3) How many grams are there in 2.3

More information

Physical Science 1 Progression

Physical Science 1 Progression Physical Science 1 Progression This progression is the about the structure and properties of matter. Matter is composed of material that is too small to be seen, but is understood in terms of the types

More information

The Mole Concept. The Mole. Masses of molecules

The Mole Concept. The Mole. Masses of molecules The Mole Concept Ron Robertson r2 c:\files\courses\1110-20\2010 final slides for web\mole concept.docx The Mole The mole is a unit of measurement equal to 6.022 x 10 23 things (to 4 sf) just like there

More information

Solution. Practice Exercise. Concept Exercise

Solution. Practice Exercise. Concept Exercise Example Exercise 9.1 Atomic Mass and Avogadro s Number Refer to the atomic masses in the periodic table inside the front cover of this textbook. State the mass of Avogadro s number of atoms for each of

More information

Modern Construction Materials Prof. Ravindra Gettu Department of Civil Engineering Indian Institute of Technology, Madras

Modern Construction Materials Prof. Ravindra Gettu Department of Civil Engineering Indian Institute of Technology, Madras Modern Construction Materials Prof. Ravindra Gettu Department of Civil Engineering Indian Institute of Technology, Madras Module - 2 Lecture - 2 Part 2 of 2 Review of Atomic Bonding II We will continue

More information

a. pure substance b. composed of combinations of atoms c. held together by chemical bonds d. substance that cannot be broken down into simpler units

a. pure substance b. composed of combinations of atoms c. held together by chemical bonds d. substance that cannot be broken down into simpler units Chemical Bonds 1. Which of the following is NOT a true compound? a. pure substance b. composed of combinations of atoms c. held together by chemical bonds d. substance that cannot be broken down into simpler

More information

P. Table & E Configuration Practice TEST

P. Table & E Configuration Practice TEST P. Table & E Configuration Practice TEST Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A line spectrum is produced when an electron moves from one energy

More information

CHEM 110 A Chemistry I

CHEM 110 A Chemistry I Columbia College Online Campus P a g e 1 CHEM 110 A Chemistry I Early Fall Session (15-51) Monday, August 17 Saturday, October 10, 2015 Course Description Fundamental course in the principles of chemistry.

More information

Atomic mass is the mass of an atom in atomic mass units (amu)

Atomic mass is the mass of an atom in atomic mass units (amu) Micro World atoms & molecules Laboratory scale measurements Atomic mass is the mass of an atom in atomic mass units (amu) By definition: 1 atom 12 C weighs 12 amu On this scale 1 H = 1.008 amu 16 O = 16.00

More information

English already has many collective nouns for fixed, given numbers of objects. Some of the more common collective nouns are shown in Table 7.1.

English already has many collective nouns for fixed, given numbers of objects. Some of the more common collective nouns are shown in Table 7.1. 96 Chapter 7: Calculations with Chemical Formulas and Chemical Reactions Chemical reactions are written showing a few individual atoms or molecules reacting to form a few atoms or molecules of products.

More information

Chapter 3 Mass Relationships in Chemical Reactions

Chapter 3 Mass Relationships in Chemical Reactions Chapter 3 Mass Relationships in Chemical Reactions Student: 1. An atom of bromine has a mass about four times greater than that of an atom of neon. Which choice makes the correct comparison of the relative

More information

Stoichiometry. Lecture Examples Answer Key

Stoichiometry. Lecture Examples Answer Key Stoichiometry Lecture Examples Answer Key Ex. 1 Balance the following chemical equations: 3 NaBr + 1 H 3 PO 4 3 HBr + 1 Na 3 PO 4 2 C 3 H 5 N 3 O 9 6 CO 2 + 3 N 2 + 5 H 2 O + 9 O 2 2 Ca(OH) 2 + 2 SO 2

More information

Lecture 5, The Mole. What is a mole?

Lecture 5, The Mole. What is a mole? Lecture 5, The Mole What is a mole? Moles Atomic mass unit and the mole amu definition: 12 C = 12 amu. The atomic mass unit is defined this way. 1 amu = 1.6605 x 10-24 g How many 12 C atoms weigh 12 g?

More information

Calculations and Chemical Equations. Example: Hydrogen atomic weight = 1.008 amu Carbon atomic weight = 12.001 amu

Calculations and Chemical Equations. Example: Hydrogen atomic weight = 1.008 amu Carbon atomic weight = 12.001 amu Calculations and Chemical Equations Atomic mass: Mass of an atom of an element, expressed in atomic mass units Atomic mass unit (amu): 1.661 x 10-24 g Atomic weight: Average mass of all isotopes of a given

More information

Coimisiún na Scrúduithe Stáit State Examinations Commission

Coimisiún na Scrúduithe Stáit State Examinations Commission Coimisiún na Scrúduithe Stáit State Examinations Commission LEAVING CERTIFICATE EXAMINATION, 2007 CHEMISTRY - ORDINARY LEVEL TUESDAY, 19 JUNE AFTERNOON 2.00 TO 5.00 400 MARKS Answer eight questions in

More information

The Mole. Chapter 10. Dimensional Analysis. The Mole. How much mass is in one atom of carbon-12? Molar Mass of Atoms 3/1/2015

The Mole. Chapter 10. Dimensional Analysis. The Mole. How much mass is in one atom of carbon-12? Molar Mass of Atoms 3/1/2015 The Mole Chapter 10 1 Objectives Use the mole and molar mass to make conversions among moles, mass, and number of particles Determine the percent composition of the components of a compound Calculate empirical

More information

Concept 1. The meaning and usefulness of the mole. The mole (or mol) represents a certain number of objects.

Concept 1. The meaning and usefulness of the mole. The mole (or mol) represents a certain number of objects. Chapter 3. Stoichiometry: Mole-Mass Relationships in Chemical Reactions Concept 1. The meaning and usefulness of the mole The mole (or mol) represents a certain number of objects. SI def.: the amount of

More information

Prentice Hall. Chemistry (Wilbraham) 2008, National Student Edition - South Carolina Teacher s Edition. High School. High School

Prentice Hall. Chemistry (Wilbraham) 2008, National Student Edition - South Carolina Teacher s Edition. High School. High School Prentice Hall Chemistry (Wilbraham) 2008, National Student Edition - South Carolina Teacher s Edition High School C O R R E L A T E D T O High School C-1.1 Apply established rules for significant digits,

More information

Tuesday, November 27, 2012 Expectations:

Tuesday, November 27, 2012 Expectations: Tuesday, November 27, 2012 Expectations: Sit in assigned seat Get out Folder, Notebook, Periodic Table Have out: Spiral (notes), Learning Target Log (new) No Backpacks on tables Listen/Pay Attention Learning

More information

Calculation of Molar Masses. Molar Mass. Solutions. Solutions

Calculation of Molar Masses. Molar Mass. Solutions. Solutions Molar Mass Molar mass = Mass in grams of one mole of any element, numerically equal to its atomic weight Molar mass of molecules can be determined from the chemical formula and molar masses of elements

More information

Section 3.3: Polar Bonds and Polar Molecules

Section 3.3: Polar Bonds and Polar Molecules Section 3.3: Polar Bonds and Polar Molecules Mini Investigation: Evidence for Polar Molecules, page 103 A. The polar liquids will all exhibit some type of bending toward charged materials. The nonpolar

More information

UNIT (4) CALCULATIONS AND CHEMICAL REACTIONS

UNIT (4) CALCULATIONS AND CHEMICAL REACTIONS UNIT (4) CALCULATIONS AND CHEMICAL REACTIONS 4.1 Formula Masses Recall that the decimal number written under the symbol of the element in the periodic table is the atomic mass of the element. 1 7 8 12

More information

Mole Calculations Multiple Choice Review PSI Chemistry

Mole Calculations Multiple Choice Review PSI Chemistry Mole Calculations Multiple Choice Review PSI Chemistry Name The Mole and Avogadro's Number 1)What is the SI unit for measurement of number of particles in a substance? A) kilogram B) ampere C) candela

More information

Lecture Topics Atomic weight, Mole, Molecular Mass, Derivation of Formulas, Percent Composition

Lecture Topics Atomic weight, Mole, Molecular Mass, Derivation of Formulas, Percent Composition Mole Calculations Chemical Equations and Stoichiometry Lecture Topics Atomic weight, Mole, Molecular Mass, Derivation of Formulas, Percent Composition Chemical Equations and Problems Based on Miscellaneous

More information

Molecules, Atoms, Grams and Mole Calculation Practice

Molecules, Atoms, Grams and Mole Calculation Practice Molecules, Atoms, Grams and Mole Calculation Practice Helpful HINTS: In these problems look for two things: 1) From what unit to what unit? 2) Does the object stay the same, or does the object change?

More information

Ch. 9 - Electron Organization. The Bohr Model [9.4] Orbitals [9.5, 9.6] Counting Electrons, configurations [9.7]

Ch. 9 - Electron Organization. The Bohr Model [9.4] Orbitals [9.5, 9.6] Counting Electrons, configurations [9.7] Ch. 9 - Electron Organization The Bohr Model [9.4] Orbitals [9.5, 9.6] Counting Electrons, configurations [9.7] Predicting ion charges from electron configurations. CHEM 100 F07 1 Organization of Electrons

More information

Chapter 3: Stoichiometry

Chapter 3: Stoichiometry Chapter 3: Stoichiometry Key Skills: Balance chemical equations Predict the products of simple combination, decomposition, and combustion reactions. Calculate formula weights Convert grams to moles and

More information

Organic Functional Groups Chapter 7. Alcohols, Ethers and More

Organic Functional Groups Chapter 7. Alcohols, Ethers and More Organic Functional Groups Chapter 7 Alcohols, Ethers and More 1 What do you do when you are in Pain? What do you do when you are in a lot of pain? 2 Functional Groups A functional group is an atom, groups

More information

Type: Single Date: Kinetic Theory of Gases. Homework: Read (14.1), Do CONCEPT Q. # (1), Do PROBLEMS # (2, 3, 5) Ch. 14

Type: Single Date: Kinetic Theory of Gases. Homework: Read (14.1), Do CONCEPT Q. # (1), Do PROBLEMS # (2, 3, 5) Ch. 14 Type: Single Date: Objective: Kinetic Theory of Gases Homework: Read (14.1), Do CONCEPT Q. # (1), Do PROBLEMS # (2, 3, 5) Ch. 14 AP Physics Mr. Mirro Kinetic Theory of Gases Date Unlike the condensed phases

More information

Chapter 5 Chemical Quantities and Reactions. Collection Terms. 5.1 The Mole. A Mole of a Compound. A Mole of Atoms.

Chapter 5 Chemical Quantities and Reactions. Collection Terms. 5.1 The Mole. A Mole of a Compound. A Mole of Atoms. Chapter 5 Chemical Quantities and Reactions 5.1 The Mole Collection Terms A collection term states a specific number of items. 1 dozen donuts = 12 donuts 1 ream of paper = 500 sheets 1 case = 24 cans 1

More information

Formulas, Equations and Moles

Formulas, Equations and Moles Chapter 3 Formulas, Equations and Moles Interpreting Chemical Equations You can interpret a balanced chemical equation in many ways. On a microscopic level, two molecules of H 2 react with one molecule

More information

Chapter 10 Liquids & Solids

Chapter 10 Liquids & Solids 1 Chapter 10 Liquids & Solids * 10.1 Polar Covalent Bonds & Dipole Moments - van der Waals constant for water (a = 5.28 L 2 atm/mol 2 ) vs O 2 (a = 1.36 L 2 atm/mol 2 ) -- water is polar (draw diagram)

More information

Atoms, Ions and Molecules The Building Blocks of Matter

Atoms, Ions and Molecules The Building Blocks of Matter Atoms, Ions and Molecules The Building Blocks of Matter Chapter 2 1 Chapter Outline 2.1 The Rutherford Model of Atomic Structure 2.2 Nuclides and Their Symbols 2.3 Navigating the Periodic Table 2.4 The

More information

Mass Spectrometry. Overview

Mass Spectrometry. Overview Mass Spectrometry Overview Mass Spectrometry is an analytic technique that utilizes the degree of deflection of charged particles by a magnetic field to find the relative masses of molecular ions and fragments.2

More information

ION EXCHANGE FOR DUMMIES. An introduction

ION EXCHANGE FOR DUMMIES. An introduction ION EXCHANGE FOR DUMMIES An introduction Water Water is a liquid. Water is made of water molecules (formula H 2 O). All natural waters contain some foreign substances, usually in small amounts. The water

More information

Unit 11 Practice. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question.

Unit 11 Practice. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question. Name: Class: Date: Unit 11 Practice Multiple Choice Identify the choice that best completes the statement or answers the question. 1) Crystalline solids. A) have their particles arranged randomly B) have

More information

PROTON NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY (H-NMR)

PROTON NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY (H-NMR) PROTON NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY (H-NMR) WHAT IS H-NMR SPECTROSCOPY? References: Bruice 14.1, 14.2 Introduction NMR or nuclear magnetic resonance spectroscopy is a technique used to determine

More information

For convenience, we may consider an atom in two parts: the nucleus and the electrons.

For convenience, we may consider an atom in two parts: the nucleus and the electrons. Atomic structure A. Introduction: In 1808, an English scientist called John Dalton proposed an atomic theory based on experimental findings. (1) Elements are made of extremely small particles called atoms.

More information

Chapter 6. Solution, Acids and Bases

Chapter 6. Solution, Acids and Bases Chapter 6 Solution, Acids and Bases Mixtures Two or more substances Heterogeneous- different from place to place Types of heterogeneous mixtures Suspensions- Large particles that eventually settle out

More information

Yarışma Sınavı. 5 Which one is related with red blood cells?

Yarışma Sınavı. 5 Which one is related with red blood cells? 1 Which one is a genetic disease in which a person's blood does not clot properly? sickle cell anaemia anaemia thalesshemia haemophilia colourblindness 5 Which one is related with red blood cells? destroy

More information

North Carolina Essential Standards Assessment Examples Physical Science

North Carolina Essential Standards Assessment Examples Physical Science This document is designed to assist North Carolina educators in effective instruction of the new Common Core State and/or North Carolina Essential Standards (Standard Course of Study) in order to increase

More information

EXPERIMENT 12: Empirical Formula of a Compound

EXPERIMENT 12: Empirical Formula of a Compound EXPERIMENT 12: Empirical Formula of a Compound INTRODUCTION Chemical formulas indicate the composition of compounds. A formula that gives only the simplest ratio of the relative number of atoms in a compound

More information

Sketch the model representation of the first step in the dissociation of water. H 2. O (l) H + (aq) + OH- (aq) + H 2. OH - (aq) + H 3 O+ (aq)

Sketch the model representation of the first step in the dissociation of water. H 2. O (l) H + (aq) + OH- (aq) + H 2. OH - (aq) + H 3 O+ (aq) Lesson Objectives Students will: Create a physical representation of the autoionization of water using the water kit. Describe and produce a physical representation of the dissociation of a strong acid

More information