Friday Four Square! Today at 4:15PM, Outside Gates

Size: px
Start display at page:

Download "Friday Four Square! Today at 4:15PM, Outside Gates"

Transcription

1 Pushdown Automata

2 Friday Four Square! Today at 4:15PM, Outside Gates

3 Announcements Problem Set 5 due right now Or Monday at 2:15PM with a late day. Problem Set 6 out, due next Friday, November 9. Covers context-free languages, CFGs, and PDAs. Midterm and Problem Set 4 should be graded by Monday.

4 Generation vs. Recognition We saw two approaches to describe regular languages: Build automata that accept precisely strings in language. Design regular expressions that describe precisely strings in language. Regular expressions generate all of strings in language. Useful for listing off all strings in language. Finite automata recognize all of strings in language. Useful for detecting wher a specific string is in language.

5 Context-Free Languages Yesterday, we saw context-free languages, which are those that can be generated by context-free grammars. Is re some way to build an automaton that can recognize context-free languages?

6 The Problem Finite automata accept precisely regular languages. We may need unbounded memory to recognize context-free languages. e.g. { 0n 1 n n N } requires unbounded counting. How do we build an automaton with finitely many states but unbounded memory?

7 The The finite-state finite-state control control acts acts as as a a finite finite memory. memory. The The input input tape tape holds holds input input string. string. A B C A... Memory Device We We can can add add an an infinite infinite memory memory device device finite-state finite-state control control can can use use to to store store information. information.

8 Adding Memory to Automata We can augment a finite automaton by adding in a memory device for automaton to store extra information. The finite automaton now can base its transition on both current symbol being read and values stored in memory. The finite automaton can issue commands to memory device whenever it makes a transition. e.g. add new data, change existing data, etc.

9 Stack-Based Memory Only top of stack is visible at any point in time. New symbols may be pushed onto stack, which cover up old stack top. The top symbol of stack may be popped, exposing symbol below it.

10 Pushdown Automata A pushdown automaton (PDA) is a finite automaton equipped with a stack-based memory. Each transition is based on current input symbol and top of stack, optionally pops top of stack, and optionally pushes new symbols onto stack. Initially, stack holds a special symbol Z 0 that indicates bottom of stack.

11 Our First PDA Consider language L = { w Σ* w is a string of balanced digits } over Σ = { 0, 1 } We can exploit stack to our advantage: Whenever we see a 0, push it onto stack. Whenever we see a 1, pop corresponding 0 from stack (or fail if not matched) When input is consumed, if stack is empty, accept.

12 A Simple Pushdown Automaton start 0, Z 0 0Z 0 0, , 0 ε ε, Z 0 ε To To find find an an applicable applicable transition, transition, match match current current input/stack input/stack pair. pair. A A transition transition of of form form a, a, b z Means Means If If current current input input symbol symbol is is a a and and current current stack stack symbol symbol is is b, b, n n follow follow this this transition, transition, pop pop b, b, and and push push string string z. z. Z

13 A Simple Pushdown Automaton start 0, Z 0 0Z 0 0, , 0 ε ε, Z 0 ε If If a a transition transition reads reads top top symbol symbol of of stack, stack, it it always always pops pops that that symbol symbol (though (though it it might might replace replace it) it)

14 A Simple Pushdown Automaton start 0, Z 0 0Z 0 0, , 0 ε ε, Z 0 ε Each Each transition transition n n pushes pushes some some (possibly (possibly empty) empty) string string back back onto onto stack. stack. Notice Notice that that leftmost leftmost symbol symbol is is pushed pushed onto onto top. top. 0 Z

15 A Simple Pushdown Automaton start 0, Z 0 0Z 0 0, , 0 ε ε, Z 0 ε We We now now push push string string ε ε onto onto stack, stack, which which adds adds no no new new characters. characters. This This essentially essentially means means pop pop stack. stack. 0 0 Z

16 A Simple Pushdown Automaton start 0, Z 0 0Z 0 0, , 0 ε ε, Z 0 ε This This transition transition can can be be taken taken at at any any time time Z Z 0 is 0 is atop atop stack, stack, but but we've we've nondeterministically nondeterministically guessed guessed that that this this would would be be a a good good time time to to take take it. it. Z

17 A Simple Pushdown Automaton start 0, Z 0 0Z 0 0, , 0 ε ε, Z 0 ε

18 Pushdown Automata Formally, a pushdown automaton is a nondeterministic machine defined by 7-tuple (Q, Σ, Γ, δ, q 0, Z 0, F), where Q is a finite set of states, Σ is an alphabet, Γ is stack alphabet of symbols that can be pushed on stack, δ : Q Σ ε Γ ε (Q Γ*) is transition function, where no tuple is mapped to an infinite set, q 0 Q is start state, Z 0 Γ is stack start symbol, and F Q is set of accepting states. The automaton accepts if it ends in an accepting state with no input remaining.

19 The Language of a PDA The language of a PDA is set of strings that PDA accepts: L(P) = { w Σ* P accepts w } If P is a PDA where ( L P) = L, we say that P recognizes L.

20 A Note on Terminology Finite automata are highly standardized. There are many equivalent but different definitions of PDAs. The one we will use is a slight variant on one described in Sipser. Sipser does not have a start stack symbol. Sipser does not allow transitions to push multiple symbols onto stack. Feel free to use eir this version or Sipser's; two are equivalent to one anor.

21 A PDA for Palindromes A palindrome is a string that is same forwards and backwards. Let Σ = {0, 1} and consider language PALINDROME = { w Σ* w is a palindrome }. How would we build a PDA for PALINDROME? Idea: Push first half of symbols on to stack, n verify that second half of symbols match. Nondeterministically guess when we've read half of symbols. This handles even-length strings; we'll see a cute trick to handle odd-length strings in a minute.

22 A PDA for Palindromes start 0, ε 0 1, ε 1 This transition indicates that transition does not pop anything from stack. It just pushes on a new symbol instead.

23 A PDA for Palindromes start Σ, ε Σ The The Σ Σ here here refers refers to to same same symbol symbol in in both both contexts. contexts. It It is is a a shorthand shorthand for for treat treat any any symbol symbol in in Σ Σ this this way way

24 A PDA for Palindromes Σ, ε Σ start ε, ε ε This This transition transition means means don't don't consume consume any any input, input, don't don't change change top top of of stack, stack, and and don't don't add add anything anything to to a a stack. stack. It's It's equivalent equivalent of of an an ε ε -transition -transition in in an an NFA. NFA.

25 A PDA for Palindromes start Σ, ε Σ Σ, Σ ε ε, ε ε Σ, ε ε ε, Z 0 ε This This transition transition lets lets us us consume consume one one character character before before we we start start matching matching what what we we just just saw. saw. This This lets lets us us match match odd-length odd-length palindromes palindromes

26 A Note on Nondeterminism In a PDA, if re are multiple nondeterministic choices, you cannot treat machine as being in multiple states at once. Each state might have its own stack associated with it. Instead, re are multiple parallel copies of machine running at once, each of which has its own stack.

27 A PDA for Arithmetic Let Σ = { int, +, *, (, ) } and consider language ARITH = { w Σ* w is a legal arithmetic expression } Examples: int + int * int ((int + int) * (int + int)) + (int) Can we build a PDA for ARITH?

28 A PDA for Arithmetic start (, ε ( ), ( ε int, ε ε ε, Z 0 ε +, ε ε *, ε ε

29 Why PDAs Matter Recall: A language is context-free iff re is some CFG that generates it. Important, non-obvious orem: A language is context-free iff re is some PDA that recognizes it. Need to prove two directions: If L is context-free, n re is a PDA for it. If re is a PDA for L, n L is context-free. Part (1) is absolutely beautiful and we'll see it in a second. Part (2) is brilliant, but a bit too involved for lecture (you should read this in Sipser).

30 From CFGs to PDAs Theorem: If G is a CFG for a language L, n re exists a PDA for L as well. Idea: Build a PDA that simulates expanding out CFG from start symbol to some particular string. Stack holds part of string we haven't matched yet.

31 From CFGs to PDAs Example: Let Σ = { 1, } and let GE = { 1 m 1 n m, n N m n } GE GE GE GE One CFG for GE is following: S 1S1 1S How would we build a PDA for GE?

32 From CFGs to PDAs S 1S1 S 1S S ε, S 1S ε, S 1S1 ε, S Σ, Σ ε start ε, ε S ε, Z 0 Z 0

33 From CFGs to PDAs Make three states: start, parsing, and accepting. There is a transition ε, ε S from start to parsing. Corresponds to starting off with start symbol S. There is a transition ε, A ω from parsing to itself for each production A ω. Corresponds to predicting which production to use. There is a transition Σ, Σ ε from parsing to itself. Corresponds to matching a character of input. There is a transition ε, Z 0 Z 0 from parsing to accepting. Corresponds to completely matching input.

34 From CFGs to PDAs The PDA constructed this way is called a predict/match parser. Each step eir predicts which production to use or matches some symbol of input.

35 From PDAs to CFGs The or direction of proof (converting a PDA to a CFG) is much harder. Intuitively, create a CFG representing paths between states in PDA. Lots of tricky details, but a marvelous proof. It's just too large to fit into margins of this slide. Read Sipser for more details.

36 Regular and Context-Free Languages Theorem: Any regular language is context-free. Proof Sketch: Let L be any regular language and consider a DFA D for L. Then we can convert D into a PDA for L by converting any transition on a symbol a into a transition a, ε ε that ignores stack. This new PDA accepts L, so L is context-free. -ish

37 Refining Context-Free Languages

38 NPDAs and DPDAs With finite automata, we considered both deterministic (DFAs) and nondeterministic (NFAs) automata. So far, we've only seen nondeterministic PDAs (or NPDAs). What about deterministic PDAs (DPDAs)?

39 DPDAs A deterministic pushdown automaton is a PDA with extra property that For each state in PDA, and for any combination of a current input symbol and a current stack symbol, re is at most one transition defined. In or words, re is at most one legal sequence of transitions that can be followed for any input. This does not preclude ε-transitions, as long as re is never a conflict between following ε-transition or some or transition. However, re can be at most one ε-transition that could be followed at any one time. This does not preclude automaton dying from having no transitions defined; DPDAs can have undefined transitions.

40 Is this a DPDA? start 0, Z 0 0Z 0 0, , 0 ε ε, Z 0 ε

41 Is this a DPDA? This This ε-transition ε-transition is is allowable allowable because because no no or or transitions transitions in in this this state state use use input input symbol symbol 0 0 start 0, ε 0 0, , 0 ε ε, Z 0 Z 0 This This ε-transition ε-transition is is allowable allowable because because no no or or transitions transitions in in this this state state use use stack stack symbol symbol Z 0. 0.

42 Why DPDAs Matter Because DPDAs are deterministic, y can be simulated efficiently: Keep track of top of stack. Store an action/goto table that says what operations to perform on stack and what state to enter on each input/stack pair. Loop over input, processing input/stack pairs until automaton rejects or ends in an accepting state with all input consumed. If we can find a DPDA for a CFL, n we can recognize strings in that language efficiently.

43 If we can find a DPDA for a CFL, n we can recognize strings in that language efficiently. Can we guarantee that we can always find a DPDA for a CFL?

44 The Power of Nondeterminism When dealing with finite automata, re is no difference in power of NFAs and DFAs. However, when dealing with PDAs, re are CFLs that can be recognized by NPDAs that cannot be recognized by DPDAs. Simple example: The language of palindromes. How do you know when you've read half string? NPDAs are more powerful than DPDAs.

45 Deterministic CFLs A context-free language L is called a deterministic context-free language (DCFL) if re is some DPDA that recognizes L. Not all CFLs are DCFLs, though many important ones are. Balanced parenses, most programming languages, etc. Why Why are are all all regular regular languages languages DCFLs? DCFLs? Regular Languages DCFLs CFLs

46 Summary Automata can be augmented with a memory storage to increase ir power. PDAs are finite automata equipped with a stack. PDAs accept precisely context-free languages: Any CFG can be converted to a PDA. Any PDA can be converted to a CFG. Deterministic PDAs are strictly weaker than nondeterministic PDAs.

47 Next Time The Limits of CFLs A New Pumping Lemma Non-Closure Properties of CFLs Turing Machines An extremely powerful computing device......that is almost impossible to program.

Pushdown automata. Informatics 2A: Lecture 9. Alex Simpson. 3 October, 2014. School of Informatics University of Edinburgh als@inf.ed.ac.

Pushdown automata. Informatics 2A: Lecture 9. Alex Simpson. 3 October, 2014. School of Informatics University of Edinburgh als@inf.ed.ac. Pushdown automata Informatics 2A: Lecture 9 Alex Simpson School of Informatics University of Edinburgh als@inf.ed.ac.uk 3 October, 2014 1 / 17 Recap of lecture 8 Context-free languages are defined by context-free

More information

Pushdown Automata. place the input head on the leftmost input symbol. while symbol read = b and pile contains discs advance head remove disc from pile

Pushdown Automata. place the input head on the leftmost input symbol. while symbol read = b and pile contains discs advance head remove disc from pile Pushdown Automata In the last section we found that restricting the computational power of computing devices produced solvable decision problems for the class of sets accepted by finite automata. But along

More information

Automata and Computability. Solutions to Exercises

Automata and Computability. Solutions to Exercises Automata and Computability Solutions to Exercises Fall 25 Alexis Maciel Department of Computer Science Clarkson University Copyright c 25 Alexis Maciel ii Contents Preface vii Introduction 2 Finite Automata

More information

Formal Languages and Automata Theory - Regular Expressions and Finite Automata -

Formal Languages and Automata Theory - Regular Expressions and Finite Automata - Formal Languages and Automata Theory - Regular Expressions and Finite Automata - Samarjit Chakraborty Computer Engineering and Networks Laboratory Swiss Federal Institute of Technology (ETH) Zürich March

More information

6.080/6.089 GITCS Feb 12, 2008. Lecture 3

6.080/6.089 GITCS Feb 12, 2008. Lecture 3 6.8/6.89 GITCS Feb 2, 28 Lecturer: Scott Aaronson Lecture 3 Scribe: Adam Rogal Administrivia. Scribe notes The purpose of scribe notes is to transcribe our lectures. Although I have formal notes of my

More information

Model 2.4 Faculty member + student

Model 2.4 Faculty member + student Model 2.4 Faculty member + student Course syllabus for Formal languages and Automata Theory. Faculty member information: Name of faculty member responsible for the course Office Hours Office Number Email

More information

SRM UNIVERSITY FACULTY OF ENGINEERING & TECHNOLOGY SCHOOL OF COMPUTING DEPARTMENT OF SOFTWARE ENGINEERING COURSE PLAN

SRM UNIVERSITY FACULTY OF ENGINEERING & TECHNOLOGY SCHOOL OF COMPUTING DEPARTMENT OF SOFTWARE ENGINEERING COURSE PLAN Course Code : CS0355 SRM UNIVERSITY FACULTY OF ENGINEERING & TECHNOLOGY SCHOOL OF COMPUTING DEPARTMENT OF SOFTWARE ENGINEERING COURSE PLAN Course Title : THEORY OF COMPUTATION Semester : VI Course : June

More information

6.045: Automata, Computability, and Complexity Or, Great Ideas in Theoretical Computer Science Spring, 2010. Class 4 Nancy Lynch

6.045: Automata, Computability, and Complexity Or, Great Ideas in Theoretical Computer Science Spring, 2010. Class 4 Nancy Lynch 6.045: Automata, Computability, and Complexity Or, Great Ideas in Theoretical Computer Science Spring, 2010 Class 4 Nancy Lynch Today Two more models of computation: Nondeterministic Finite Automata (NFAs)

More information

Turing Machines: An Introduction

Turing Machines: An Introduction CIT 596 Theory of Computation 1 We have seen several abstract models of computing devices: Deterministic Finite Automata, Nondeterministic Finite Automata, Nondeterministic Finite Automata with ɛ-transitions,

More information

CS154. Turing Machines. Turing Machine. Turing Machines versus DFAs FINITE STATE CONTROL AI N P U T INFINITE TAPE. read write move.

CS154. Turing Machines. Turing Machine. Turing Machines versus DFAs FINITE STATE CONTROL AI N P U T INFINITE TAPE. read write move. CS54 Turing Machines Turing Machine q 0 AI N P U T IN TAPE read write move read write move Language = {0} q This Turing machine recognizes the language {0} Turing Machines versus DFAs TM can both write

More information

3515ICT Theory of Computation Turing Machines

3515ICT Theory of Computation Turing Machines Griffith University 3515ICT Theory of Computation Turing Machines (Based loosely on slides by Harald Søndergaard of The University of Melbourne) 9-0 Overview Turing machines: a general model of computation

More information

Finite Automata. Reading: Chapter 2

Finite Automata. Reading: Chapter 2 Finite Automata Reading: Chapter 2 1 Finite Automaton (FA) Informally, a state diagram that comprehensively captures all possible states and transitions that a machine can take while responding to a stream

More information

The Halting Problem is Undecidable

The Halting Problem is Undecidable 185 Corollary G = { M, w w L(M) } is not Turing-recognizable. Proof. = ERR, where ERR is the easy to decide language: ERR = { x { 0, 1 }* x does not have a prefix that is a valid code for a Turing machine

More information

CS 301 Course Information

CS 301 Course Information CS 301: Languages and Automata January 9, 2009 CS 301 Course Information Prof. Robert H. Sloan Handout 1 Lecture: Tuesday Thursday, 2:00 3:15, LC A5 Weekly Problem Session: Wednesday, 4:00 4:50 p.m., LC

More information

CSE 135: Introduction to Theory of Computation Decidability and Recognizability

CSE 135: Introduction to Theory of Computation Decidability and Recognizability CSE 135: Introduction to Theory of Computation Decidability and Recognizability Sungjin Im University of California, Merced 04-28, 30-2014 High-Level Descriptions of Computation Instead of giving a Turing

More information

Honors Class (Foundations of) Informatics. Tom Verhoeff. Department of Mathematics & Computer Science Software Engineering & Technology

Honors Class (Foundations of) Informatics. Tom Verhoeff. Department of Mathematics & Computer Science Software Engineering & Technology Honors Class (Foundations of) Informatics Tom Verhoeff Department of Mathematics & Computer Science Software Engineering & Technology www.win.tue.nl/~wstomv/edu/hci c 2011, T. Verhoeff @ TUE.NL 1/20 Information

More information

Regular Languages and Finite State Machines

Regular Languages and Finite State Machines Regular Languages and Finite State Machines Plan for the Day: Mathematical preliminaries - some review One application formal definition of finite automata Examples 1 Sets A set is an unordered collection

More information

Introduction to Automata Theory. Reading: Chapter 1

Introduction to Automata Theory. Reading: Chapter 1 Introduction to Automata Theory Reading: Chapter 1 1 What is Automata Theory? Study of abstract computing devices, or machines Automaton = an abstract computing device Note: A device need not even be a

More information

CS 341: Foundations of Computer Science II elearning Section Syllabus, Spring 2015

CS 341: Foundations of Computer Science II elearning Section Syllabus, Spring 2015 CS 341: Foundations of Computer Science II elearning Section Syllabus, Spring 2015 Course Info Instructor: Prof. Marvin K. Nakayama Office: GITC 4312 Phone: 973-596-3398 E-mail: marvin@njit.edu (Be sure

More information

Automata and Formal Languages

Automata and Formal Languages Automata and Formal Languages Winter 2009-2010 Yacov Hel-Or 1 What this course is all about This course is about mathematical models of computation We ll study different machine models (finite automata,

More information

Computer Science Theory. From the course description:

Computer Science Theory. From the course description: Computer Science Theory Goals of Course From the course description: Introduction to the theory of computation covering regular, context-free and computable (recursive) languages with finite state machines,

More information

Computational Models Lecture 8, Spring 2009

Computational Models Lecture 8, Spring 2009 Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown Univ. p. 1 Computational Models Lecture 8, Spring 2009 Encoding of TMs Universal Turing Machines The Halting/Acceptance

More information

Increasing Interaction and Support in the Formal Languages and Automata Theory Course

Increasing Interaction and Support in the Formal Languages and Automata Theory Course Increasing Interaction and Support in the Formal Languages and Automata Theory Course Susan H. Rodger Duke University ITiCSE 2007 June 25, 2007 Supported by NSF Grant DUE 0442513. Outline Overview of JFLAP

More information

Notes on Complexity Theory Last updated: August, 2011. Lecture 1

Notes on Complexity Theory Last updated: August, 2011. Lecture 1 Notes on Complexity Theory Last updated: August, 2011 Jonathan Katz Lecture 1 1 Turing Machines I assume that most students have encountered Turing machines before. (Students who have not may want to look

More information

Philadelphia University Faculty of Information Technology Department of Computer Science First Semester, 2007/2008.

Philadelphia University Faculty of Information Technology Department of Computer Science First Semester, 2007/2008. Philadelphia University Faculty of Information Technology Department of Computer Science First Semester, 2007/2008 Course Syllabus Course Title: Theory of Computation Course Level: 3 Lecture Time: Course

More information

Overview of E0222: Automata and Computability

Overview of E0222: Automata and Computability Overview of E0222: Automata and Computability Deepak D Souza Department of Computer Science and Automation Indian Institute of Science, Bangalore. August 3, 2011 What this course is about What we study

More information

Turing Machines, Part I

Turing Machines, Part I Turing Machines, Part I Languages The $64,000 Question What is a language? What is a class of languages? Computer Science Theory 2 1 Now our picture looks like Context Free Languages Deterministic Context

More information

Regular Expressions and Automata using Haskell

Regular Expressions and Automata using Haskell Regular Expressions and Automata using Haskell Simon Thompson Computing Laboratory University of Kent at Canterbury January 2000 Contents 1 Introduction 2 2 Regular Expressions 2 3 Matching regular expressions

More information

Increasing Interaction and Support in the Formal Languages and Automata Theory Course

Increasing Interaction and Support in the Formal Languages and Automata Theory Course Increasing Interaction and Support in the Formal Languages and Automata Theory Course [Extended Abstract] Susan H. Rodger rodger@cs.duke.edu Jinghui Lim Stephen Reading ABSTRACT The introduction of educational

More information

Lecture 2: Universality

Lecture 2: Universality CS 710: Complexity Theory 1/21/2010 Lecture 2: Universality Instructor: Dieter van Melkebeek Scribe: Tyson Williams In this lecture, we introduce the notion of a universal machine, develop efficient universal

More information

Genetic programming with regular expressions

Genetic programming with regular expressions Genetic programming with regular expressions Børge Svingen Chief Technology Officer, Open AdExchange bsvingen@openadex.com 2009-03-23 Pattern discovery Pattern discovery: Recognizing patterns that characterize

More information

T-79.186 Reactive Systems: Introduction and Finite State Automata

T-79.186 Reactive Systems: Introduction and Finite State Automata T-79.186 Reactive Systems: Introduction and Finite State Automata Timo Latvala 14.1.2004 Reactive Systems: Introduction and Finite State Automata 1-1 Reactive Systems Reactive systems are a class of software

More information

CS 3719 (Theory of Computation and Algorithms) Lecture 4

CS 3719 (Theory of Computation and Algorithms) Lecture 4 CS 3719 (Theory of Computation and Algorithms) Lecture 4 Antonina Kolokolova January 18, 2012 1 Undecidable languages 1.1 Church-Turing thesis Let s recap how it all started. In 1990, Hilbert stated a

More information

6.080 / 6.089 Great Ideas in Theoretical Computer Science Spring 2008

6.080 / 6.089 Great Ideas in Theoretical Computer Science Spring 2008 MIT OpenCourseWare http://ocw.mit.edu 6.080 / 6.089 Great Ideas in Theoretical Computer Science Spring 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

More information

Finite Automata. Reading: Chapter 2

Finite Automata. Reading: Chapter 2 Finite Automata Reading: Chapter 2 1 Finite Automata Informally, a state machine that comprehensively captures all possible states and transitions that a machine can take while responding to a stream (or

More information

CAs and Turing Machines. The Basis for Universal Computation

CAs and Turing Machines. The Basis for Universal Computation CAs and Turing Machines The Basis for Universal Computation What We Mean By Universal When we claim universal computation we mean that the CA is capable of calculating anything that could possibly be calculated*.

More information

Automata and Formal Languages. Push Down Automata. Sipser pages 109-114. Lecture 13. Tim Sheard 1

Automata and Formal Languages. Push Down Automata. Sipser pages 109-114. Lecture 13. Tim Sheard 1 Automata and Formal Languages Push Down Automata Sipser pages 109-114 Lecture 13 Tim Sheard 1 Push Down Automata Push Down Automata (PDAs) are ε-nfas with stack memory. Transitions are labeled by an input

More information

Implementation of Recursively Enumerable Languages using Universal Turing Machine in JFLAP

Implementation of Recursively Enumerable Languages using Universal Turing Machine in JFLAP International Journal of Information and Computation Technology. ISSN 0974-2239 Volume 4, Number 1 (2014), pp. 79-84 International Research Publications House http://www. irphouse.com /ijict.htm Implementation

More information

Reading 13 : Finite State Automata and Regular Expressions

Reading 13 : Finite State Automata and Regular Expressions CS/Math 24: Introduction to Discrete Mathematics Fall 25 Reading 3 : Finite State Automata and Regular Expressions Instructors: Beck Hasti, Gautam Prakriya In this reading we study a mathematical model

More information

Properties of Stabilizing Computations

Properties of Stabilizing Computations Theory and Applications of Mathematics & Computer Science 5 (1) (2015) 71 93 Properties of Stabilizing Computations Mark Burgin a a University of California, Los Angeles 405 Hilgard Ave. Los Angeles, CA

More information

On Winning Conditions of High Borel Complexity in Pushdown Games

On Winning Conditions of High Borel Complexity in Pushdown Games Fundamenta Informaticae (2005) 1 22 1 IOS Press On Winning Conditions of High Borel Complexity in Pushdown Games Olivier Finkel Equipe de Logique Mathématique U.F.R. de Mathématiques, Université Paris

More information

Automata on Infinite Words and Trees

Automata on Infinite Words and Trees Automata on Infinite Words and Trees Course notes for the course Automata on Infinite Words and Trees given by Dr. Meghyn Bienvenu at Universität Bremen in the 2009-2010 winter semester Last modified:

More information

Informatique Fondamentale IMA S8

Informatique Fondamentale IMA S8 Informatique Fondamentale IMA S8 Cours 1 - Intro + schedule + finite state machines Laure Gonnord http://laure.gonnord.org/pro/teaching/ Laure.Gonnord@polytech-lille.fr Université Lille 1 - Polytech Lille

More information

Computer Architecture Syllabus of Qualifying Examination

Computer Architecture Syllabus of Qualifying Examination Computer Architecture Syllabus of Qualifying Examination PhD in Engineering with a focus in Computer Science Reference course: CS 5200 Computer Architecture, College of EAS, UCCS Created by Prof. Xiaobo

More information

Using Hands-On Visualizations to Teach Computer Science from Beginning Courses to Advanced Courses

Using Hands-On Visualizations to Teach Computer Science from Beginning Courses to Advanced Courses Using Hands-On Visualizations to Teach Computer Science from Beginning Courses to Advanced Courses Susan H. Rodger Department of Computer Science Duke University Durham, NC 27705 rodger@cs.duke.edu Abstract

More information

Pushdown Automata. International PhD School in Formal Languages and Applications Rovira i Virgili University Tarragona, Spain

Pushdown Automata. International PhD School in Formal Languages and Applications Rovira i Virgili University Tarragona, Spain Pushdown Automata transparencies made for a course at the International PhD School in Formal Languages and Applications Rovira i Virgili University Tarragona, Spain Hendrik Jan Hoogeboom, Leiden http://www.liacs.nl/

More information

Lecture I FINITE AUTOMATA

Lecture I FINITE AUTOMATA 1. Regular Sets and DFA Lecture I Page 1 Lecture I FINITE AUTOMATA Lecture 1: Honors Theory, Spring 02, Yap We introduce finite automata (deterministic and nondeterministic) and regular languages. Some

More information

1 Definition of a Turing machine

1 Definition of a Turing machine Introduction to Algorithms Notes on Turing Machines CS 4820, Spring 2012 April 2-16, 2012 1 Definition of a Turing machine Turing machines are an abstract model of computation. They provide a precise,

More information

C H A P T E R Regular Expressions regular expression

C H A P T E R Regular Expressions regular expression 7 CHAPTER Regular Expressions Most programmers and other power-users of computer systems have used tools that match text patterns. You may have used a Web search engine with a pattern like travel cancun

More information

Compiler Construction

Compiler Construction Compiler Construction Regular expressions Scanning Görel Hedin Reviderad 2013 01 23.a 2013 Compiler Construction 2013 F02-1 Compiler overview source code lexical analysis tokens intermediate code generation

More information

Regular Languages and Finite Automata

Regular Languages and Finite Automata Regular Languages and Finite Automata 1 Introduction Hing Leung Department of Computer Science New Mexico State University Sep 16, 2010 In 1943, McCulloch and Pitts [4] published a pioneering work on a

More information

Composability of Infinite-State Activity Automata*

Composability of Infinite-State Activity Automata* Composability of Infinite-State Activity Automata* Zhe Dang 1, Oscar H. Ibarra 2, Jianwen Su 2 1 Washington State University, Pullman 2 University of California, Santa Barbara Presented by Prof. Hsu-Chun

More information

Course Manual Automata & Complexity 2015

Course Manual Automata & Complexity 2015 Course Manual Automata & Complexity 2015 Course code: Course homepage: Coordinator: Teachers lectures: Teacher exercise classes: Credits: X_401049 http://www.cs.vu.nl/~tcs/ac prof. dr. W.J. Fokkink home:

More information

Diagonalization. Ahto Buldas. Lecture 3 of Complexity Theory October 8, 2009. Slides based on S.Aurora, B.Barak. Complexity Theory: A Modern Approach.

Diagonalization. Ahto Buldas. Lecture 3 of Complexity Theory October 8, 2009. Slides based on S.Aurora, B.Barak. Complexity Theory: A Modern Approach. Diagonalization Slides based on S.Aurora, B.Barak. Complexity Theory: A Modern Approach. Ahto Buldas Ahto.Buldas@ut.ee Background One basic goal in complexity theory is to separate interesting complexity

More information

(IALC, Chapters 8 and 9) Introduction to Turing s life, Turing machines, universal machines, unsolvable problems.

(IALC, Chapters 8 and 9) Introduction to Turing s life, Turing machines, universal machines, unsolvable problems. 3130CIT: Theory of Computation Turing machines and undecidability (IALC, Chapters 8 and 9) Introduction to Turing s life, Turing machines, universal machines, unsolvable problems. An undecidable problem

More information

NFAs with Tagged Transitions, their Conversion to Deterministic Automata and Application to Regular Expressions

NFAs with Tagged Transitions, their Conversion to Deterministic Automata and Application to Regular Expressions NFAs with Tagged Transitions, their Conversion to Deterministic Automata and Application to Regular Expressions Ville Laurikari Helsinki University of Technology Laboratory of Computer Science PL 9700,

More information

Finite Automata and Regular Languages

Finite Automata and Regular Languages CHAPTER 3 Finite Automata and Regular Languages 3. Introduction 3.. States and Automata A finite-state machine or finite automaton (the noun comes from the Greek; the singular is automaton, the Greek-derived

More information

24 Uses of Turing Machines

24 Uses of Turing Machines Formal Language and Automata Theory: CS2004 24 Uses of Turing Machines 24 Introduction We have previously covered the application of Turing Machine as a recognizer and decider In this lecture we will discuss

More information

The Classes P and NP

The Classes P and NP The Classes P and NP We now shift gears slightly and restrict our attention to the examination of two families of problems which are very important to computer scientists. These families constitute the

More information

Fast nondeterministic recognition of context-free languages using two queues

Fast nondeterministic recognition of context-free languages using two queues Fast nondeterministic recognition of context-free languages using two queues Burton Rosenberg University of Miami Abstract We show how to accept a context-free language nondeterministically in O( n log

More information

ω-automata Automata that accept (or reject) words of infinite length. Languages of infinite words appear:

ω-automata Automata that accept (or reject) words of infinite length. Languages of infinite words appear: ω-automata ω-automata Automata that accept (or reject) words of infinite length. Languages of infinite words appear: in verification, as encodings of non-terminating executions of a program. in arithmetic,

More information

ÖVNINGSUPPGIFTER I SAMMANHANGSFRIA SPRÅK. 15 april 2003. Master Edition

ÖVNINGSUPPGIFTER I SAMMANHANGSFRIA SPRÅK. 15 april 2003. Master Edition ÖVNINGSUPPGIFTER I SAMMANHANGSFRIA SPRÅK 5 april 23 Master Edition CONTEXT FREE LANGUAGES & PUSH-DOWN AUTOMATA CONTEXT-FREE GRAMMARS, CFG Problems Sudkamp Problem. (3.2.) Which language generates the grammar

More information

CS5236 Advanced Automata Theory

CS5236 Advanced Automata Theory CS5236 Advanced Automata Theory Frank Stephan Semester I, Academic Year 2012-2013 Advanced Automata Theory is a lecture which will first review the basics of formal languages and automata theory and then

More information

Course Syllabus. Also listed as CS 5349.0U1 Automata Theory (http://go.utdallas.edu/cs5349.0u1.14u)

Course Syllabus. Also listed as CS 5349.0U1 Automata Theory (http://go.utdallas.edu/cs5349.0u1.14u) Course Syllabus Course Information CS 4384.0U1 Automata Theory Summer 2014 TR 3-5:15PM. ECSS 2.312 3 Semester Hours UTD Coursebook: http://go.utdallas.edu/cs4384.0u1.14u Also listed as CS 5349.0U1 Automata

More information

Push-down Automata and Context-free Grammars

Push-down Automata and Context-free Grammars 14 Push-down Automata and Context-free Grammars This chapter details the design of push-down automata (PDA) for various languages, the conversion of CFGs to PDAs, and vice versa. In particular, after formally

More information

Scanner. tokens scanner parser IR. source code. errors

Scanner. tokens scanner parser IR. source code. errors Scanner source code tokens scanner parser IR errors maps characters into tokens the basic unit of syntax x = x + y; becomes = + ; character string value for a token is a lexeme

More information

Deterministic Finite Automata

Deterministic Finite Automata 1 Deterministic Finite Automata Definition: A deterministic finite automaton (DFA) consists of 1. a finite set of states (often denoted Q) 2. a finite set Σ of symbols (alphabet) 3. a transition function

More information

Finite Automata and Formal Languages

Finite Automata and Formal Languages Finite Automata and Formal Languages TMV026/DIT321 LP4 2011 Ana Bove Lecture 1 March 21st 2011 Course Organisation Overview of the Course Overview of today s lecture: Course Organisation Level: This course

More information

Computability Theory

Computability Theory CSC 438F/2404F Notes (S. Cook and T. Pitassi) Fall, 2014 Computability Theory This section is partly inspired by the material in A Course in Mathematical Logic by Bell and Machover, Chap 6, sections 1-10.

More information

Chapter 7 Uncomputability

Chapter 7 Uncomputability Chapter 7 Uncomputability 190 7.1 Introduction Undecidability of concrete problems. First undecidable problem obtained by diagonalisation. Other undecidable problems obtained by means of the reduction

More information

Automata Theory. Şubat 2006 Tuğrul Yılmaz Ankara Üniversitesi

Automata Theory. Şubat 2006 Tuğrul Yılmaz Ankara Üniversitesi Automata Theory Automata theory is the study of abstract computing devices. A. M. Turing studied an abstract machine that had all the capabilities of today s computers. Turing s goal was to describe the

More information

Two-dimensional Languages

Two-dimensional Languages Charles University Faculty of Mathematics and Physics Mgr. Daniel Průša Two-dimensional Languages Doctoral Thesis Supervisor: Martin Plátek, CSc. Prague, 2004 Acknowledgements The results presented in

More information

CS143 Handout 08 Summer 2008 July 02, 2007 Bottom-Up Parsing

CS143 Handout 08 Summer 2008 July 02, 2007 Bottom-Up Parsing CS143 Handout 08 Summer 2008 July 02, 2007 Bottom-Up Parsing Handout written by Maggie Johnson and revised by Julie Zelenski. Bottom-up parsing As the name suggests, bottom-up parsing works in the opposite

More information

1. Give the 16 bit signed (twos complement) representation of the following decimal numbers, and convert to hexadecimal:

1. Give the 16 bit signed (twos complement) representation of the following decimal numbers, and convert to hexadecimal: Exercises 1 - number representations Questions 1. Give the 16 bit signed (twos complement) representation of the following decimal numbers, and convert to hexadecimal: (a) 3012 (b) - 435 2. For each of

More information

Simulation-Based Security with Inexhaustible Interactive Turing Machines

Simulation-Based Security with Inexhaustible Interactive Turing Machines Simulation-Based Security with Inexhaustible Interactive Turing Machines Ralf Küsters Institut für Informatik Christian-Albrechts-Universität zu Kiel 24098 Kiel, Germany kuesters@ti.informatik.uni-kiel.de

More information

Regular Languages and Finite Automata

Regular Languages and Finite Automata Regular Languages and Finite Automata A C Norman, Lent Term 1996 Part IA 1 Introduction This course is short, but it is present in Part 1A because of the way it introduces links between many different

More information

Math Workshop October 2010 Fractions and Repeating Decimals

Math Workshop October 2010 Fractions and Repeating Decimals Math Workshop October 2010 Fractions and Repeating Decimals This evening we will investigate the patterns that arise when converting fractions to decimals. As an example of what we will be looking at,

More information

Kenken For Teachers. Tom Davis tomrdavis@earthlink.net http://www.geometer.org/mathcircles June 27, 2010. Abstract

Kenken For Teachers. Tom Davis tomrdavis@earthlink.net http://www.geometer.org/mathcircles June 27, 2010. Abstract Kenken For Teachers Tom Davis tomrdavis@earthlink.net http://www.geometer.org/mathcircles June 7, 00 Abstract Kenken is a puzzle whose solution requires a combination of logic and simple arithmetic skills.

More information

Mathematical Induction

Mathematical Induction Mathematical Induction In logic, we often want to prove that every member of an infinite set has some feature. E.g., we would like to show: N 1 : is a number 1 : has the feature Φ ( x)(n 1 x! 1 x) How

More information

Intrusion Detection via Static Analysis

Intrusion Detection via Static Analysis Intrusion Detection via Static Analysis IEEE Symposium on Security & Privacy 01 David Wagner Drew Dean Presented by Yongjian Hu Outline Introduction Motivation Models Trivial model Callgraph model Abstract

More information

MACM 101 Discrete Mathematics I

MACM 101 Discrete Mathematics I MACM 101 Discrete Mathematics I Exercises on Combinatorics, Probability, Languages and Integers. Due: Tuesday, November 2th (at the beginning of the class) Reminder: the work you submit must be your own.

More information

CSC4510 AUTOMATA 2.1 Finite Automata: Examples and D efinitions Definitions

CSC4510 AUTOMATA 2.1 Finite Automata: Examples and D efinitions Definitions CSC45 AUTOMATA 2. Finite Automata: Examples and Definitions Finite Automata: Examples and Definitions A finite automaton is a simple type of computer. Itsoutputislimitedto yes to or no. It has very primitive

More information

Automata, languages, and grammars

Automata, languages, and grammars Automata, languages, and grammars Cristopher Moore January 24, 2015 Abstract These lecture notes are intended as a supplement to Moore and Mertens The Nature of Computation, and are available to anyone

More information

Two Way F finite Automata and Three Ways to Solve Them

Two Way F finite Automata and Three Ways to Solve Them An Exponential Gap between LasVegas and Deterministic Sweeping Finite Automata Christos Kapoutsis, Richard Královič, and Tobias Mömke Department of Computer Science, ETH Zürich Abstract. A two-way finite

More information

Discrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 2

Discrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 2 CS 70 Discrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 2 Proofs Intuitively, the concept of proof should already be familiar We all like to assert things, and few of us

More information

03 - Lexical Analysis

03 - Lexical Analysis 03 - Lexical Analysis First, let s see a simplified overview of the compilation process: source code file (sequence of char) Step 2: parsing (syntax analysis) arse Tree Step 1: scanning (lexical analysis)

More information

THE TURING DEGREES AND THEIR LACK OF LINEAR ORDER

THE TURING DEGREES AND THEIR LACK OF LINEAR ORDER THE TURING DEGREES AND THEIR LACK OF LINEAR ORDER JASPER DEANTONIO Abstract. This paper is a study of the Turing Degrees, which are levels of incomputability naturally arising from sets of natural numbers.

More information

Introduction to Turing Machines

Introduction to Turing Machines Automata Theory, Languages and Computation - Mírian Halfeld-Ferrari p. 1/2 Introduction to Turing Machines SITE : http://www.sir.blois.univ-tours.fr/ mirian/ Automata Theory, Languages and Computation

More information

COMP 250 Fall 2012 lecture 2 binary representations Sept. 11, 2012

COMP 250 Fall 2012 lecture 2 binary representations Sept. 11, 2012 Binary numbers The reason humans represent numbers using decimal (the ten digits from 0,1,... 9) is that we have ten fingers. There is no other reason than that. There is nothing special otherwise about

More information

Universality in the theory of algorithms and computer science

Universality in the theory of algorithms and computer science Universality in the theory of algorithms and computer science Alexander Shen Computational models The notion of computable function was introduced in 1930ies. Simplifying (a rather interesting and puzzling)

More information

How To Compare A Markov Algorithm To A Turing Machine

How To Compare A Markov Algorithm To A Turing Machine Markov Algorithm CHEN Yuanmi December 18, 2007 1 Abstract Markov Algorithm can be understood as a priority string rewriting system. In this short paper we give the definition of Markov algorithm and also

More information

Lecture summary for Theory of Computation

Lecture summary for Theory of Computation Lecture summary for Theory of Computation Sandeep Sen 1 January 8, 2015 1 Department of Computer Science and Engineering, IIT Delhi, New Delhi 110016, India. E- mail:ssen@cse.iitd.ernet.in Contents 1 The

More information

1. Nondeterministically guess a solution (called a certificate) 2. Check whether the solution solves the problem (called verification)

1. Nondeterministically guess a solution (called a certificate) 2. Check whether the solution solves the problem (called verification) Some N P problems Computer scientists have studied many N P problems, that is, problems that can be solved nondeterministically in polynomial time. Traditionally complexity question are studied as languages:

More information

FINITE STATE AND TURING MACHINES

FINITE STATE AND TURING MACHINES FINITE STATE AND TURING MACHINES FSM With Output Without Output (also called Finite State Automata) Mealy Machine Moore Machine FINITE STATE MACHINES... 2 INTRODUCTION TO FSM S... 2 STATE TRANSITION DIAGRAMS

More information

Testing LTL Formula Translation into Büchi Automata

Testing LTL Formula Translation into Büchi Automata Testing LTL Formula Translation into Büchi Automata Heikki Tauriainen and Keijo Heljanko Helsinki University of Technology, Laboratory for Theoretical Computer Science, P. O. Box 5400, FIN-02015 HUT, Finland

More information

2110711 THEORY of COMPUTATION

2110711 THEORY of COMPUTATION 2110711 THEORY of COMPUTATION ATHASIT SURARERKS ELITE Athasit Surarerks ELITE Engineering Laboratory in Theoretical Enumerable System Computer Engineering, Faculty of Engineering Chulalongkorn University

More information

4.6 The Primitive Recursive Functions

4.6 The Primitive Recursive Functions 4.6. THE PRIMITIVE RECURSIVE FUNCTIONS 309 4.6 The Primitive Recursive Functions The class of primitive recursive functions is defined in terms of base functions and closure operations. Definition 4.6.1

More information

CPS 140 - Mathematical Foundations of CS Dr. S. Rodger Section: Properties of Context-Free Languages èhandoutè Section 3.5 Which of the following languages are CFL? æ L=fa n b n c j j 0 énçjg æ L=fa n

More information

Algebraic Computation Models. Algebraic Computation Models

Algebraic Computation Models. Algebraic Computation Models Algebraic Computation Models Ζυγομήτρος Ευάγγελος ΜΠΛΑ 201118 Φεβρουάριος, 2013 Reasons for using algebraic models of computation The Turing machine model captures computations on bits. Many algorithms

More information

The Graphical Method: An Example

The Graphical Method: An Example The Graphical Method: An Example Consider the following linear program: Maximize 4x 1 +3x 2 Subject to: 2x 1 +3x 2 6 (1) 3x 1 +2x 2 3 (2) 2x 2 5 (3) 2x 1 +x 2 4 (4) x 1, x 2 0, where, for ease of reference,

More information