AA 241B Final Report Trent Lukaczyk

Size: px
Start display at page:

Download "AA 241B Final Report Trent Lukaczyk"

Transcription

1 AA 241B Final Report Trent Lukaczyk

2 1. Supersonic Business Jet Summary The major role of this supersonic business jet will be that of a time-saving form of transportation by reducing the large opportunity costs associated with the time lost while traveling for high-pay business executives. The proposed aircraft, with a design cruise speed of Ma 1.7 and range of 4200 nmi, would reduce the trans-american travel time from of current business jets by more than half - from six down to three hours. To reduce weight and complexity, and target the business jet market, it is specified to have a capacity of 8-12 passengers and a max gross weight of 41,000 kg. To allow use at medium sized or regional airports, it will have a maximum field length of 1850m (6500 ft), which will be determined by the airplane's max lift coefficient. Given an implicit requirement for 45% total travel time reduction, a supersonic passenger jet must be able to fly at least Ma 1.6 over land, which will constrain boom loudness and drag. Finally, high altitude flight greater than 15 km is desirable to bring down max dynamic pressure, increase equivalent land speed, and avoid existing air traffic. This altitude will be constrained by the airplane's maximum cruise lift coefficient and engine performance. 2. Optimization The matlab distribution of PASS was wrapped in an SLSQP Gradient-Based Optimizer to improve upon the direct analysis performed by hand over the last 6 months. For the most part, the analysis in PASS matches that of the hand analysis, but can perform several hundred evaluations a second. The main approach used to take advantage of this design tool was that of an inner-loop optimizer. Only specific variables were given to the optimizer to modify, while the designer was left to adjust other higher level design variables. The main goal of this study was to identify a feasible design which minimizes ticket price, which ties together the multiple objectives of minimizing weight and fuel consumption, while maintaining a minimum range and maximum balanced field length. Additional constraints were included to maintain stability and control of the aircraft. The relevant design inputs objectives and constraints are printed below. Design Variable Min Max Primarily Effects Max Take Off Weight 50,000 lbs 12,000 lbs Range Wing Reference Area 100 ft ft 2 Lift, Range SLS Thrust 10,000 lbf 40,000 lbf Climb rate, Range Wing Aspect Ratio Induced drag, Range Initial Cruise Altitude 40,000 ft 56,000 ft Range Final Cruise Altitude 40,000 ft 56,000 ft Range Wing Location (x/fuse len.) Static Stability Margin Horizontal Tail Area Ratio Static Stability Margin Wing Sweep Drag, Range Wing t/c Drag, Range Takeoff Mach Number Take off field length Landing Mach Number Landing field length Zero Fuel Weight ratio Range, Landing field length

3 Constraints Min Max Relevance Cruise Range 4200 nmi nmi Design specification Take off field length 3000 ft 5900 ft Design specification Landing field length 3000 ft 5900 ft Design specification Static Stability Margin Flight Stability, Safety Vertical Tail CL, engine out Safety, Emergency Second Segment Climb Grad Federal Regulation Landing Gear Location Taxi Stability Drag/Thrust Ability to climb at cruise Tail CL margins Stability and trim during climb Payload margins 1500 lbs 10,000 lbs Growth of the aircraft Higher Level Variables Engine SFC Engine weight/thrust ratio Tail Sweep Angles Relevance Low order engine model, requires tuning Low order engine model, requires tuning Should be greater than main wing sweep Note that the take-off and landing field length requirements are tighter than the design specification to explore a more conservative design. The initial design provided from the hand analysis had a range of 2850 nmi. Initially this was brought into feasibility by reducing the engine's specific fuel consumption. Additionally, the aircraft had a large stability margin, which was overestimated because the effect trimming by fuel weight management was not considered. The optimizer was able to bring the range into a feasible region, while reducing the static margin down to the constraint limit. The resulting aircraft from this study had a large main wing sweep, and was larger than the tail sweeps. For additional safety and stability, it is better for the tail sweeps to be larger, to delay shocks in subsonic flight. The angles of the tail sweeps were increased to two-degrees above the current main wing sweep angle, and the main wing sweep was constrained to be no larger than its current angle. The optimizer was able to adjust the design given this update. The landing gear then had to be moved to accommodate better on-ground stability, for example while taxing. This was accomplished by adjusting the landing gear location constraint. Finally, the specific fuel consumption was increased, as there was still a large amount of room left in the maximum take-off weight budget, and a tsfc of 0.93 is perhaps more reasonable for a supersonic turbine bypass engine. This optimization was responsible for generating the final design. A summary of the design path is shown in the table below.

4 Decision Wing Area ft 2 Range nmi Static Margin Trent Lukaczyk MTOW Ticket Price lbs $ Initial Design , Optimize Initial Design lower tsfc to meet range Set Tail Sweeps = 58 Constrain Wing sweep < 56 Constrain Landing Gear x/c > 0.5 Final Design, Raise tsfc = , , , , Performance Summary A summary of the aircraft design constraints is shown in the plot below. The solid lines represent the constraint boundary, and the dashed lines indicate the direction of feasibility. The feasible region is very small for this design and is constrained by the aircraft's minimum stability, drag to thrust ratio, and range (shown in the detail plot on the next page). This occurs because the ticket price objective encourages the optimizer to reduce the tail volume and available thrust at cruise. Thus this feasible region could be expanded by increasing these two parameters while accepting an increase in ticket price.

5 4. Environmental Impact The noise level and emissions of the aircraft were also estimated using PASS. In the case of the noise level, a baseline engine with known noise is corrected for the configuration and various conditions required for certification by the Stage-4 regulations. For the exhaust emissions, chemical models are used to estimate the rate at which carbon dioxide, water vapor and nitrous oxides are emitted. The noise model estimates that the cumulative noise level of 258 EPNdB would be within this regulation by a margin of 11dB. Similarly, the exhaust emission model predicts that the NOx levels would be within a margin of 1.1 kg of the ICAO standard.

6 5. Configuration Comparison The initial and final designs for this study are presented below. Relevant features that have changed include the wing sweep angles, positions, aspect ratios and taper ratios, as well as the engine nacelle length, which was rescaled for the decrease in required thrust. Initial Design Final Design

7 Initial Design Trent Lukaczyk Final Design

8 6. Aerodynamic Comparison Trent Lukaczyk a. Drag A comparison of the initial and current designs' aerodynamics are printed below. A 40% increase in drag was found between the original hand book methods and the optimized design. Changes that have affected the drag of the current design include decreasing the wing sweep, and a more accurate model for lift and volume wave drag. In the previous design an elliptical approximation for the wing volume was used and no lift drag model was available. Component Initial Design Current Design Main Wing Fuselage Tail Wing Vertical Stabilizer Nacelles Nacelles Base Volume Wave Drag, Total Lift Wave Drag, Total N/A Gaps TOTAL DRAG b. Lift The (initial) cruise lift coefficient and high lift coefficient for take-off are compared below. The difference in modeling approaches is responsible for some of the changes in cruise lift, as well as the decrease in main wing sweep angle. Component Initial Design Current Design Cruise Lift Coefficient High Lift Coefficient c. Stability and Control Vertical and Horizontal Stabilizers were estimated using correlation methods. Based on these calculations, the various sizings are tabulated below and compared to the current optimized design. Component Initial Design Current Design Sv, vertical tail area 11.0 m m 2 Sh, horizontal tail area 30.2 m m 2 Lh, horizontal tail location 13.9m 18.2 m Lv, vertical tail location 13.9m 18.2 m Static Stability Margin

9 7. Propulsion Take off and cruise thrusts are compared below. A loose correlation method is used on old engine data in this approach. Significant improvement in fidelity could be available for these estimates. Item Initial Design Current Design Take off Thrust 58,000 lbf 22,960 lbf Cruise Thrust (55,000 ft) 18,500 lbf 12,000 lbf 8. Weights Initial weights were estimated using the weight index methods based on previous aircraft. The results are tabulated below and compared to PASS results where possible. Component Initial Design (lbs) Current Design (lbs) Wing Horizontal Tail Vertical Tail Fuselage Landing Gear Surface Controls Propulsion Instruments Hydraulics Electrical + Electronics Furnishing HVAC MANF. EMPTY WEIGHT 43,423 46,589 Operational Items Flight Crew Flight Attendants Payload ZERO FUEL WEIGHT 46,877 49,109 Reserve and Safety Fuel LANDING WEIGHT 49,647 53,356 Fuel Weight Allowance ,444 TAKEOFF GROSS WEIGHT Conclusions This report has presented the current results of a preliminary design study on an eight-passenger supersonic business jet. Using handbook methods embedded in the PASS analysis tool, a feasible design was identified with a range of 4200nmi and a balanced field length of 5900ft. Additional studies are possible especially in identifying the sensitivity of the results to changes in the engine model. It was noted during the study (but not presented in this report) that the maximum takeoff weight and ticket price were very sensitive to the engine weight scaling parameter, and the

10 engine specific fuel consumption. As mentioned earlier, the engine model is perhaps the weakest model of the analysis, as a very loose correlation method is used on old engine data. Significant improvement in fidelity could be available for these estimates and show be investigated further. Additional future studies could investigate the wave drag of this aircraft in more detail. Specifically, a simple Euler CFD simulation could be used to estimate the additional wave drag that comes from the interaction of the aircraft components. This could be used to update the area ruling factor.

Cessna Skyhawk II / 100. Performance Assessment

Cessna Skyhawk II / 100. Performance Assessment Cessna Skyhawk II / 100 Performance Assessment Prepared by John McIver B.Eng.(Aero) Temporal Images 23rd January 2003 http://www.temporal.com.au Cessna Skyhawk II/100 (172) Performance Assessment 1. Introduction

More information

APP Aircraft Performance Program Demo Notes Using Cessna 172 as an Example

APP Aircraft Performance Program Demo Notes Using Cessna 172 as an Example APP Aircraft Performance Program Demo Notes Using Cessna 172 as an Example Prepared by DARcorporation 1. Program Layout & Organization APP Consists of 8 Modules, 5 Input Modules and 2 Calculation Modules.

More information

Interactive Aircraft Design for Undergraduate Teaching

Interactive Aircraft Design for Undergraduate Teaching Interactive Aircraft Design for Undergraduate Teaching Omran Al-Shamma, Dr. Rashid Ali University of Hertfordshire Abstract: This paper presents new software package developed for Aircraft Design. It is

More information

Flight path optimization for an airplane

Flight path optimization for an airplane Flight path optimization for an airplane Dorothée Merle Master's Thesis Submission date: June 2011 Supervisor: Per-Åge Krogstad, EPT Norwegian University of Science and Technology Department of Energy

More information

General aviation & Business System Level Applications and Requirements Electrical Technologies for the Aviation of the Future Europe-Japan Symposium

General aviation & Business System Level Applications and Requirements Electrical Technologies for the Aviation of the Future Europe-Japan Symposium General aviation & Business System Level Applications and Requirements Electrical Technologies for the Aviation of the Future Europe-Japan Symposium 26 March 2015 2015 MITSUBISHI HEAVY INDUSTRIES, LTD.

More information

CHAPTER 7 CLIMB PERFORMANCE

CHAPTER 7 CLIMB PERFORMANCE CHAPTER 7 CLIMB PERFORMANCE 7 CHAPTER 7 CLIMB PERFORMANCE PAGE 7.1 INTRODUCTION 7.1 7.2 PURPOSE OF TEST 7.1 7.3 THEORY 7.2 7.3.1 SAWTOOTH CLIMBS 7.2 7.3.2 STEADY STATE APPROACH TO CLIMB PERFORMANCE 7.4

More information

This file contains the full script of the corresponding video, published on YouTube. November 2014: http://youtu.be/wbu6x0hsnby

This file contains the full script of the corresponding video, published on YouTube. November 2014: http://youtu.be/wbu6x0hsnby This file contains the full script of the corresponding video, published on YouTube. November 2014: http://youtu.be/wbu6x0hsnby Background papers and links to formal FAA and EASA Aviation Regulations and

More information

ESTIMATING R/C MODEL AERODYNAMICS AND PERFORMANCE

ESTIMATING R/C MODEL AERODYNAMICS AND PERFORMANCE ESTIMATING R/C MODEL AERODYNAMICS AND PERFORMANCE Adapted from Dr. Leland M. Nicolai s Write-up (Technical Fellow, Lockheed Martin Aeronautical Company) by Dr. Murat Vural (Illinois Institute of Technology)

More information

INLET AND EXAUST NOZZLES Chap. 10 AIAA AIRCRAFT ENGINE DESIGN R01-07/11/2011

INLET AND EXAUST NOZZLES Chap. 10 AIAA AIRCRAFT ENGINE DESIGN R01-07/11/2011 MASTER OF SCIENCE IN AEROSPACE ENGINEERING PROPULSION AND COMBUSTION INLET AND EXAUST NOZZLES Chap. 10 AIAA AIRCRAFT ENGINE DESIGN R01-07/11/2011 LECTURE NOTES AVAILABLE ON https://www.ingegneriaindustriale.unisalento.it/scheda_docente/-/people/antonio.ficarella/materiale

More information

Contents AVIATION ENVIRONMENT ISSUES NOISE SONIC BOOM EMISSION ALTERNATIVE AVIATION FUEL. 14.10.2012 JAXA Aeronautics Symposium in Nagoya

Contents AVIATION ENVIRONMENT ISSUES NOISE SONIC BOOM EMISSION ALTERNATIVE AVIATION FUEL. 14.10.2012 JAXA Aeronautics Symposium in Nagoya CENTRAL AEROHYDRODYNAMIC INSTITUTE CENTRAL AEROHYDRODYNAMIC NAMED AFTER PROFESSOR N.E. ZHUKOVSKY INSTITUTE NAMED AFTER PROFESSOR N.E. ZHUKOVSKY TSAGI RESEARCH CAPABILITIES TO ADDRESS AVIATION ENVIRONMENTAL

More information

AE 430 - Stability and Control of Aerospace Vehicles

AE 430 - Stability and Control of Aerospace Vehicles AE 430 - Stability and Control of Aerospace Vehicles Atmospheric Flight Mechanics 1 Atmospheric Flight Mechanics Performance Performance characteristics (range, endurance, rate of climb, takeoff and landing

More information

European Aviation Safety Agency

European Aviation Safety Agency TCDS No.: EASA.IM.A.348 Gulfstream G280 Page 1 of 14 European Aviation Safety Agency EASA TYPE-CERTIFICATE DATA SHEET No. EASA.IM.A.348 for Gulfstream G280 Type Certificate Holder: GULFSTREAM AEROSPACE

More information

Mathematically Modeling Aircraft Fuel Consumption

Mathematically Modeling Aircraft Fuel Consumption Mathematically Modeling Aircraft Fuel Consumption by Kevin Pyatt, Department of Education Jacqueline Coomes, Department of Mathematics Eastern Washington University, Cheney, WA CoCal Airlines April 9,

More information

APPENDIX 3-B Airplane Upset Recovery Briefing. Briefing. Figure 3-B.1

APPENDIX 3-B Airplane Upset Recovery Briefing. Briefing. Figure 3-B.1 APPENDIX 3-B Airplane Upset Recovery Briefing Industry Solutions for Large Swept-Wing Turbofan Airplanes Typically Seating More Than 100 Passengers Briefing Figure 3-B.1 Revision 1_August 2004 Airplane

More information

INFO DAYS FP7 2nd Call

INFO DAYS FP7 2nd Call Rzeszow, 2008.03.11-12 Integrated Design Flight Mechanics performance optimization Andrzej MAJKA Integrated design of personal aircrafts fleet (multidisciplinary problem) Problems: Problem formulation

More information

AIRCRAFT GENERAL www.theaviatornetwork.com GTM 1.1 2005 1-30-05 CONTENTS

AIRCRAFT GENERAL www.theaviatornetwork.com GTM 1.1 2005 1-30-05 CONTENTS www.theaviatornetwork.com GTM 1.1 CONTENTS INTRODUCTION... 1.2 GENERAL AIRPLANE... 1.2 Fuselage... 1.2 Wing... 1.2 Tail... 1.2 PROPELLER TIP CLEARANCE... 1.2 LANDING GEAR STRUT EXTENSION (NORMAL)... 1.2

More information

Aeronautical Testing Service, Inc. 18820 59th DR NE Arlington, WA 98223 USA. CFD and Wind Tunnel Testing: Complimentary Methods for Aircraft Design

Aeronautical Testing Service, Inc. 18820 59th DR NE Arlington, WA 98223 USA. CFD and Wind Tunnel Testing: Complimentary Methods for Aircraft Design Aeronautical Testing Service, Inc. 18820 59th DR NE Arlington, WA 98223 USA CFD and Wind Tunnel Testing: Complimentary Methods for Aircraft Design Background Introduction ATS Company Background New and

More information

Best Practices for Fuel Economy

Best Practices for Fuel Economy AACO ICAO Operational Technical Forum Measures / Beirut, Workshop 19th of / November Montreal, 20/21 2005 September 2006 Presented by: Olivier HUSSE Senior Performance Engineer Best Practices for Fuel

More information

General Characteristics

General Characteristics This is the third of a series of Atlantic Sun Airways CAT C pilot procedures and checklists for our fleet. Use them with good judgment. Note, the start procedures may vary from FS9 Panel to Panel. However

More information

Toward Zero Sonic-Boom and High Efficiency. Supersonic Bi-Directional Flying Wing

Toward Zero Sonic-Boom and High Efficiency. Supersonic Bi-Directional Flying Wing AIAA Paper 2010-1013 Toward Zero Sonic-Boom and High Efficiency Supersonic Flight: A Novel Concept of Supersonic Bi-Directional Flying Wing Gecheng Zha, Hongsik Im, Daniel Espinal University of Miami Dept.

More information

Wing Design: Major Decisions. Wing Area / Wing Loading Span / Aspect Ratio Planform Shape Airfoils Flaps and Other High Lift Devices Twist

Wing Design: Major Decisions. Wing Area / Wing Loading Span / Aspect Ratio Planform Shape Airfoils Flaps and Other High Lift Devices Twist Wing Design: Major Decisions Wing Area / Wing Loading Span / Aspect Ratio Planform Shape Airfoils Flaps and Other High Lift Devices Twist Wing Design Parameters First Level Span Area Thickness Detail Design

More information

Performance. 13. Climbing Flight

Performance. 13. Climbing Flight Performance 13. Climbing Flight In order to increase altitude, we must add energy to the aircraft. We can do this by increasing the thrust or power available. If we do that, one of three things can happen:

More information

High-Lift Systems. High Lift Systems -- Introduction. Flap Geometry. Outline of this Chapter

High-Lift Systems. High Lift Systems -- Introduction. Flap Geometry. Outline of this Chapter High-Lift Systems Outline of this Chapter The chapter is divided into four sections. The introduction describes the motivation for high lift systems, and the basic concepts underlying flap and slat systems.

More information

Programme Discussions Wissenschaftstag Braunschweig 2015 Laminarität für zukünftige Verkehrsflugzeuge

Programme Discussions Wissenschaftstag Braunschweig 2015 Laminarität für zukünftige Verkehrsflugzeuge Programme Discussions Wissenschaftstag Braunschweig 2015 Kevin Nicholls, EIVW Prepared by Heinz Hansen TOP-LDA Leader, ETEA Presented by Bernhard Schlipf, ESCRWG Laminarität für zukünftige Verkehrsflugzeuge

More information

ENGINE FIRE / SEVERE DAMAGE / SEPARATION ON TAKEOFF

ENGINE FIRE / SEVERE DAMAGE / SEPARATION ON TAKEOFF ENGINE FIRE / SEVERE DAMAGE / SEPARATION ON TAKEOFF According to RYANAIR Procedures PF PM REMARKS Control the aircraft (FULL T/O thrust can be manually selected) Announce «ENGINE FAILURE» or «ENGINE FIRE»

More information

Beechcraft 1900D: Fuel, Emissions & Cost Savings Operational Analysis

Beechcraft 1900D: Fuel, Emissions & Cost Savings Operational Analysis Specific Range Solutions Ltd. Your partner in flight operations optimization omer.majeed@srs.aero / 1.613.883.5045 www.srs.aero Beechcraft 1900D: Fuel, Emissions & Cost Savings Operational Analysis by

More information

Performance. Power Plant Output in Terms of Thrust - General - Arbitrary Drag Polar

Performance. Power Plant Output in Terms of Thrust - General - Arbitrary Drag Polar Performance 11. Level Flight Performance and Level flight Envelope We are interested in determining the maximum and minimum speeds that an aircraft can fly in level flight. If we do this for all altitudes,

More information

HALE UAV: AeroVironment Pathfinder

HALE UAV: AeroVironment Pathfinder HALE UAV: AeroVironment Pathfinder Aerodynamic and Stability Analysis Case Study: Planform Optimization Desta Alemayehu Elizabeth Eaton Imraan Faruque Photo courtesy NASA Dryden Photo Gallery 1 Pathfinder

More information

Compiled by Matt Zagoren

Compiled by Matt Zagoren The information provided in this document is to be used during simulated flight only and is not intended to be used in real life. Attention VA's - you may post this file on your site for download. Please

More information

Aerodynamic Design Optimization Discussion Group Case 4: Single- and multi-point optimization problems based on the CRM wing

Aerodynamic Design Optimization Discussion Group Case 4: Single- and multi-point optimization problems based on the CRM wing Aerodynamic Design Optimization Discussion Group Case 4: Single- and multi-point optimization problems based on the CRM wing Lana Osusky, Howard Buckley, and David W. Zingg University of Toronto Institute

More information

SEE FURTHER. GO ANYWHERE

SEE FURTHER. GO ANYWHERE SEE FURTHER. GO ANYWHERE IT S ABOUT YOUR BUSINESS The GrandNew is the top-of-the-range light twin-engine helicopter, with a digital glass cockpit and a composite material fuselage. The Chelton FlightLogic

More information

RECYCLING OLD WEIGHT ASSESSMENT METHODS AND GIVING THEM NEW LIFE IN AIRCRAFT CONCEPTUAL DESIGN

RECYCLING OLD WEIGHT ASSESSMENT METHODS AND GIVING THEM NEW LIFE IN AIRCRAFT CONCEPTUAL DESIGN 28 TH INTERNATIONAL CONGRESS OF THE AERONAUTICAL SCIENCES Abstract RECYCLING OLD WEIGHT ASSESSMENT METHODS AND GIVING THEM NEW LIFE IN AIRCRAFT CONCEPTUAL DESIGN Aircraft conceptual design is an iterative

More information

Chapter 2. Basic Airplane Anatomy. 2008 Delmar, Cengage Learning

Chapter 2. Basic Airplane Anatomy. 2008 Delmar, Cengage Learning Chapter 2 Basic Airplane Anatomy Objectives Identify components of basic aircraft anatomy Understand aircraft size and weight categories List different types and examples of General aviation aircraft Military

More information

Airline Fleet Planning Models. 16.75J/1.234J Airline Management Dr. Peter P. Belobaba April 10, 2006

Airline Fleet Planning Models. 16.75J/1.234J Airline Management Dr. Peter P. Belobaba April 10, 2006 Airline Fleet Planning Models 16.75J/1.234J Airline Management Dr. Peter P. Belobaba April 10, 2006 Lecture Outline Fleet Planning as part of Strategic Planning Process Airline Evaluation Process Approaches

More information

Aircraft Trajectory Optimization. Aircraft Trajectory Optimization. Motivation. Motivation

Aircraft Trajectory Optimization. Aircraft Trajectory Optimization. Motivation. Motivation Universidad Rey Juan Carlos Departamento de Estadística e Investigación Operativa October 13, 29 Outline Motivation Aircraft equations of motion a Optimal control Acknowledgments References a See references

More information

This is the fourth of a series of Atlantic Sun Airways CAT B pilot procedures and checklists for our fleet. Use them with good judgment.

This is the fourth of a series of Atlantic Sun Airways CAT B pilot procedures and checklists for our fleet. Use them with good judgment. This is the fourth of a series of Atlantic Sun Airways CAT B pilot procedures and checklists for our fleet. Use them with good judgment. Dimensions: Wing Span: 112 ft 7 in Length: 129 ft 6 in Height: 41

More information

4 OPERATING COSTS AND EFFICIENCY OF CARGO AIRCRAFT

4 OPERATING COSTS AND EFFICIENCY OF CARGO AIRCRAFT 4 OPERATING COSTS AND EFFICIENCY OF CARGO AIRCRAFT The cost for air cargo operations is relatively complex and fluid because of four factors: Aircraft technology, Route characteristics, Structure of operations,

More information

KATnet Key Aerodynamic Technologies for Aircraft Performance Improvement

KATnet Key Aerodynamic Technologies for Aircraft Performance Improvement Fifth Community Aeronautical Days 2006, Vienna, Austria, 19-21 June 2006 Presented by Géza Schrauf Airbus With contributions of Burkhard Gölling and Norman Wood KATnet Key Aerodynamic Technologies for

More information

Flap Optimization for Take-off and Landing

Flap Optimization for Take-off and Landing Proceedings of the 10th Brazilian Congress of Thermal Sciences and Engineering -- ENCIT 2004 Braz. Soc. of Mechanical Sciences and Engineering -- ABCM, Rio de Janeiro, Brazil, Nov. 29 -- Dec. 03, 2004

More information

Multi-Engine Training And The PTS

Multi-Engine Training And The PTS Multi-Engine Training And The PTS GHAFI John Sollinger/Larry Hendrickson October 28, 2000 Overview FAR differences between original and add-on Multi-Engine PTS Training methods Common training scenarios

More information

TYPE CERTIFICATE DATA SHEET Nº EA-2011T03 Type Certificate Holder: COSTRUZIONI AERONAUTICHE TECNAM S.r.l. Via Tasso, 478 80127 - Napoli Italy

TYPE CERTIFICATE DATA SHEET Nº EA-2011T03 Type Certificate Holder: COSTRUZIONI AERONAUTICHE TECNAM S.r.l. Via Tasso, 478 80127 - Napoli Italy TYPE CERTIFICATE DATA SHEET Nº EA-2011T03 Type Certificate Holder: COSTRUZIONI AERONAUTICHE TECNAM S.r.l. Via Tasso, 478 80127 - Napoli Italy EA-2011T03-02 Sheet 01 TECNAM P2006T 04 May 2012 This data

More information

Circulation Control NASA activities

Circulation Control NASA activities National Aeronautics and Space Administration Circulation Control NASA activities Dr. Gregory S. Jones Dr. William E. Millholen II Research Engineers NASA Langley Research Center Active High Lift and Impact

More information

SIMPLIFIED METHOD FOR ESTIMATING THE FLIGHT PERFORMANCE OF A HOBBY ROCKET

SIMPLIFIED METHOD FOR ESTIMATING THE FLIGHT PERFORMANCE OF A HOBBY ROCKET SIMPLIFIED METHOD FOR ESTIMATING THE FLIGHT PERFORMANCE OF A HOBBY ROCKET WWW.NAKKA-ROCKETRY.NET February 007 Rev.1 March 007 1 Introduction As part of the design process for a hobby rocket, it is very

More information

Light Aircraft Design

Light Aircraft Design New: Sport Pilot (LSA) The Light Aircraft Design Computer Program Package - based on MS-Excelapplication was now extented with the new Sport Pilots (LSA) loads module, which includes compliance for the

More information

Fundamentals of Airplane Flight Mechanics

Fundamentals of Airplane Flight Mechanics Fundamentals of Airplane Flight Mechanics David G. Hull Fundamentals of Airplane Flight Mechanics With 125 Figures and 25 Tables 123 David G. Hull The University of Texas at Austin Aerospace Engineering

More information

Cessna 172SP & NAV III Maneuvers Checklist

Cessna 172SP & NAV III Maneuvers Checklist Cessna 172SP & NAV III Maneuvers Checklist Introduction Power Settings This document is intended to introduce to you the standard method of performing maneuvers in Sunair Aviation s Cessna 172SP and NAV

More information

CFD Analysis of Civil Transport Aircraft

CFD Analysis of Civil Transport Aircraft IJSRD - International Journal for Scientific Research & Development Vol. 3, Issue 06, 2015 ISSN (online): 2321-0613 CFD Analysis of Civil Transport Aircraft Parthsarthi A Kulkarni 1 Dr. Pravin V Honguntikar

More information

Flight Operations Support & Line Assistance. getting to grips with. fuel economy

Flight Operations Support & Line Assistance. getting to grips with. fuel economy Flight Operations Support & Line Assistance getting to grips with fuel economy Issue 4 - October 2004 Flight Operations Support & Line Assistance Customer Services 1, rond-point Maurice Bellonte, BP 33

More information

Airport Charges. Airport Charges for Swedavia AB.

Airport Charges. Airport Charges for Swedavia AB. Charges Charges for Swedavia AB. Valid for aircraft with an authorised MTOW exceeding 5,700 kg. Valid from April 1, 2015 (Revised August 15). Appendix 1 to Conditions of Services, Swedavia AB Contents

More information

Understanding Drag, Thrust, and Airspeed relationships

Understanding Drag, Thrust, and Airspeed relationships Understanding Drag, Thrust, and Airspeed relationships Wayne Pratt May 30, 2010 CFII 1473091 The classic curve of drag verses airspeed can be found in any aviation textbook. However, there is little discussion

More information

CC RH A STUDY ON THE OPTIMIZATION OF JET ENGINES FOR COMBAT AIRCRAFTS. C. SSnchez Tarifa* E. Mera Diaz**

CC RH A STUDY ON THE OPTIMIZATION OF JET ENGINES FOR COMBAT AIRCRAFTS. C. SSnchez Tarifa* E. Mera Diaz** A STUDY ON THE OPTIMIZATION OF JET ENGINES FOR COMBAT AIRCRAFTS C. SSnchez Tarifa* E. Mera Diaz** Abstract In the paper the optimization of jet engines for combat aircrafts is discussed. This optimization

More information

TAXI, TAKEOFF, CLIMB, CRUISE, DESCENT & LANDING

TAXI, TAKEOFF, CLIMB, CRUISE, DESCENT & LANDING OPERATIONS MANUAL FLT CREW TRAINING COMMERCIAL LEVEL SIMULATIONS TAXI, TAKEOFF, CLIMB, CRUISE, DESCENT & LANDING Commercial Level Simulations www.commerciallevel.com 1 Disclaimer This manual is not provided

More information

Engine Yaw Augmentation for Hybrid-Wing-Body Aircraft via Optimal Control Allocation Techniques

Engine Yaw Augmentation for Hybrid-Wing-Body Aircraft via Optimal Control Allocation Techniques AIAA Guidance, Navigation, and Control Conference 08-11 August 2011, Portland, Oregon AIAA 2011-6253 Engine Yaw Augmentation for Hybrid-Wing-Body Aircraft via Optimal Control Allocation Techniques Brian

More information

OPERATING MINIMA FOR AEROPLANES AND HELICOPTER OPERATIONS PURPOSE REFERENCE 4.0 DEFINITION

OPERATING MINIMA FOR AEROPLANES AND HELICOPTER OPERATIONS PURPOSE REFERENCE 4.0 DEFINITION ORDER TCAA-O-OPS034A March 2013 OPERATING MINIMA FOR AEROPLANES AND HELICOPTER OPERATIONS PURPOSE 1. This Order gives guidance to the Authority s Operations Inspector on the procedures for approval of

More information

NACA Nomenclature NACA 2421. NACA Airfoils. Definitions: Airfoil Geometry

NACA Nomenclature NACA 2421. NACA Airfoils. Definitions: Airfoil Geometry 0.40 m 0.21 m 0.02 m NACA Airfoils 6-Feb-08 AE 315 Lesson 10: Airfoil nomenclature and properties 1 Definitions: Airfoil Geometry z Mean camber line Chord line x Chord x=0 x=c Leading edge Trailing edge

More information

Data Review and Analysis Program (DRAP) Flight Data Visualization Program for Enhancement of FOQA

Data Review and Analysis Program (DRAP) Flight Data Visualization Program for Enhancement of FOQA 86 Data Review and Analysis Program (DRAP) Flight Data Visualization Program for Enhancement of FOQA Koji MURAOKA and Noriaki OKADA, Flight Systems Research Center, E-mail: muraoka@nal.go.jp Keywords:

More information

Tutorials and Examples of Software Integration Techniques for Aircraft Design using ModelCenter MAD 99-06-02

Tutorials and Examples of Software Integration Techniques for Aircraft Design using ModelCenter MAD 99-06-02 Tutorials and Examples of Software Integration Techniques for Aircraft Design using ModelCenter By Mark Bigley, Candy Nelson, Peter Ryan and W.H. Mason MAD 99-06-02 June 1999 Supported by Virginia s Center

More information

This is the third of a series of Atlantic Sun Airways CAT B pilot procedures and checklists for our fleet. Use them with good judgment.

This is the third of a series of Atlantic Sun Airways CAT B pilot procedures and checklists for our fleet. Use them with good judgment. This is the third of a series of Atlantic Sun Airways CAT B pilot procedures and checklists for our fleet. Use them with good judgment. Dimensions: Span 107 ft 10 in Length 147 ft 10 in Height 29ft 7 in

More information

Flight Operations Briefing Notes

Flight Operations Briefing Notes Flight Operations Briefing Notes I Introduction Encountering wake turbulence in flight can be a surprising experience, both for crews and passengers. Wake turbulence occurs suddenly, and is usually accompanied

More information

Program Update June 2015. G500, G600 Program Update 06.15

Program Update June 2015. G500, G600 Program Update 06.15 Program Update June 2015 G500, G600 Program Update 06.15 All-New Gulfstream G500 and G600 All new, best-in-class aircraft that build upon Gulfstream s technology leadership Unmatched high-speed range capability

More information

FLIGHT RESEARCH ON NATURAL LAMINAR FLOW. B. J. Holmes, C. C. Cr, and E. C. Hastings, Jr. NASA Langley Research Center Hampton, Virginia

FLIGHT RESEARCH ON NATURAL LAMINAR FLOW. B. J. Holmes, C. C. Cr, and E. C. Hastings, Jr. NASA Langley Research Center Hampton, Virginia .88-495 FLIGHT RESEARCH ON NATURAL LAMINAR FLOW B. J. Holmes, C. C. Cr, and E. C. Hastings, Jr. NASA Langley Research Center Hampton, Virginia C. J. Obara Kentron Internatlonal, Incorporated Hampton, Virginia

More information

The aerodynamic center

The aerodynamic center The aerodynamic center In this chapter, we re going to focus on the aerodynamic center, and its effect on the moment coefficient C m. 1 Force and moment coefficients 1.1 Aerodynamic forces Let s investigate

More information

WATSONVILLE MUNICIPAL AIRPORT MASTER PLAN CITY OF WATSONVILLE, SANTA CRUZ COUNTY, CALIFORNIA CHAPTER 3. AVIATION FORECASTS REVISED APRIL 2010

WATSONVILLE MUNICIPAL AIRPORT MASTER PLAN CITY OF WATSONVILLE, SANTA CRUZ COUNTY, CALIFORNIA CHAPTER 3. AVIATION FORECASTS REVISED APRIL 2010 WATSONVILLE MUNICIPAL AIRPORT MASTER PLAN CITY OF WATSONVILLE, SANTA CRUZ COUNTY, CALIFORNIA CHAPTER 3. AVIATION FORECASTS REVISED APRIL 2010 TABLE OF CONTENTS WATSONVILLE MUNICIPAL AIRPORT MASTER PLAN

More information

CAAP 89W-1(0) Guidelines on provision of obstacle information for take-off flight planning purposes

CAAP 89W-1(0) Guidelines on provision of obstacle information for take-off flight planning purposes Civil Aviation Advisory Publication This publication is only advisory. It gives the preferred method for complying with the Civil Aviation Regulations (CAR 1988). It is not the only method, but experience

More information

Gliding, Climbing, and Turning Flight Performance! Robert Stengel, Aircraft Flight Dynamics, MAE 331, 2014!

Gliding, Climbing, and Turning Flight Performance! Robert Stengel, Aircraft Flight Dynamics, MAE 331, 2014! Gliding, Climbing, and Turning Flight Performance! Robert Stengel, Aircraft Flight Dynamics, MAE 331, 2014! Learning Objectives! Conditions for gliding flight" Parameters for maximizing climb angle and

More information

Fuel Efficiency Board & Event Measurement System

Fuel Efficiency Board & Event Measurement System AVIATION OPERATIONAL MEASURES FOR FUEL AND EMISSIONS REDUCTION WORKSHOP Fuel Efficiency Board & Event Measurement System Juan Polyméris Dr. sc. techn. ETHZ Swiss International Air Lines Ltd. Fuel Efficiency

More information

AOE 3104 Aircraft Performance Problem Sheet 2 (ans) Find the Pressure ratio in a constant temperature atmosphere:

AOE 3104 Aircraft Performance Problem Sheet 2 (ans) Find the Pressure ratio in a constant temperature atmosphere: AOE 3104 Aircraft Performance Problem Sheet 2 (ans) 6. The atmosphere of Jupiter is essentially made up of hydrogen, H 2. For Hydrogen, the specific gas constant is 4157 Joules/(kg)(K). The acceleration

More information

Application of CFD Simulation in the Design of a Parabolic Winglet on NACA 2412

Application of CFD Simulation in the Design of a Parabolic Winglet on NACA 2412 , July 2-4, 2014, London, U.K. Application of CFD Simulation in the Design of a Parabolic Winglet on NACA 2412 Arvind Prabhakar, Ayush Ohri Abstract Winglets are angled extensions or vertical projections

More information

ATR. freighter versions

ATR. freighter versions ATR freighter versions ATR freighter versions ATR AND CARGO MARKET ATR Freighter Fleet In service (Dec 21) 31 4 5 3 5 2 2 Photo: Ron Baak, Netherlands. First ATR 72 Freighter delivery took place in July

More information

This section includes performance data on the King Air B200. Information consists of:

This section includes performance data on the King Air B200. Information consists of: King Air B200 POH Pilot's Operating Handbook: This section includes performance data on the King Air B200. Information consists of: 1. Critical Airspeeds 2. Operating NOTAMS 3. Fuel Loading Formula Checklists:

More information

SR-71 PROPULSION SYSTEM P&W J58 ENGINE (JT11D-20) ONE OF THE BEST JET ENGINES EVER BUILT

SR-71 PROPULSION SYSTEM P&W J58 ENGINE (JT11D-20) ONE OF THE BEST JET ENGINES EVER BUILT SR-71 PROPULSION SYSTEM P&W J58 ENGINE (JT11D-20) PETER LAW ONE OF THE BEST JET ENGINES EVER BUILT Rolls-Royce Milestone Engines Merlin Conway W2B Welland Derwent Trent SR-71 GENERAL CHARACTERISTICS

More information

Parallel Global Aircraft Configuration Design Space Exploration

Parallel Global Aircraft Configuration Design Space Exploration Parallel Global Aircraft Configuration Design Space Exploration CHUCK A. BAKER, LAYNE T. WATSON, BERNARD GROSSMAN, WILLIAM H. MASON Multidisciplinary Analysis and Design (MAD) Center for Advanced Vehicles

More information

Content must not be changed in any way or reproduced in any format or medium without the formal permission of the copyright holder(s)

Content must not be changed in any way or reproduced in any format or medium without the formal permission of the copyright holder(s) nn Ferguson, K., and Thomson, D. (2015) Performance comparison between a conventional helicopter and compound helicopter configurations. Proceedings of the Institution of Mechanical Engineers, Part G:

More information

Aviation Supplies & Academics, Inc. 7005 132nd Place SE Newcastle, Washington 98059-3153 www.asa2fly.com

Aviation Supplies & Academics, Inc. 7005 132nd Place SE Newcastle, Washington 98059-3153 www.asa2fly.com The Pilot s Manual 1: Flight School Aviation Supplies & Academics, Inc. 7005 132nd Place SE Newcastle, Washington 98059-3153 www.asa2fly.com Originally published by Aviation Theory Centre 1990 1993. Fourth

More information

Propeller Efficiency. Rule of Thumb. David F. Rogers, PhD, ATP

Propeller Efficiency. Rule of Thumb. David F. Rogers, PhD, ATP Propeller Efficiency Rule of Thumb David F. Rogers, PhD, ATP Theoretically the most efficient propeller is a large diameter, slowly turning single blade propeller. Here, think the Osprey or helicopters.

More information

Lift and Drag on an Airfoil ME 123: Mechanical Engineering Laboratory II: Fluids

Lift and Drag on an Airfoil ME 123: Mechanical Engineering Laboratory II: Fluids Lift and Drag on an Airfoil ME 123: Mechanical Engineering Laboratory II: Fluids Dr. J. M. Meyers Dr. D. G. Fletcher Dr. Y. Dubief 1. Introduction In this lab the characteristics of airfoil lift, drag,

More information

LED Anti-Collision Lighting System for Airbus A320 Family

LED Anti-Collision Lighting System for Airbus A320 Family LED Anti-Collision Lighting System for Airbus A320 Family LEDs established in anti-collision lighting For the first time, UTC Aerospace Systems has implemented state-ofthe-art LED technology into an anti-collision

More information

Page 1 of 12. Tecnam P2002 EASAA. Via Tasso, 478 80127 Napoli ITALIA P20022

Page 1 of 12. Tecnam P2002 EASAA. Via Tasso, 478 80127 Napoli ITALIA P20022 TCDS A.006 Tecnam P2002 Page 1 of 12 European Aviation Safety Agency EASAA TYPE-CERTIFICATE DATA SHEET EASA.A..006 P20022 Type Certificate Holder: Costruzioni Aeronautiche TECNAM S.r.l. Via Tasso, 478

More information

A310 AIRPLANE CHARACTERISTICS FOR AIRPORT PLANNING HIGHLIGHTS REVISION 21 DEC 01/09

A310 AIRPLANE CHARACTERISTICS FOR AIRPORT PLANNING HIGHLIGHTS REVISION 21 DEC 01/09 HIGHLIGHTS REVISION 21 DEC 01/09 This revision concerns introduction of new pages and corrections of pages. Description of change. SECTION PAGE(s) REASON FOR CHANGE 1.1.0 p 1 Update Mail address. 1.2.0

More information

European Aviation Safety Agency

European Aviation Safety Agency TCDS EASA.A.151 AIRBUS A350 Page 1/14 European Aviation Safety Agency EASA TYPE-CERTIFICATE DATA SHEET No. EASA.A.151 AIRBUS A350 Type Certificate Holder: AIRBUS S.A.S. 1 Rond-point Maurice Bellonte 31707

More information

An Aircraft Design Project for the High School Level*

An Aircraft Design Project for the High School Level* Int. J. Engng Ed. Vol. 14, No. 1, p. 54±58, 1998 0949-149X/91 $3.00+0.00 Printed in Great Britain. # 1998 TEMPUS Publications. An Aircraft Design Project for the High School Level* CHARLES N. EASTLAKE

More information

Innovation Takes Off Rome, 28 th January 2014. Clean Sky 2 Information Day Fast Rotorcraft IADP Tiltrotor

Innovation Takes Off Rome, 28 th January 2014. Clean Sky 2 Information Day Fast Rotorcraft IADP Tiltrotor Innovation Takes Off Rome, 28 th January 2014 Clean Sky 2 Information Day Fast Rotorcraft IADP Tiltrotor From Clean Sky towards Clean Sky 2 CLEAN SKY has demonstrated to be a "game changer" in R&T focuses

More information

Lecture 8 : Dynamic Stability

Lecture 8 : Dynamic Stability Lecture 8 : Dynamic Stability Or what happens to small disturbances about a trim condition 1.0 : Dynamic Stability Static stability refers to the tendency of the aircraft to counter a disturbance. Dynamic

More information

parts of an airplane Getting on an Airplane BOX Museum Aeronautics Research Mission Directorate in a Series

parts of an airplane Getting on an Airplane BOX Museum Aeronautics Research Mission Directorate in a Series National Aeronautics and Space Administration GRADES K-2 Aeronautics Research Mission Directorate Museum in a BOX Series www.nasa.gov parts of an airplane Getting on an Airplane MUSEUM IN A BOX Getting

More information

European Aviation Safety Agency

European Aviation Safety Agency European Aviation Safety Agency ED Decision 2003/2/RM Final 17/10/2003 The Executive Director DECISION NO. 2003/2/RM OF THE EXECUTIVE DIRECTOR OF THE AGENCY of 17 October 2003 on certification specifications,

More information

Flight and Environment

Flight and Environment Flight and Environment July 2010 Table of Contents Scope 1 Climate change 2 Greenhouse effect 3 Air transport impact on environment 5 Aegean environmental Policy 10 Aegean aircraft fleet 12 Aegean aircraft

More information

Behavioral Animation Simulation of Flocking Birds

Behavioral Animation Simulation of Flocking Birds Behavioral Animation Simulation of Flocking Birds Autonomous characters determine their actions Simulating the paths of individuals in: flocks of birds, schools of fish, herds of animals crowd scenes 1.

More information

Airport Charges. Airport Charges for Swedavia AB

Airport Charges. Airport Charges for Swedavia AB Charges Charges for Swedavia AB Valid for aircraft with an authorised MTOW exceeding 5,700 kg from 1 April 2016. Revised 19 May. Appendix 1 to Conditions of Services, Swedavia AB. Contents 1 General...

More information

Flightlab Ground School 5. Longitudinal Static Stability

Flightlab Ground School 5. Longitudinal Static Stability Flightlab Ground School 5. Longitudinal Static Stability Copyright Flight Emergency & Advanced Maneuvers Training, Inc. dba Flightlab, 2009. All rights reserved. For Training Purposes Only Longitudinal

More information

Using CEASIOM-SUMO RapidMeshing in Computational Study of. Asymmetric Aircraft Design

Using CEASIOM-SUMO RapidMeshing in Computational Study of. Asymmetric Aircraft Design Using CEASIOM-SUMO RapidMeshing in Computational Study of Asymmetric Aircraft Design Mengmeng Zhang, Arthur Rizzi Royal Institute of Technology (KTH), Stockholm, Sweden & D. Raymer Conceptual Research

More information

Innovation Takes Off

Innovation Takes Off Innovation Takes Off Clean Sky 2 General Information Day 28 November 2013, Lisbon SAT Transversal Activities Aniello Cozzolino, Piaggio Aero Industries Zdenek Mikulka, Evektor Innovation Takes Off European

More information

400 Main Street East Hartford, CT 06118

400 Main Street East Hartford, CT 06118 TCDS NUMBER E00087EN Revision 2 U. S. DEPARTMENT OF TRANSPORTATION FEDERAL AVIATION ADMINISTRATION TYPE CERTIFICATE DATA SHEET E00087EN International Aero Engines, LLC MODELS: PW1133G-JM, PW1133GA-JM,

More information

Forces on the Rocket. Rocket Dynamics. Equation of Motion: F = Ma

Forces on the Rocket. Rocket Dynamics. Equation of Motion: F = Ma Rocket Dynamics orces on the Rockets - Drag Rocket Stability Rocket Equation Specific Impulse Rocket otors Thrust orces on the Rocket Equation of otion: = a orces at through the Center of ass Center of

More information

UPPER-SURFACE BLOWING NACELLE DESIGN STUDY FOR A SWEPT WING AIRPLANE AT CRUISE CONDITIONS

UPPER-SURFACE BLOWING NACELLE DESIGN STUDY FOR A SWEPT WING AIRPLANE AT CRUISE CONDITIONS NASA CONTRACTOR REPORT NASA CR-2427 "8 a UPPER-SURFACE BLOWING NACELLE DESIGN STUDY FOR A SWEPT WING AIRPLANE AT CRUISE CONDITIONS by W. B. Gillette, L. W. Mohn, H. G. Ridley, and T. C. Nark Prepared by

More information

Automation at Odds. A 737 stalled when a radio altimeter malfunction caused the autothrottle and autopilot to diverge during an approach to Schiphol.

Automation at Odds. A 737 stalled when a radio altimeter malfunction caused the autothrottle and autopilot to diverge during an approach to Schiphol. Automation at Odds The pilots of a Boeing 737-800 did not heed indications of a significant decrease in airspeed until the stick shaker activated on final approach to Runway 18R at Amsterdam (Netherlands)

More information

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions,

More information

SINGLE ENGINE TURBO-PROP AEROPLANE ENDORSEMENT

SINGLE ENGINE TURBO-PROP AEROPLANE ENDORSEMENT SINGLE ENGINE TURBO-PROP AEROPLANE ENDORSEMENT ENGINEERING, DATA AND PERFORMANCE QUESTIONNAIRE FOR (Aeroplane make & model) Version 1-31 August 1996 Name: Endorser: (Signature/Name) Satisfactorily Completed

More information