85 Using the Distributive Property. Use the Distributive Property to factor each polynomial b 15a SOLUTION:


 Derek Martin
 1 years ago
 Views:
Transcription
1 Use the Distributive Property to factor each polynomial. 1. 1b 15a The greatest common factor in each term is c + c The greatest common factor in each term is c g h + 9gh g h The greatest common factor in each term is gh. 4. 1j k + 6j k + j k The greatest common factor in each term is j k. Factor each polynomial. 5. np + n + 8p + 16 Page 1
2 The greatest common factor in each term is j k. Factor each polynomial. 5. np + n + 8p xy 7x + 7y bc b c 8. 9fg 45f 7g + 35 Solve each equation. Check your solutions. 9. 3k(k + 10) = 0 Since 0 is on one side of the equation and the other side is in factor form, apply the Zero Product Property and set each factor equal to 0. Solve each of the resulting equations. 3k(k + 10) = 0 The roots are 0 and 10. Check by substituting 0 and 10 in for k in the original equation. So, the solutions are 0 and 10. Page
3 Solve each equation. Check your solutions. 9. 3k(k + 10) = 0 Since 0 is on one side of the equation and the other side is in factor form, apply the Zero Product Property and set each factor equal to 0. Solve each of the resulting equations. 3k(k + 10) = 0 The roots are 0 and 10. Check by substituting 0 and 10 in for k in the original equation. So, the solutions are 0 and (4m + )(3m 9) = 0 Since 0 is on one side of the equation and the other side is in factor form, apply the Zero Product Property and set each factor equal to 0. Solve each of the resulting equations. (4m + )(3m 9) = 0 The roots are and 3. Check by substituting and 3 in for m in the original equation. So, the solutions are and p 15p = 0 Since 0 is on one side of the equation, factor the other side. Next, apply the Zero Product Property by setting each factor equal to 0. Solve each of the resulting equations. esolutions Manual  Powered by Cognero Page 3
4 85 Using Distributive Property So, thethe solutions are and p 15p = 0 Since 0 is on one side of the equation, factor the other side. Next, apply the Zero Product Property by setting each factor equal to 0. Solve each of the resulting equations. The roots are 0 and. Check by substituting 0 and in for p in the original equation. So, the solutions are 0 and. 1. r = 14r Rewrite the equation so one side has 0 and the other side is in factor form. Next, apply the Zero Product Property by setting each factor equal to 0. Solve each of the resulting equations. r = 0 or The roots are 0 and 14. Check by substituting 0 and 14 in for r in the original equation. So, the solutions are 0 and SPIDERS Jumping spiders can commonly be found in homes and barns throughout the United States. A jumping spider s jump can be modeled by the equation h = 33.3t 16t, where t represents the time in seconds and h is the height in feet. a. When is the spider s height at 0 feet? b. What spider s height after 1 second? after seconds? esolutions Manualis the Powered by Cognero Page 4 a. Write the equation so it is of the form ab = 0.
5 85 Using the Distributive Property So, the solutions are 0 and SPIDERS Jumping spiders can commonly be found in homes and barns throughout the United States. A jumping spider s jump can be modeled by the equation h = 33.3t 16t, where t represents the time in seconds and h is the height in feet. a. When is the spider s height at 0 feet? b. What is the spider s height after 1 second? after seconds? a. Write the equation so it is of the form ab = 0. t = 0 or The spider s height is at 0 ft. at 0 sec. and at.0815 sec. b. h = 33.3(1) 16(1) = 17.3 h = 33.3() 16() =.6 The spider s height after 1 second is 17.3 ft. and after seconds is.6 ft. 14. CCSS REASONING At a Fourth of July celebration, a rocket is launched straight up with an initial velocity of 15 feet per second. The height h of the rocket in feet above sea level is modeled by the formula h = 15t 16t, where t is the time in seconds after the rocket is launched. a. What is the height of the rocket when it returns to the ground? b. Let h = 0 in the equation and solve for t. c. How many seconds will it take for the rocket to return to the ground? a. The height of the rocket when it returns to the ground is 0 ft. b. t = 0 or t = 0 or c. It will take the rocket about 7.8 seconds to return to the ground. Use the Distributive Property to factor each polynomial t 40y The greatest common factor in each term is v + 50x esolutions Manual  Powered by Cognero Page 5
6 The greatest common factor in each term is v + 50x The greatest common factor in each term is k + 4k The greatest common factor in each term is k z + 10z The greatest common factor in each term is 5z a b + a b 10ab The greatest common factor in each term is ab c v 15c v + 5c v The greatest common factor in each term is 5c v. Page 6
7 The greatest common factor in each term is ab c v 15c v + 5c v The greatest common factor in each term is 5c v. Factor each polynomial. 1. fg 5g + 4f 0. a 4a 4 + 6a 3. hj h + 5j xy x + y Page 7
8 4. xy x + y 5. 45pq 7q 50p ty 18t + 4y dt 1d t 8. 8r + 1r 9. 1th 3t 35h + 5 Sometimes you need to reorder the terms so that there are common factors in each group. It is important that after nd step, there is a common factor. If not, go back and regroup the original terms and factor GCF's again. Page 8
9 9. 1th 3t 35h + 5 Sometimes you need to reorder the terms so that there are common factors in each group. It is important that after nd step, there is a common factor. If not, go back and regroup the original terms and factor GCF's again. 30. vp + 1v + 8p + 96 Sometimes you need to reorder the terms so that there are common factors in each group. It is important that after nd step, there is a common factor. If not, go back and regroup the original terms and factor GCF's again br 5b + r nu 8u + 3n 1 Sometimes you need to reorder the terms so that there are common factors in each group. It is important that after nd step, there is a common factor. If not, go back and regroup the original terms and factor GCF's again gf + g f + 15gf esolutions  Powered 34. rp Manual 9r + 9p 81 by Cognero Page 9 Sometimes you need to reorder the terms so that there are common factors in each group. It is important that after
10 33. 5gf + g f + 15gf 34. rp 9r + 9p 81 Sometimes you need to reorder the terms so that there are common factors in each group. It is important that after nd step, there is a common factor. If not, go back and regroup the original terms and factor GCF's again cd 18c d + 3cd r t + 1r t 6r t tu 90t + 3u gh + 4g h 3 Sometimes you need to reorder the terms so that there are common factors in each group. It is important that after nd step, there is a common factor. If not, go back and regroup the original terms and factor GCF's again. Solve each equation. Check your solutions b(9b 7) = 0 Page 10 Since 0 is on one side of the equation and the other side is in factor form, apply the Zero Product Property and set each factor equal to 0. Solve each of the resulting equations.
11 Solve each equation. Check your solutions b(9b 7) = 0 Since 0 is on one side of the equation and the other side is in factor form, apply the Zero Product Property and set each factor equal to 0. Solve each of the resulting equations. 3b(9b 7) = 0 The roots are 0 and 3. Check by substituting 0 and 3 in for b in the original equation. So, the solutions are 0 and n(3n + 3) = 0 Since 0 is on one side of the equation and the other side is in factor form, apply the Zero Product Property and set each factor equal to 0. Solve each of the resulting equations. n(3n + 3) = 0 The roots are 0 and 1. Check by substituting 0 and 1 in for n in the original equation. So, the solutions are 0 and (8z + 4)(5z + 10) = 0 Since 0 is on one side of the equation and the other side is in factor form, apply the Zero Product Property and set each factor equal to 0. Solve each of the resulting equations. (8z + 4)(5z + 10) = 0 The roots are and. Check by substituting Page 11 and in for z in the original equation.
12 So, the solutions are 0 and (8z + 4)(5z + 10) = 0 Since 0 is on one side of the equation and the other side is in factor form, apply the Zero Product Property and set each factor equal to 0. Solve each of the resulting equations. (8z + 4)(5z + 10) = 0 The roots are and. Check by substituting and in for z in the original equation. So, the solutions are and. 4. (7x + 3)(x 6) = 0 Since 0 is on one side of the equation and the other side is in factor form, apply the Zero Product Property and set each factor equal to 0. Solve each of the resulting equations. (7x + 3)(x 6) = 0 The roots are and 3. Check by substituting and 3 in for x in the original equation. So, the solutions are and b = 3b Page 1 Rewrite the equation so one side has 0 and the other side is in factor form. Next, apply the Zero Product Property by setting each factor equal to 0. Solve each of the resulting equations.
13 85 Using Distributive Property So, thethe solutions are and b = 3b Rewrite the equation so one side has 0 and the other side is in factor form. Next, apply the Zero Product Property by setting each factor equal to 0. Solve each of the resulting equations. b = 0 or The roots are 0 and 3. Check by substituting 0 and 3 in for b in the original equation. So, the solutions are 0 and a = 4a Rewrite the equation so one side has 0 and the other side is in factor form. Next, apply the Zero Product Property by setting each factor equal to 0. Solve each of the resulting equations. a = 0 or The roots are 0 and 4. Check by substituting 0 and 4 in for a in the original equation. So, the solutions are 0 and CCSS SENSEMAKING Use the drawing shown. a. Write an expression in factored form to represent the area of the blue section. b. Write an expression in factored form to represent the area of the region formed by the outer edge. c. Write an expression in factored form to represent the yellow region. a. ab b. (a + 6)(b + 6) esolutions by Cognero c. (amanual + 6)(b Powered + 6) ab = ab + 6a + 6b + 36 ab = 6a + 6b + 36 = 6(a + b + 6) Page 13
14 85 Using the Distributive Property So, the solutions are 0 and CCSS SENSEMAKING Use the drawing shown. a. Write an expression in factored form to represent the area of the blue section. b. Write an expression in factored form to represent the area of the region formed by the outer edge. c. Write an expression in factored form to represent the yellow region. a. ab b. (a + 6)(b + 6) c. (a + 6)(b + 6) ab = ab + 6a + 6b + 36 ab = 6a + 6b + 36 = 6(a + b + 6) 46. FIREWORKS A teninch fireworks shell is fired from ground level. The height of the shell in feet is given by the formula h = 63t 16t, where t is the time in seconds after launch. a. Write the expression that represents the height in factored form. b. At what time will the height be 0? Is this answer practical? Explain. c. What is the height of the shell 8 seconds and 10 seconds after being fired? d. At 10 seconds, is the shell rising or falling? a. b. t = 0 or The answer is practical because the shell starts at ground level where t = 0 and h = 0 and is in the air for seconds before landing on the ground (h = 0) again. c. After 8 seconds the shell is 1080 ft. high. After 10 seconds, the shell is 1030 ft. high. d. Because the height is lower at 10 seconds than it is at 8 seconds, the shell has begun to fall. 47. ARCHITECTURE The frame of a doorway is an arch that can be modeled by the graph of the equation y = 3x + 1x, where x and y are measured in feet. On a coordinate plane, the floor is represented by the xaxis. a. Make a table of values for the height of the arch if x = 0, 1,, 3, and 4 feet. b. Plot the points from the table on a coordinate plane and connect the points to form a smooth curve to represent the arch. esolutions Manual  Powered Cognero Page 14 c. How high is the by doorway?
15 After 10 the shell is 1030 ft. high. 85 Using theseconds, Distributive Property d. Because the height is lower at 10 seconds than it is at 8 seconds, the shell has begun to fall. 47. ARCHITECTURE The frame of a doorway is an arch that can be modeled by the graph of the equation y = 3x + 1x, where x and y are measured in feet. On a coordinate plane, the floor is represented by the xaxis. a. Make a table of values for the height of the arch if x = 0, 1,, 3, and 4 feet. b. Plot the points from the table on a coordinate plane and connect the points to form a smooth curve to represent the arch. c. How high is the doorway? a. x y = 3x + 1x y 0 1 3(0) + 1(0) 3(1) + 1(1) 0 9 3() + 1() 1 3 3(3) + 1(3) 9 4 3(4) + 1(4) 0 b. c. The maximum point occurs at x = with a height of 1. Thus, the doorway is 1 ft high because 1 ft is the maximum height. 48. RIDES Suppose the height of a rider after being dropped can be modeled by h = 16t 96t + 160, where h is the height in feet and t is time in seconds. a. Write an expression to represent the height in factored form. b. From what height is the rider initially dropped? c. At what height will the rider be after 3 seconds of falling? Is this possible? Explain. a. 16t 96t = 16( t 6t + 10) b. The constant in the expression is 160, so the rider is initially dropped from 160 ft. c. No, this is not possible. The rider cannot be a negative number of feet in the air. 49. ARCHERY The height h in feet of an arrow can be modeled by the equation h = 64t 16t, where t is time in seconds. Ignoring the height of the archer, how long after it is released does it hit the ground? Page 15
16 No, this is not possible. The rider cannot be a negative number of feet in the air. 49. ARCHERY The height h in feet of an arrow can be modeled by the equation h = 64t 16t, where t is time in seconds. Ignoring the height of the archer, how long after it is released does it hit the ground? or It takes the arrow 4 seconds to hit the ground. 50. TENNIS A tennis player hits a tennis ball upward with an initial velocity of 80 feet per second. The height h in feet of the tennis ball can be modeled by the equation h = 80t 16t, where t is time in seconds. Ignoring the height of the tennis player, how long does it take the ball to hit the ground? It takes the ball 5 seconds to hit the ground. 51. MULTIPLE REPRESENTATIONS In this problem, you will explore the box method of factoring. To factor x + x 6, write the first term in the top lefthand corner of the box, and then write the last term in the lower righthand corner. a. ANALYTICAL Determine which two factors have a product of 6 and a sum of 1. b. SYMBOLIC Write each factor in an empty square in the box. Include the positive or negative sign and variable. c. ANALYTICAL Find the factor for each row and column of the box. What are the factors of x + x 6? d. VERBAL Describe how you would use the box method to factor x 3x 40. a. Make a table with the different factors of 6. Find the sum and product of each pair of factors. Product Factor Factor Sum of of 1 Factors Factors esolutions by Cognero The Manual factors Powered are 3 and since 3 + ( ) = 1 and 3( ) = 6. b. Page 16
17 Factors Using the Distributive Property The factors are 3 and since 3 + ( ) = 1 and 3( ) = 6. b. c. (x + 3)(x ) d. Place x in the top lefthand corner and place 40 in the lower righthand corner. Then determine which two factors have a product of 40 and a sum of 3. Then place these factors in the box. Then find the factor of each row and column. The factors will be listed on the very top and far left of the box. 5. CCSS CRITIQUE Hernando and Rachel are solving m = 4m. Is either of them correct? Explain your reasoning. Page 17 Hernando divided one side by m and the other by m. The Division Property of Equality states that each side must be divided by the same quantity. Also, since m is a variable it could equal 0. Division by 0 does not produce an equivalent equation. Rachel has applied the Zero Product Property by rewriting the equation so that one side has
18 5. CCSS CRITIQUE Hernando and Rachel are solving m = 4m. Is either of them correct? Explain your reasoning. Hernando divided one side by m and the other by m. The Division Property of Equality states that each side must be divided by the same quantity. Also, since m is a variable it could equal 0. Division by 0 does not produce an equivalent equation. Rachel has applied the Zero Product Property by rewriting the equation so that one side has zero and the other side is in factor form. Then she set each factor equal to 0 and solved. Rachel is correct. 53. CHALLENGE Given the equation (ax + b)(ax b) = 0, solve for x. What do we know about the values of a and b? or If a = 0 and b = 0, then all real numbers are solutions. If a 0, then the solutions are and. 54. OPEN ENDED Write a fourterm polynomial that can be factored by grouping. Then factor the polynomial. Write 4 monomials where there is a GCF for each group. Once the GCF is factored out, there should be another common factor. 55. REASONING Given the equation c = a ab, for what values of a and b does c = 0? Let c = 0, factor and solve. esolutions Manual  Powered by Cognero a ab = 0 a(a b) = 0 a = 0 or a = b Page 18
19 common factor. 55. REASONING Given the equation c = a ab, for what values of a and b does c = 0? Let c = 0, factor and solve. a ab = 0 a(a b) = 0 a = 0 or a = b Then c = 0 when a = 0 or a = b for any real values of a and b. 56. WRITING IN MATH Explain how to solve a quadratic equation by using the Zero Product Property. Rewrite the equation to have zero on one side of the equals sign. Then factor the other side. Set each factor equal to zero, and then solve each equation. For example solve x 5x = Which is a factor of 6z 3z + 4z? A z + 1 B 3z C z + D z 1 The correct choice is D. 58. PROBABILITY Hailey has 10 blocks: red, 4 blue, 3 yellow, and 1 green. If Hailey chooses one block, what is the probability that it will be either red or yellow? F G H J The total number of blocks is 10 and the number of red or yellow blocks is + 3, or 5. So the probability of choosing either a red or a yellow block is. Page 19 The correct choice is H. 59. GRIDDED RESPONSE Cho is making a 140inch by 160inch quilt with quilt squares that measure 8 inches on
20 The correct choice is D. 58. PROBABILITY Hailey has 10 blocks: red, 4 blue, 3 yellow, and 1 green. If Hailey chooses one block, what is the probability that it will be either red or yellow? F G H J The total number of blocks is 10 and the number of red or yellow blocks is + 3, or 5. So the probability of choosing either a red or a yellow block is. The correct choice is H. 59. GRIDDED RESPONSE Cho is making a 140inch by 160inch quilt with quilt squares that measure 8 inches on each side. How many will be needed to make the quilt? The area of the quilt is , or,400. The area of each square is 8 8, or 64. To find the number of squares needed, divide the area of the quilt by the area of each square:, = 350. So, 350 squares will be needed to make the quilt. 60. GEOMETRY The area of the right triangle shown is 5h square centimeters. What is the height of the triangle? A cm B 5 cm C 8 cm D 10 cm h=5 The height of the triangle is h, or (5) = 10 cm. The correct choice is D. 61. GENETICS Brown genes B are dominant over blue genes b. A person with genes BB or Bb has brown eyes. eyes. Elisa has brown eyes with Bb genes, and Bob has blue eyes. Write an Page 0 expression for the possible eye coloring of Elisa and Bob s children. Determine the probability that their child would have blue eyes. esolutions Manualwith  Powered Cognero Someone genesbybb has blue
21 h=5 The height of the triangleproperty is h, or (5) = 10 cm. 85 Using the Distributive The correct choice is D. 61. GENETICS Brown genes B are dominant over blue genes b. A person with genes BB or Bb has brown eyes. Someone with genes bb has blue eyes. Elisa has brown eyes with Bb genes, and Bob has blue eyes. Write an expression for the possible eye coloring of Elisa and Bob s children. Determine the probability that their child would have blue eyes. Bob has blue eyes so he must have bb genes. Elisa has brown eyes so she could have BB, Bb, or bb genes. Their children could get only a b gene from Bob but either a B or b gene from Elisa. The following table shows the combinations if each child would receive half of each parent s genes. So, an expression for the possible eye coloring of Elisa and Bob s children is: 0.5Bb + 0.5b. If B = 0 and b = 1, then Therefore, the probability that a child of Elisa and Bob would have blue eyes is. Find each product. 6. n(n 4n + 3) 63. b(b + b 5) 64. c(4c + c ) Page 1
22 64. c(4c + c ) x(x + x + x 1) 66. ab(4a b + ab b ) 67. 3xy(x + xy + y ) Simplify. esolutions Manual  Powered by Cognero (ab )(ab ) Page
23 Simplify (ab )(ab ) (p r )(p r) ( 7c d )(4cd ) (9xy ) BASKETBALL In basketball, a free throw is 1 point, and a field goal is either or 3 points. In a season, Tim Duncan of the San Antonio Spurs scored a total of 134 points. The total number of point field goals and 3point field goals was 517, and he made 305 of the 455 free throws that he attempted. Find the number of point field goals and 3point field goals Duncan made that season. Page 3 Let t = the number of 3point field goals Duncan made. His total number of points can be found by the sum of the
24 74. BASKETBALL In basketball, a free throw is 1 point, and a field goal is either or 3 points. In a season, Tim Duncan of the San Antonio Spurs scored a total of 134 points. The total number of point field goals and 3point field goals was 517, and he made 305 of the 455 free throws that he attempted. Find the number of point field goals and 3point field goals Duncan made that season. Let t = the number of 3point field goals Duncan made. His total number of points can be found by the sum of the points earned by his 3point field goals, his point field goals, and his free throws = 514 Duncan made three 3point field goals and 514 point field goals that season. Solve each inequality. Check your solution y 4 > 37 The solution is {y y > 11}. Check the solution by substituting a number greater than 11 for y in the equation. The solution checks q + 9 > 4 The solution is {q q < 3}. Check the solution by substituting a number less than 3 for q in the equation. The solution checks. + 1 < k Manual esolutions Powered by Cognero Page 4
25 The solution checks. 77. k + 1 < 30 The solution is {k k > 9}. Check the solution by substituting a number greater than 9 for k in the equation. The solution checks q + 7 3(q + 1) The solution is {q q }. Check the solution by substituting a number less than or equal to for q in the equation. The solution checks The solution is {z z 48}. Page 5
26 The solution checks The solution is {z z 48}. Check the solution by substituting a number greater than or equal to 48 for z in the equation. The solution checks c (c 5) > c + 17 The solution is {c c > }. Check the solution by substituting a number greater than for c in the equation. The solution checks. Find each product. 81. (a + )(a + 5) 8. (d + 4)(d + 10) Page 6
27 8. (d + 4)(d + 10) 83. (z 1)(z 8) 84. (c + 9)(c 3) 85. (x 7)(x 6) 86. (g )(g + 11) Page 7
If A is divided by B the result is 2/3. If B is divided by C the result is 4/7. What is the result if A is divided by C?
Problem 3 If A is divided by B the result is 2/3. If B is divided by C the result is 4/7. What is the result if A is divided by C? Suggested Questions to ask students about Problem 3 The key to this question
More informationMEP Pupil Text 12. A list of numbers which form a pattern is called a sequence. In this section, straightforward sequences are continued.
MEP Pupil Text Number Patterns. Simple Number Patterns A list of numbers which form a pattern is called a sequence. In this section, straightforward sequences are continued. Worked Example Write down the
More information13. Write the decimal approximation of 9,000,001 9,000,000, rounded to three significant
æ If 3 + 4 = x, then x = 2 gold bar is a rectangular solid measuring 2 3 4 It is melted down, and three equal cubes are constructed from this gold What is the length of a side of each cube? 3 What is the
More informationPROOFS BY DESCENT KEITH CONRAD
PROOFS BY DESCENT KEITH CONRAD As ordinary methods, such as are found in the books, are inadequate to proving such difficult propositions, I discovered at last a most singular method... that I called the
More informationGuide for Texas Instruments TI83, TI83 Plus, or TI84 Plus Graphing Calculator
Guide for Texas Instruments TI83, TI83 Plus, or TI84 Plus Graphing Calculator This Guide is designed to offer stepbystep instruction for using your TI83, TI83 Plus, or TI84 Plus graphing calculator
More informationPrimes. Name Period Number Theory
Primes Name Period A Prime Number is a whole number whose only factors are 1 and itself. To find all of the prime numbers between 1 and 100, complete the following exercise: 1. Cross out 1 by Shading in
More informationMEP Y9 Practice Book A
1 Base Arithmetic 1.1 Binary Numbers We normally work with numbers in base 10. In this section we consider numbers in base 2, often called binary numbers. In base 10 we use the digits 0, 1, 2, 3, 4, 5,
More informationOPRE 6201 : 2. Simplex Method
OPRE 6201 : 2. Simplex Method 1 The Graphical Method: An Example Consider the following linear program: Max 4x 1 +3x 2 Subject to: 2x 1 +3x 2 6 (1) 3x 1 +2x 2 3 (2) 2x 2 5 (3) 2x 1 +x 2 4 (4) x 1, x 2
More informationSimplifying Logic Circuits with Karnaugh Maps
Simplifying Logic Circuits with Karnaugh Maps The circuit at the top right is the logic equivalent of the Boolean expression: f = abc + abc + abc Now, as we have seen, this expression can be simplified
More informationStatistics Revision Sheet Question 6 of Paper 2
Statistics Revision Sheet Question 6 of Paper The Statistics question is concerned mainly with the following terms. The Mean and the Median and are two ways of measuring the average. sumof values no. of
More informationFIRST GRADE Number and Number Sense
FIRST GRADE Number and Number Sense Hundred Chart Puzzle Reporting Category Number and Number Sense Topic Count and write numerals to 100 Primary SOL 1.1 The student will a) count from 0 to 100 and write
More information6 WORK and ENERGY. 6.0 Introduction. 6.1 Work and kinetic energy. Objectives
6 WORK and ENERGY Chapter 6 Work and Energy Objectives After studying this chapter you should be able to calculate work done by a force; be able to calculate kinetic energy; be able to calculate power;
More informationUnit 5 Area. What Is Area?
Trainer/Instructor Notes: Area What Is Area? Unit 5 Area What Is Area? Overview: Objective: Participants determine the area of a rectangle by counting the number of square units needed to cover the region.
More informationRevised Version of Chapter 23. We learned long ago how to solve linear congruences. ax c (mod m)
Chapter 23 Squares Modulo p Revised Version of Chapter 23 We learned long ago how to solve linear congruences ax c (mod m) (see Chapter 8). It s now time to take the plunge and move on to quadratic equations.
More informationGeometric Relationships
Geometric Relationships 8 Lines and ngles 81 83 84 LB Building Blocks of Geometry Measuring and Classifying ngles ngle Relationships Classifying Lines Parallel Line Relationships 8B Polygons LB 85
More information2 Integrating Both Sides
2 Integrating Both Sides So far, the only general method we have for solving differential equations involves equations of the form y = f(x), where f(x) is any function of x. The solution to such an equation
More information1 Sets and Set Notation.
LINEAR ALGEBRA MATH 27.6 SPRING 23 (COHEN) LECTURE NOTES Sets and Set Notation. Definition (Naive Definition of a Set). A set is any collection of objects, called the elements of that set. We will most
More informationTHE CONGRUENT NUMBER PROBLEM
THE CONGRUENT NUMBER PROBLEM KEITH CONRAD 1. Introduction A right triangle is called rational when its legs and hypotenuse are all rational numbers. Examples of rational right triangles include Pythagorean
More informationMarkov Chains. Chapter 11. 11.1 Introduction. Specifying a Markov Chain
Chapter 11 Markov Chains 11.1 Introduction Most of our study of probability has dealt with independent trials processes. These processes are the basis of classical probability theory and much of statistics.
More information1. Graphing Linear Inequalities
Notation. CHAPTER 4 Linear Programming 1. Graphing Linear Inequalities x apple y means x is less than or equal to y. x y means x is greater than or equal to y. x < y means x is less than y. x > y means
More informationProblem of the Month Pick a Pocket
The Problems of the Month (POM) are used in a variety of ways to promote problem solving and to foster the first standard of mathematical practice from the Common Core State Standards: Make sense of problems
More informationHow Old Are They? This problem gives you the chance to: form expressions form and solve an equation to solve an age problem. Will is w years old.
How Old Are They? This problem gives you the chance to: form expressions form and solve an equation to solve an age problem Will is w years old. Ben is 3 years older. 1. Write an expression, in terms of
More informationChapter 4: The Concept of Area
Chapter 4: The Concept of Area Defining Area The area of a shape or object can be defined in everyday words as the amount of stuff needed to cover the shape. Common uses of the concept of area are finding
More informationThe Handshake Problem
The Handshake Problem Tamisha is in a Geometry class with 5 students. On the first day of class her teacher asks everyone to shake hands and introduce themselves to each other. Tamisha wants to know how
More informationCAHSEE on Target UC Davis, School and University Partnerships
UC Davis, School and University Partnerships CAHSEE on Target Mathematics Curriculum Published by The University of California, Davis, School/University Partnerships Program 2006 Director Sarah R. Martinez,
More informationhow to use dual base log log slide rules
how to use dual base log log slide rules by Professor Maurice L. Hartung The University of Chicago Pickett The World s Most Accurate Slide Rules Pickett, Inc. Pickett Square Santa Barbara, California 93102
More information9. Sampling Distributions
9. Sampling Distributions Prerequisites none A. Introduction B. Sampling Distribution of the Mean C. Sampling Distribution of Difference Between Means D. Sampling Distribution of Pearson's r E. Sampling
More informationAll of mathematics can be described with sets. This becomes more and
CHAPTER 1 Sets All of mathematics can be described with sets. This becomes more and more apparent the deeper into mathematics you go. It will be apparent in most of your upper level courses, and certainly
More informationTaking Place Value Seriously: Arithmetic, Estimation, and Algebra
Taking Place Value Seriously: Arithmetic, Estimation, and Algebra by Roger Howe, Yale University and Susanna S. Epp, DePaul University Introduction and Summary Arithmetic, first of nonnegative integers,
More informationI. Vectors and Geometry in Two and Three Dimensions
I. Vectors and Geometry in Two and Three Dimensions I.1 Points and Vectors Each point in two dimensions may be labeled by two coordinates (a,b) which specify the position of the point in some units with
More information