6 The Smith Canonical Form

Size: px
Start display at page:

Download "6 The Smith Canonical Form"

Transcription

1 6 The Smith Canonical Form 61 Equivalence of Polynomial Matrices DEFINITION 61 A matrix P M n n (F [x]) is called a unit in M n n (F [x]) if Q M n n (F [x]) such that P Q = I n Clearly if P and Q are units, so is P Q THEOREM 61 A matrix P M n n (F [x]) is a unit in M n n (F [x]) if and only if det P = c, where c F and c proof only if Suppose P is a unit Then P Q = I n and det P Q = det P det Q = det I n = 1 However det P and det Q belong to F [x], so both are in fact non zero elements of F if Suppose P M n n (F [x]) satisfies det P = c, where c F and c Then P adj P = (det P )I n = ci n Hence P Q = I n, where Q = c 1 adj P M n n (F [x]) Hence P is a unit in M n n (F [x]) EXAMPLE [ x x P = x 1 x ] M 2 2 (F [x]) is a unit, as det P = 1 THEOREM 62 Elementary row matrices in M n n (F [x]) are units: (i) E ij : interchange rows i and j of I n ; (ii) E i (t): multiply row i of I n by t F, t ; (iii) E ij (f): add f times row j of I n to row i, f F [x] In fact det E ij = 1; det E i (t) = t; det E ij (f) = 1 Similarly for elementary column matrices in M n n (F [x]): F ij, F i (t), F ij (f) 12

2 Remark: It follows that a product of elementary matrices in M n n (F [x]) is a unit Later we will be able to prove that the converse is also true DEFINITION 62 Let A, B M m n (F [x]) Then A is equivalent to B over F [x] if units P M m m (F [x]) and Q M n n (F [x]) exist such that P AQ = B THEOREM 63 Equivalence of matrices over F [x] defines an equivalence relation on M m n (F [x]) 611 Determinantal Divisors DEFINITIONS 61 Let A M m n (F [x]) Then for 1 k min (m, n), let d k (A) denote the gcd of all k k minors of A d k (A) is sometimes called the k th determinantal divisor of A Note: gcd (f 1,, f n ) at least one of f 1,, f n is non zero ρ(a), the determinantal rank of A, is defined to be the largest integer r for which there exists a non zero r r minor of A THEOREM 64 For 1 k ρ(a), we have d k (A) Also d k (A) divides d k+1 (A) for 1 k ρ(a) 1 proof Let r = ρ(a) Then there exists an r r non zero minor and hence d r (A) Then because each r r minor is a linear combination over F [x] of (r 1) (r 1) minors of A, it follows that some (r 1) (r 1) minor of A is also non zero and hence d r 1 (A) ; also d r 1 (A) divides each minor of size r 1 and consequently divides each minor of size r; hence d r 1 (A) divides d r (A), the gcd of all minors of size r This argument can be repeated with r replaced by r 1 and so on THEOREM 65 Let A, B M m n (F [x]) Then if A is equivalent to B over F [x], we have (i) ρ(a) = ρ(b) = r; 121

3 (ii) d k (A) = d k (B) for 1 k r proof Suppose P AQ = B, where P and Q are units First consider P A The rows of P A are linear combinations over F [x] of the rows of A, so it follows that each k k minor of P A is a linear combination of the k k minors of A Similarly each column of (P A)Q is a linear combinations over F [x] of the columns of P A, so it follows that each k k minor of B = (P A)Q is a linear combination over F [x] of the k k minors of P A and consequently of the k k minors of A It follows that all minors of B with size k > ρ(a) must be zero and hence ρ(b) ρ(a) However B is equivalent to A, so we deduce that ρ(a) ρ(b) and hence ρ(a) = ρ(b) Also d k (B) is a linear combination over F [x] of all k k minors of B and hence of all k k minors of A Hence d k (A) d k (B) and by symmetry, d k (B) d k (A) Hence d k (A) = d k (B) if 1 k r 62 Smith Canonical Form THEOREM 66 (Smith canonical form) Every non zero matrix A M m n (F [x]) with r = ρ(a) is equivalent to a matrix of the form D = f 1 f 2 f r = P AQ where f 1,, f r F [x] are monic, f k f k+1 for 1 k r 1, P is a product of elementary row matrices, and Q is a product of elementary column matrices DEFINITION 63 The matrix D is said to be in Smith canonical form proof This is presented in the form of an algorithm which is in fact used by Cmat to find unit matrices P and Q such that P AQ is in Smith canonical form 122

4 Our account is based on that in the book Rings, Modules and Linear Algebra, by B Hartley and TO Hawkes We describe a sequence of elementary row and column operations over F [x], which when applied to a matrix A with a 11 either yields a matrix C of the form f 1 C = C where f 1 is monic and divides every element of C, or else yields a matrix B in which b 11 and deg b 11 < deg a 11 (28) Assuming this, we start with our non zero matrix A By performing suitable row and column interchanges, we can assume that a 11 Now repeatedly perform the algorithm mentioned above Eventually we must reach a matrix of type C, otherwise we would produce an infinite strictly decreasing sequence of non negative integers by virtue of inequalities of type (28) On reaching a matrix of type C, we stop if C = Otherwise we perform the above argument on C and so on, leaving a trail of diagonal elements as we go Two points must be made: (i) Any elementary row or column operation on C corresponds to an elementary operation on C, which does not affect the first row or column of C (ii) Any elementary operation on C gives a new C whose new entries are linear combinations over F [x] of the old ones; consequently these new entries will still be divisible by f 1 Hence in due course we will reach a matrix D which is in Smith canonical form We now detail the sequence of elementary operations mentioned above Case 1 a 1j in row 1 with a 11 not dividing a 1j Then a 1j = a 11 q + b, by Euclid s division theorem, where b and deg b < deg a 11 Subtract q times column 1 from column j and then interchange columns 1 and j This yields a matrix of type B mentioned above 123

5 Case 2 a i1 in column 1 with a 11 not dividing a i1 Proceed as in Case 1, operating on rows rather than columns, again reaching a matrix of type B Case 3 Here a 11 divides every element in the first row and first column Then by subtracting suitable multiples of column 1 from the other columns, we can replace all the entries in the first row other than a 11 by Similarly for the first column We then have a matrix of the form E = e 11 If e 11 divides every element of E, we have reached a matrix of type C Otherwise e ij not divisible by e 11 We then add row i to row 1, thereby reaching Case 1 E EXAMPLE 62 (of the Smith Canonical Form) [ 1 + x 2 x A = x 1 + x We want D = P AQ in Smith canonical form So we construct the augmented matrix work on rows work on columns x 2 x 1 1 x 1 + x 1 R 1 R 1 xr 2 1 x 1 x x 1 + x 1 C 2 C 2 + x 2 C 1 1 x 1 1 x 2 1 x 1 + x + x 3 1 R 2 R 2 xr 1 1 x 1 1 x 2 x 1 + x x + x 3 1 P D Q Invariants are f 1 = 1, f 2 = 1 + x + x 3 Note also ] f 1 = d 1 (A), f 2 = d 2(A) d 1 (A) 124

6 621 Uniqueness of the Smith Canonical Form THEOREM 67 Every matrix A M m n (F [x]) is equivalent to precisely one matrix is Smith canonical form proof Suppose A is equivalent to a matrix B in Smith canonical form That is, f 1 B = f r and f 1 f 2 f r Then r = ρ(a), the determinantal rank of A But if 1 k r, d k (A) = d k (B) = f 1 f 2 f k and so the f i are uniquely determined by f 1 = d 1 (A) f 2 = d 2(A) d 1 (A) f r = d r(a) d r 1 (A) 63 Invariant factors of a polynomial matrix DEFINITION 64 The polynomials f 1,, f r in the Smith canonical form of A are called the invariant factors of A 3 Note: Cmat calls the invariant factors of xi B, where B M n n (F ), the similarity invariants of B We next find these similarity invariants They are 1, 1,, 1, d }{{} 1,, d s n s where d 1,, d s are what earlier called the invariant factors of T B 3 NB This is a slightly different, though similar, form of invariant factor to that we met a short while ago 125

7 LEMMA 61 The Smith canonical form of xi n C(d) where d is a monic polynomial of degree n is diag (1,, 1, d) }{{} n 1 proof Let d = x n + a n 1 x n a F [x], so xi n C(d) = x a 1 x a 1 1 a 2 x a n 2 1 x + a n 1 Now use the row operation R 1 R 1 + xr 2 + x 2 R x n 1 R n to obtain d 1 x a 1 1 a 2 x a n 2 1 x + a n 1 (think about it!) and then column operations C 2 C 2 + xc 1,, C n 1 C n 1 + xc n 2 and then C n C n + a 1 C 1 + a 2 C a n 2 C n 2 + (x + a n 1 )C n 1 yielding d

8 Trivially, elementary operations now form the matrix diag (1,, 1, d) }{{} n 1 THEOREM 68 Let B M n n (F ) Then if the invariant factors of B are d 1,, d s, then the invariant factors of xi n B are Then 1,, 1, d }{{} 1, d 2,, d s n s proof There exists non-singular P M n n (F ) such that P 1 BP = P 1 (xi n B)P = xi n = s C(d k ) k=1 s C(d k ) k=1 s (xi mk C(d k )) where m k = deg d k k=1 But by the lemma, each xi mk C(d k ) is equivalent over F [x] to diag (1,, 1, d k ) and hence xi n B is equivalent to 1 s diag (1,, 1, d k ) 1 k=1 d 1 EXAMPLE 63 Find the invariant factors of B = M 4 4(Q) d s

9 by finding the Smith canonical form of xi 4 B Solution: xi 4 B = We start off with the row operations x 2 1 x 1 1 x x 2 R 1 R 1 (x 2)R 2 R 1 R 2 R 4 R 4 + R 1 and get (column ops) 1 x 1 (x 1)(x 2) 1 x 1 x 2 1 x 2 1 (x 1)(x 2) 1 x 1 x 2 1 x x 1 (x 1)(x 2) x 2 1 x x 1 x(x 1)(x 2) (x 1)(x 2) 1 x(x 2) {= (x 1) 2 } 1 1 x(x 1)(x 2) (x 1)(x 2) (x 1) 2 Now, for brevity, we work just on the 2 2 block in the bottom right corner: [ ] (x 1)(x 2) x(x 1)(x 2) (x 1) 2 128

10 C 2 C 2 xc 1 R 1 R 1 + R 2 C 2 C 2 C 1 C 1 C 2 C 2 C 2 (x 2)C 1 R 2 R 2 + (x 1)R 1 [ ] (x 1)(x 2) (x 1) 2 [ ] (x 1)(x 2) (x 1) 2 (x 1) 2 [ ] (x 1)(x 2) x 1 (x 1) 2 [ ] x 1 (x 1)(x 2) (x 1) 2 [ ] x 1 (x 1) 2 (x 2)(x 1) 2 [ ] x 1 (x 2)(x 1) 2 and here we stop, as we have a matrix in Smith canonical form Thus xi 4 B 1 1 x 1 (x 1) 2 (x 2) so the invariant factors of B are the non-trivial ones of xi 4 B, ie (x 1) and (x 1) 2 (x 2) Also, the elementary divisors of B are so the Jordan canonical form of B is (x 1), (x 1) 2 and (x 2) J 2 (1) J 1 (1) J 1 (2) THEOREM 69 Let A, B M n n (F ) Then A is similar to B xi n A is equivalent to xi n B xi n A and xi n B have the same Smith canonical form proof 129

11 Obvious If P 1 AP = B, P M n n (F ) then P 1 (xi n A)P = xi n P 1 AP = xi n B If xi n A and xi n B are equivalent over F [x], then they have the same invariant factors and so have the same non-trivial invariant factors That is, A and B have the same invariant factors and hence are similar Note: It is possible to start from xi n A and find P M n n (F ) such that P 1 AP = s C(d k ) k=1 where P 1 (xi n B)Q 1 = diag (1,, 1, d 1,, d s ) (See Perlis, Theory of matrices, p 144, Corollary 8 1 and p 137, Theorem 7 9) THEOREM 61 Every unit in M n n (F [x]) is a product of elementary row and column matrices Proof: Problem sheet 7, Question 12 13

a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2.

a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2. Chapter 1 LINEAR EQUATIONS 1.1 Introduction to linear equations A linear equation in n unknowns x 1, x,, x n is an equation of the form a 1 x 1 + a x + + a n x n = b, where a 1, a,..., a n, b are given

More information

MATH10212 Linear Algebra. Systems of Linear Equations. Definition. An n-dimensional vector is a row or a column of n numbers (or letters): a 1.

MATH10212 Linear Algebra. Systems of Linear Equations. Definition. An n-dimensional vector is a row or a column of n numbers (or letters): a 1. MATH10212 Linear Algebra Textbook: D. Poole, Linear Algebra: A Modern Introduction. Thompson, 2006. ISBN 0-534-40596-7. Systems of Linear Equations Definition. An n-dimensional vector is a row or a column

More information

2 Polynomials over a field

2 Polynomials over a field 2 Polynomials over a field A polynomial over a field F is a sequence (a 0, a 1, a 2,, a n, ) where a i F i with a i = 0 from some point on a i is called the i th coefficient of f We define three special

More information

Similarity and Diagonalization. Similar Matrices

Similarity and Diagonalization. Similar Matrices MATH022 Linear Algebra Brief lecture notes 48 Similarity and Diagonalization Similar Matrices Let A and B be n n matrices. We say that A is similar to B if there is an invertible n n matrix P such that

More information

Section 4.2: The Division Algorithm and Greatest Common Divisors

Section 4.2: The Division Algorithm and Greatest Common Divisors Section 4.2: The Division Algorithm and Greatest Common Divisors The Division Algorithm The Division Algorithm is merely long division restated as an equation. For example, the division 29 r. 20 32 948

More information

AXIOMS FOR INVARIANT FACTORS*

AXIOMS FOR INVARIANT FACTORS* PORTUGALIAE MATHEMATICA Vol 54 Fasc 3 1997 AXIOMS FOR INVARIANT FACTORS* João Filipe Queiró Abstract: We show that the invariant factors of matrices over certain types of rings are characterized by a short

More information

Row Echelon Form and Reduced Row Echelon Form

Row Echelon Form and Reduced Row Echelon Form These notes closely follow the presentation of the material given in David C Lay s textbook Linear Algebra and its Applications (3rd edition) These notes are intended primarily for in-class presentation

More information

Solving Linear Systems, Continued and The Inverse of a Matrix

Solving Linear Systems, Continued and The Inverse of a Matrix , Continued and The of a Matrix Calculus III Summer 2013, Session II Monday, July 15, 2013 Agenda 1. The rank of a matrix 2. The inverse of a square matrix Gaussian Gaussian solves a linear system by reducing

More information

Math 115A HW4 Solutions University of California, Los Angeles. 5 2i 6 + 4i. (5 2i)7i (6 + 4i)( 3 + i) = 35i + 14 ( 22 6i) = 36 + 41i.

Math 115A HW4 Solutions University of California, Los Angeles. 5 2i 6 + 4i. (5 2i)7i (6 + 4i)( 3 + i) = 35i + 14 ( 22 6i) = 36 + 41i. Math 5A HW4 Solutions September 5, 202 University of California, Los Angeles Problem 4..3b Calculate the determinant, 5 2i 6 + 4i 3 + i 7i Solution: The textbook s instructions give us, (5 2i)7i (6 + 4i)(

More information

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS. + + x 2. x n. a 11 a 12 a 1n b 1 a 21 a 22 a 2n b 2 a 31 a 32 a 3n b 3. a m1 a m2 a mn b m

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS. + + x 2. x n. a 11 a 12 a 1n b 1 a 21 a 22 a 2n b 2 a 31 a 32 a 3n b 3. a m1 a m2 a mn b m MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS 1. SYSTEMS OF EQUATIONS AND MATRICES 1.1. Representation of a linear system. The general system of m equations in n unknowns can be written a 11 x 1 + a 12 x 2 +

More information

Au = = = 3u. Aw = = = 2w. so the action of A on u and w is very easy to picture: it simply amounts to a stretching by 3 and 2, respectively.

Au = = = 3u. Aw = = = 2w. so the action of A on u and w is very easy to picture: it simply amounts to a stretching by 3 and 2, respectively. Chapter 7 Eigenvalues and Eigenvectors In this last chapter of our exploration of Linear Algebra we will revisit eigenvalues and eigenvectors of matrices, concepts that were already introduced in Geometry

More information

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS Systems of Equations and Matrices Representation of a linear system The general system of m equations in n unknowns can be written a x + a 2 x 2 + + a n x n b a

More information

GREATEST COMMON DIVISOR

GREATEST COMMON DIVISOR DEFINITION: GREATEST COMMON DIVISOR The greatest common divisor (gcd) of a and b, denoted by (a, b), is the largest common divisor of integers a and b. THEOREM: If a and b are nonzero integers, then their

More information

1.2 Solving a System of Linear Equations

1.2 Solving a System of Linear Equations 1.. SOLVING A SYSTEM OF LINEAR EQUATIONS 1. Solving a System of Linear Equations 1..1 Simple Systems - Basic De nitions As noticed above, the general form of a linear system of m equations in n variables

More information

Continued Fractions and the Euclidean Algorithm

Continued Fractions and the Euclidean Algorithm Continued Fractions and the Euclidean Algorithm Lecture notes prepared for MATH 326, Spring 997 Department of Mathematics and Statistics University at Albany William F Hammond Table of Contents Introduction

More information

Systems of Linear Equations

Systems of Linear Equations Systems of Linear Equations Beifang Chen Systems of linear equations Linear systems A linear equation in variables x, x,, x n is an equation of the form a x + a x + + a n x n = b, where a, a,, a n and

More information

I. GROUPS: BASIC DEFINITIONS AND EXAMPLES

I. GROUPS: BASIC DEFINITIONS AND EXAMPLES I GROUPS: BASIC DEFINITIONS AND EXAMPLES Definition 1: An operation on a set G is a function : G G G Definition 2: A group is a set G which is equipped with an operation and a special element e G, called

More information

Lecture 3: Finding integer solutions to systems of linear equations

Lecture 3: Finding integer solutions to systems of linear equations Lecture 3: Finding integer solutions to systems of linear equations Algorithmic Number Theory (Fall 2014) Rutgers University Swastik Kopparty Scribe: Abhishek Bhrushundi 1 Overview The goal of this lecture

More information

MATH 304 Linear Algebra Lecture 18: Rank and nullity of a matrix.

MATH 304 Linear Algebra Lecture 18: Rank and nullity of a matrix. MATH 304 Linear Algebra Lecture 18: Rank and nullity of a matrix. Nullspace Let A = (a ij ) be an m n matrix. Definition. The nullspace of the matrix A, denoted N(A), is the set of all n-dimensional column

More information

Kevin James. MTHSC 412 Section 2.4 Prime Factors and Greatest Comm

Kevin James. MTHSC 412 Section 2.4 Prime Factors and Greatest Comm MTHSC 412 Section 2.4 Prime Factors and Greatest Common Divisor Greatest Common Divisor Definition Suppose that a, b Z. Then we say that d Z is a greatest common divisor (gcd) of a and b if the following

More information

Factoring Algorithms

Factoring Algorithms Factoring Algorithms The p 1 Method and Quadratic Sieve November 17, 2008 () Factoring Algorithms November 17, 2008 1 / 12 Fermat s factoring method Fermat made the observation that if n has two factors

More information

8 Primes and Modular Arithmetic

8 Primes and Modular Arithmetic 8 Primes and Modular Arithmetic 8.1 Primes and Factors Over two millennia ago already, people all over the world were considering the properties of numbers. One of the simplest concepts is prime numbers.

More information

Notes on Determinant

Notes on Determinant ENGG2012B Advanced Engineering Mathematics Notes on Determinant Lecturer: Kenneth Shum Lecture 9-18/02/2013 The determinant of a system of linear equations determines whether the solution is unique, without

More information

Orthogonal Diagonalization of Symmetric Matrices

Orthogonal Diagonalization of Symmetric Matrices MATH10212 Linear Algebra Brief lecture notes 57 Gram Schmidt Process enables us to find an orthogonal basis of a subspace. Let u 1,..., u k be a basis of a subspace V of R n. We begin the process of finding

More information

A note on companion matrices

A note on companion matrices Linear Algebra and its Applications 372 (2003) 325 33 www.elsevier.com/locate/laa A note on companion matrices Miroslav Fiedler Academy of Sciences of the Czech Republic Institute of Computer Science Pod

More information

CS 103X: Discrete Structures Homework Assignment 3 Solutions

CS 103X: Discrete Structures Homework Assignment 3 Solutions CS 103X: Discrete Structures Homework Assignment 3 s Exercise 1 (20 points). On well-ordering and induction: (a) Prove the induction principle from the well-ordering principle. (b) Prove the well-ordering

More information

RESULTANT AND DISCRIMINANT OF POLYNOMIALS

RESULTANT AND DISCRIMINANT OF POLYNOMIALS RESULTANT AND DISCRIMINANT OF POLYNOMIALS SVANTE JANSON Abstract. This is a collection of classical results about resultants and discriminants for polynomials, compiled mainly for my own use. All results

More information

Theory of Matrices. Chapter 5

Theory of Matrices. Chapter 5 Chapter 5 Theory of Matrices As before, F is a field We use F[x] to represent the set of all polynomials of x with coefficients in F We use M m,n (F) and M m,n (F[x]) to denoted the set of m by n matrices

More information

CONTINUED FRACTIONS AND PELL S EQUATION. Contents 1. Continued Fractions 1 2. Solution to Pell s Equation 9 References 12

CONTINUED FRACTIONS AND PELL S EQUATION. Contents 1. Continued Fractions 1 2. Solution to Pell s Equation 9 References 12 CONTINUED FRACTIONS AND PELL S EQUATION SEUNG HYUN YANG Abstract. In this REU paper, I will use some important characteristics of continued fractions to give the complete set of solutions to Pell s equation.

More information

8 Divisibility and prime numbers

8 Divisibility and prime numbers 8 Divisibility and prime numbers 8.1 Divisibility In this short section we extend the concept of a multiple from the natural numbers to the integers. We also summarize several other terms that express

More information

Gröbner Bases and their Applications

Gröbner Bases and their Applications Gröbner Bases and their Applications Kaitlyn Moran July 30, 2008 1 Introduction We know from the Hilbert Basis Theorem that any ideal in a polynomial ring over a field is finitely generated [3]. However,

More information

Solving Systems of Linear Equations

Solving Systems of Linear Equations LECTURE 5 Solving Systems of Linear Equations Recall that we introduced the notion of matrices as a way of standardizing the expression of systems of linear equations In today s lecture I shall show how

More information

The Ideal Class Group

The Ideal Class Group Chapter 5 The Ideal Class Group We will use Minkowski theory, which belongs to the general area of geometry of numbers, to gain insight into the ideal class group of a number field. We have already mentioned

More information

by the matrix A results in a vector which is a reflection of the given

by the matrix A results in a vector which is a reflection of the given Eigenvalues & Eigenvectors Example Suppose Then So, geometrically, multiplying a vector in by the matrix A results in a vector which is a reflection of the given vector about the y-axis We observe that

More information

Today s Topics. Primes & Greatest Common Divisors

Today s Topics. Primes & Greatest Common Divisors Today s Topics Primes & Greatest Common Divisors Prime representations Important theorems about primality Greatest Common Divisors Least Common Multiples Euclid s algorithm Once and for all, what are prime

More information

Mathematics Course 111: Algebra I Part IV: Vector Spaces

Mathematics Course 111: Algebra I Part IV: Vector Spaces Mathematics Course 111: Algebra I Part IV: Vector Spaces D. R. Wilkins Academic Year 1996-7 9 Vector Spaces A vector space over some field K is an algebraic structure consisting of a set V on which are

More information

MATH10040 Chapter 2: Prime and relatively prime numbers

MATH10040 Chapter 2: Prime and relatively prime numbers MATH10040 Chapter 2: Prime and relatively prime numbers Recall the basic definition: 1. Prime numbers Definition 1.1. Recall that a positive integer is said to be prime if it has precisely two positive

More information

The Determinant: a Means to Calculate Volume

The Determinant: a Means to Calculate Volume The Determinant: a Means to Calculate Volume Bo Peng August 20, 2007 Abstract This paper gives a definition of the determinant and lists many of its well-known properties Volumes of parallelepipeds are

More information

Suk-Geun Hwang and Jin-Woo Park

Suk-Geun Hwang and Jin-Woo Park Bull. Korean Math. Soc. 43 (2006), No. 3, pp. 471 478 A NOTE ON PARTIAL SIGN-SOLVABILITY Suk-Geun Hwang and Jin-Woo Park Abstract. In this paper we prove that if Ax = b is a partial signsolvable linear

More information

HOMEWORK 5 SOLUTIONS. n!f n (1) lim. ln x n! + xn x. 1 = G n 1 (x). (2) k + 1 n. (n 1)!

HOMEWORK 5 SOLUTIONS. n!f n (1) lim. ln x n! + xn x. 1 = G n 1 (x). (2) k + 1 n. (n 1)! Math 7 Fall 205 HOMEWORK 5 SOLUTIONS Problem. 2008 B2 Let F 0 x = ln x. For n 0 and x > 0, let F n+ x = 0 F ntdt. Evaluate n!f n lim n ln n. By directly computing F n x for small n s, we obtain the following

More information

UNCOUPLING THE PERRON EIGENVECTOR PROBLEM

UNCOUPLING THE PERRON EIGENVECTOR PROBLEM UNCOUPLING THE PERRON EIGENVECTOR PROBLEM Carl D Meyer INTRODUCTION Foranonnegative irreducible matrix m m with spectral radius ρ,afundamental problem concerns the determination of the unique normalized

More information

Unit 18 Determinants

Unit 18 Determinants Unit 18 Determinants Every square matrix has a number associated with it, called its determinant. In this section, we determine how to calculate this number, and also look at some of the properties of

More information

Introduction to Finite Fields (cont.)

Introduction to Finite Fields (cont.) Chapter 6 Introduction to Finite Fields (cont.) 6.1 Recall Theorem. Z m is a field m is a prime number. Theorem (Subfield Isomorphic to Z p ). Every finite field has the order of a power of a prime number

More information

MATH 423 Linear Algebra II Lecture 38: Generalized eigenvectors. Jordan canonical form (continued).

MATH 423 Linear Algebra II Lecture 38: Generalized eigenvectors. Jordan canonical form (continued). MATH 423 Linear Algebra II Lecture 38: Generalized eigenvectors Jordan canonical form (continued) Jordan canonical form A Jordan block is a square matrix of the form λ 1 0 0 0 0 λ 1 0 0 0 0 λ 0 0 J = 0

More information

Methods for Finding Bases

Methods for Finding Bases Methods for Finding Bases Bases for the subspaces of a matrix Row-reduction methods can be used to find bases. Let us now look at an example illustrating how to obtain bases for the row space, null space,

More information

Using row reduction to calculate the inverse and the determinant of a square matrix

Using row reduction to calculate the inverse and the determinant of a square matrix Using row reduction to calculate the inverse and the determinant of a square matrix Notes for MATH 0290 Honors by Prof. Anna Vainchtein 1 Inverse of a square matrix An n n square matrix A is called invertible

More information

DIVISIBILITY AND GREATEST COMMON DIVISORS

DIVISIBILITY AND GREATEST COMMON DIVISORS DIVISIBILITY AND GREATEST COMMON DIVISORS KEITH CONRAD 1 Introduction We will begin with a review of divisibility among integers, mostly to set some notation and to indicate its properties Then we will

More information

MATH 304 Linear Algebra Lecture 9: Subspaces of vector spaces (continued). Span. Spanning set.

MATH 304 Linear Algebra Lecture 9: Subspaces of vector spaces (continued). Span. Spanning set. MATH 304 Linear Algebra Lecture 9: Subspaces of vector spaces (continued). Span. Spanning set. Vector space A vector space is a set V equipped with two operations, addition V V (x,y) x + y V and scalar

More information

8 Square matrices continued: Determinants

8 Square matrices continued: Determinants 8 Square matrices continued: Determinants 8. Introduction Determinants give us important information about square matrices, and, as we ll soon see, are essential for the computation of eigenvalues. You

More information

Arithmetic and Algebra of Matrices

Arithmetic and Algebra of Matrices Arithmetic and Algebra of Matrices Math 572: Algebra for Middle School Teachers The University of Montana 1 The Real Numbers 2 Classroom Connection: Systems of Linear Equations 3 Rational Numbers 4 Irrational

More information

GROUP ALGEBRAS. ANDREI YAFAEV

GROUP ALGEBRAS. ANDREI YAFAEV GROUP ALGEBRAS. ANDREI YAFAEV We will associate a certain algebra to a finite group and prove that it is semisimple. Then we will apply Wedderburn s theory to its study. Definition 0.1. Let G be a finite

More information

160 CHAPTER 4. VECTOR SPACES

160 CHAPTER 4. VECTOR SPACES 160 CHAPTER 4. VECTOR SPACES 4. Rank and Nullity In this section, we look at relationships between the row space, column space, null space of a matrix and its transpose. We will derive fundamental results

More information

Chapter 4, Arithmetic in F [x] Polynomial arithmetic and the division algorithm.

Chapter 4, Arithmetic in F [x] Polynomial arithmetic and the division algorithm. Chapter 4, Arithmetic in F [x] Polynomial arithmetic and the division algorithm. We begin by defining the ring of polynomials with coefficients in a ring R. After some preliminary results, we specialize

More information

U.C. Berkeley CS276: Cryptography Handout 0.1 Luca Trevisan January, 2009. Notes on Algebra

U.C. Berkeley CS276: Cryptography Handout 0.1 Luca Trevisan January, 2009. Notes on Algebra U.C. Berkeley CS276: Cryptography Handout 0.1 Luca Trevisan January, 2009 Notes on Algebra These notes contain as little theory as possible, and most results are stated without proof. Any introductory

More information

1 Solving LPs: The Simplex Algorithm of George Dantzig

1 Solving LPs: The Simplex Algorithm of George Dantzig Solving LPs: The Simplex Algorithm of George Dantzig. Simplex Pivoting: Dictionary Format We illustrate a general solution procedure, called the simplex algorithm, by implementing it on a very simple example.

More information

Quotient Rings and Field Extensions

Quotient Rings and Field Extensions Chapter 5 Quotient Rings and Field Extensions In this chapter we describe a method for producing field extension of a given field. If F is a field, then a field extension is a field K that contains F.

More information

Factoring of Prime Ideals in Extensions

Factoring of Prime Ideals in Extensions Chapter 4 Factoring of Prime Ideals in Extensions 4. Lifting of Prime Ideals Recall the basic AKLB setup: A is a Dedekind domain with fraction field K, L is a finite, separable extension of K of degree

More information

Chapter 3. if 2 a i then location: = i. Page 40

Chapter 3. if 2 a i then location: = i. Page 40 Chapter 3 1. Describe an algorithm that takes a list of n integers a 1,a 2,,a n and finds the number of integers each greater than five in the list. Ans: procedure greaterthanfive(a 1,,a n : integers)

More information

The Division Algorithm for Polynomials Handout Monday March 5, 2012

The Division Algorithm for Polynomials Handout Monday March 5, 2012 The Division Algorithm for Polynomials Handout Monday March 5, 0 Let F be a field (such as R, Q, C, or F p for some prime p. This will allow us to divide by any nonzero scalar. (For some of the following,

More information

Direct Methods for Solving Linear Systems. Matrix Factorization

Direct Methods for Solving Linear Systems. Matrix Factorization Direct Methods for Solving Linear Systems Matrix Factorization Numerical Analysis (9th Edition) R L Burden & J D Faires Beamer Presentation Slides prepared by John Carroll Dublin City University c 2011

More information

1 Homework 1. [p 0 q i+j +... + p i 1 q j+1 ] + [p i q j ] + [p i+1 q j 1 +... + p i+j q 0 ]

1 Homework 1. [p 0 q i+j +... + p i 1 q j+1 ] + [p i q j ] + [p i+1 q j 1 +... + p i+j q 0 ] 1 Homework 1 (1) Prove the ideal (3,x) is a maximal ideal in Z[x]. SOLUTION: Suppose we expand this ideal by including another generator polynomial, P / (3, x). Write P = n + x Q with n an integer not

More information

1 VECTOR SPACES AND SUBSPACES

1 VECTOR SPACES AND SUBSPACES 1 VECTOR SPACES AND SUBSPACES What is a vector? Many are familiar with the concept of a vector as: Something which has magnitude and direction. an ordered pair or triple. a description for quantities such

More information

2x + y = 3. Since the second equation is precisely the same as the first equation, it is enough to find x and y satisfying the system

2x + y = 3. Since the second equation is precisely the same as the first equation, it is enough to find x and y satisfying the system 1. Systems of linear equations We are interested in the solutions to systems of linear equations. A linear equation is of the form 3x 5y + 2z + w = 3. The key thing is that we don t multiply the variables

More information

PROBLEM SET 6: POLYNOMIALS

PROBLEM SET 6: POLYNOMIALS PROBLEM SET 6: POLYNOMIALS 1. introduction In this problem set we will consider polynomials with coefficients in K, where K is the real numbers R, the complex numbers C, the rational numbers Q or any other

More information

4: EIGENVALUES, EIGENVECTORS, DIAGONALIZATION

4: EIGENVALUES, EIGENVECTORS, DIAGONALIZATION 4: EIGENVALUES, EIGENVECTORS, DIAGONALIZATION STEVEN HEILMAN Contents 1. Review 1 2. Diagonal Matrices 1 3. Eigenvectors and Eigenvalues 2 4. Characteristic Polynomial 4 5. Diagonalizability 6 6. Appendix:

More information

Similar matrices and Jordan form

Similar matrices and Jordan form Similar matrices and Jordan form We ve nearly covered the entire heart of linear algebra once we ve finished singular value decompositions we ll have seen all the most central topics. A T A is positive

More information

Some Polynomial Theorems. John Kennedy Mathematics Department Santa Monica College 1900 Pico Blvd. Santa Monica, CA 90405 rkennedy@ix.netcom.

Some Polynomial Theorems. John Kennedy Mathematics Department Santa Monica College 1900 Pico Blvd. Santa Monica, CA 90405 rkennedy@ix.netcom. Some Polynomial Theorems by John Kennedy Mathematics Department Santa Monica College 1900 Pico Blvd. Santa Monica, CA 90405 rkennedy@ix.netcom.com This paper contains a collection of 31 theorems, lemmas,

More information

The Characteristic Polynomial

The Characteristic Polynomial Physics 116A Winter 2011 The Characteristic Polynomial 1 Coefficients of the characteristic polynomial Consider the eigenvalue problem for an n n matrix A, A v = λ v, v 0 (1) The solution to this problem

More information

SYSTEMS OF EQUATIONS AND MATRICES WITH THE TI-89. by Joseph Collison

SYSTEMS OF EQUATIONS AND MATRICES WITH THE TI-89. by Joseph Collison SYSTEMS OF EQUATIONS AND MATRICES WITH THE TI-89 by Joseph Collison Copyright 2000 by Joseph Collison All rights reserved Reproduction or translation of any part of this work beyond that permitted by Sections

More information

The last three chapters introduced three major proof techniques: direct,

The last three chapters introduced three major proof techniques: direct, CHAPTER 7 Proving Non-Conditional Statements The last three chapters introduced three major proof techniques: direct, contrapositive and contradiction. These three techniques are used to prove statements

More information

PUTNAM TRAINING POLYNOMIALS. Exercises 1. Find a polynomial with integral coefficients whose zeros include 2 + 5.

PUTNAM TRAINING POLYNOMIALS. Exercises 1. Find a polynomial with integral coefficients whose zeros include 2 + 5. PUTNAM TRAINING POLYNOMIALS (Last updated: November 17, 2015) Remark. This is a list of exercises on polynomials. Miguel A. Lerma Exercises 1. Find a polynomial with integral coefficients whose zeros include

More information

December 4, 2013 MATH 171 BASIC LINEAR ALGEBRA B. KITCHENS

December 4, 2013 MATH 171 BASIC LINEAR ALGEBRA B. KITCHENS December 4, 2013 MATH 171 BASIC LINEAR ALGEBRA B KITCHENS The equation 1 Lines in two-dimensional space (1) 2x y = 3 describes a line in two-dimensional space The coefficients of x and y in the equation

More information

Mathematical Induction

Mathematical Induction Mathematical Induction (Handout March 8, 01) The Principle of Mathematical Induction provides a means to prove infinitely many statements all at once The principle is logical rather than strictly mathematical,

More information

SYSTEMS OF PYTHAGOREAN TRIPLES. Acknowledgements. I would like to thank Professor Laura Schueller for advising and guiding me

SYSTEMS OF PYTHAGOREAN TRIPLES. Acknowledgements. I would like to thank Professor Laura Schueller for advising and guiding me SYSTEMS OF PYTHAGOREAN TRIPLES CHRISTOPHER TOBIN-CAMPBELL Abstract. This paper explores systems of Pythagorean triples. It describes the generating formulas for primitive Pythagorean triples, determines

More information

Factorization Algorithms for Polynomials over Finite Fields

Factorization Algorithms for Polynomials over Finite Fields Degree Project Factorization Algorithms for Polynomials over Finite Fields Sajid Hanif, Muhammad Imran 2011-05-03 Subject: Mathematics Level: Master Course code: 4MA11E Abstract Integer factorization is

More information

THREE DIMENSIONAL GEOMETRY

THREE DIMENSIONAL GEOMETRY Chapter 8 THREE DIMENSIONAL GEOMETRY 8.1 Introduction In this chapter we present a vector algebra approach to three dimensional geometry. The aim is to present standard properties of lines and planes,

More information

MATH 289 PROBLEM SET 4: NUMBER THEORY

MATH 289 PROBLEM SET 4: NUMBER THEORY MATH 289 PROBLEM SET 4: NUMBER THEORY 1. The greatest common divisor If d and n are integers, then we say that d divides n if and only if there exists an integer q such that n = qd. Notice that if d divides

More information

MAT 200, Midterm Exam Solution. a. (5 points) Compute the determinant of the matrix A =

MAT 200, Midterm Exam Solution. a. (5 points) Compute the determinant of the matrix A = MAT 200, Midterm Exam Solution. (0 points total) a. (5 points) Compute the determinant of the matrix 2 2 0 A = 0 3 0 3 0 Answer: det A = 3. The most efficient way is to develop the determinant along the

More information

MA106 Linear Algebra lecture notes

MA106 Linear Algebra lecture notes MA106 Linear Algebra lecture notes Lecturers: Martin Bright and Daan Krammer Warwick, January 2011 Contents 1 Number systems and fields 3 1.1 Axioms for number systems......................... 3 2 Vector

More information

Systems of Linear Equations

Systems of Linear Equations Chapter 1 Systems of Linear Equations 1.1 Intro. to systems of linear equations Homework: [Textbook, Ex. 13, 15, 41, 47, 49, 51, 65, 73; page 11-]. Main points in this section: 1. Definition of Linear

More information

An Introduction to Linear Programming

An Introduction to Linear Programming An Introduction to Linear Programming Steven J. Miller March 31, 2007 Mathematics Department Brown University 151 Thayer Street Providence, RI 02912 Abstract We describe Linear Programming, an important

More information

University of Lille I PC first year list of exercises n 7. Review

University of Lille I PC first year list of exercises n 7. Review University of Lille I PC first year list of exercises n 7 Review Exercise Solve the following systems in 4 different ways (by substitution, by the Gauss method, by inverting the matrix of coefficients

More information

Ideal Class Group and Units

Ideal Class Group and Units Chapter 4 Ideal Class Group and Units We are now interested in understanding two aspects of ring of integers of number fields: how principal they are (that is, what is the proportion of principal ideals

More information

Integer roots of quadratic and cubic polynomials with integer coefficients

Integer roots of quadratic and cubic polynomials with integer coefficients Integer roots of quadratic and cubic polynomials with integer coefficients Konstantine Zelator Mathematics, Computer Science and Statistics 212 Ben Franklin Hall Bloomsburg University 400 East Second Street

More information

( ) which must be a vector

( ) which must be a vector MATH 37 Linear Transformations from Rn to Rm Dr. Neal, WKU Let T : R n R m be a function which maps vectors from R n to R m. Then T is called a linear transformation if the following two properties are

More information

7 Gaussian Elimination and LU Factorization

7 Gaussian Elimination and LU Factorization 7 Gaussian Elimination and LU Factorization In this final section on matrix factorization methods for solving Ax = b we want to take a closer look at Gaussian elimination (probably the best known method

More information

Introduction to Algebraic Geometry. Bézout s Theorem and Inflection Points

Introduction to Algebraic Geometry. Bézout s Theorem and Inflection Points Introduction to Algebraic Geometry Bézout s Theorem and Inflection Points 1. The resultant. Let K be a field. Then the polynomial ring K[x] is a unique factorisation domain (UFD). Another example of a

More information

GENERATING SETS KEITH CONRAD

GENERATING SETS KEITH CONRAD GENERATING SETS KEITH CONRAD 1 Introduction In R n, every vector can be written as a unique linear combination of the standard basis e 1,, e n A notion weaker than a basis is a spanning set: a set of vectors

More information

4.5 Linear Dependence and Linear Independence

4.5 Linear Dependence and Linear Independence 4.5 Linear Dependence and Linear Independence 267 32. {v 1, v 2 }, where v 1, v 2 are collinear vectors in R 3. 33. Prove that if S and S are subsets of a vector space V such that S is a subset of S, then

More information

1 Sets and Set Notation.

1 Sets and Set Notation. LINEAR ALGEBRA MATH 27.6 SPRING 23 (COHEN) LECTURE NOTES Sets and Set Notation. Definition (Naive Definition of a Set). A set is any collection of objects, called the elements of that set. We will most

More information

Practical Guide to the Simplex Method of Linear Programming

Practical Guide to the Simplex Method of Linear Programming Practical Guide to the Simplex Method of Linear Programming Marcel Oliver Revised: April, 0 The basic steps of the simplex algorithm Step : Write the linear programming problem in standard form Linear

More information

it is easy to see that α = a

it is easy to see that α = a 21. Polynomial rings Let us now turn out attention to determining the prime elements of a polynomial ring, where the coefficient ring is a field. We already know that such a polynomial ring is a UF. Therefore

More information

1 Introduction to Matrices

1 Introduction to Matrices 1 Introduction to Matrices In this section, important definitions and results from matrix algebra that are useful in regression analysis are introduced. While all statements below regarding the columns

More information

Recall that two vectors in are perpendicular or orthogonal provided that their dot

Recall that two vectors in are perpendicular or orthogonal provided that their dot Orthogonal Complements and Projections Recall that two vectors in are perpendicular or orthogonal provided that their dot product vanishes That is, if and only if Example 1 The vectors in are orthogonal

More information

Factoring Polynomials

Factoring Polynomials Factoring Polynomials Sue Geller June 19, 2006 Factoring polynomials over the rational numbers, real numbers, and complex numbers has long been a standard topic of high school algebra. With the advent

More information

IRREDUCIBLE OPERATOR SEMIGROUPS SUCH THAT AB AND BA ARE PROPORTIONAL. 1. Introduction

IRREDUCIBLE OPERATOR SEMIGROUPS SUCH THAT AB AND BA ARE PROPORTIONAL. 1. Introduction IRREDUCIBLE OPERATOR SEMIGROUPS SUCH THAT AB AND BA ARE PROPORTIONAL R. DRNOVŠEK, T. KOŠIR Dedicated to Prof. Heydar Radjavi on the occasion of his seventieth birthday. Abstract. Let S be an irreducible

More information

26 Integers: Multiplication, Division, and Order

26 Integers: Multiplication, Division, and Order 26 Integers: Multiplication, Division, and Order Integer multiplication and division are extensions of whole number multiplication and division. In multiplying and dividing integers, the one new issue

More information

Lectures notes on orthogonal matrices (with exercises) 92.222 - Linear Algebra II - Spring 2004 by D. Klain

Lectures notes on orthogonal matrices (with exercises) 92.222 - Linear Algebra II - Spring 2004 by D. Klain Lectures notes on orthogonal matrices (with exercises) 92.222 - Linear Algebra II - Spring 2004 by D. Klain 1. Orthogonal matrices and orthonormal sets An n n real-valued matrix A is said to be an orthogonal

More information

Chapter 6. Orthogonality

Chapter 6. Orthogonality 6.3 Orthogonal Matrices 1 Chapter 6. Orthogonality 6.3 Orthogonal Matrices Definition 6.4. An n n matrix A is orthogonal if A T A = I. Note. We will see that the columns of an orthogonal matrix must be

More information

Lecture 1: Schur s Unitary Triangularization Theorem

Lecture 1: Schur s Unitary Triangularization Theorem Lecture 1: Schur s Unitary Triangularization Theorem This lecture introduces the notion of unitary equivalence and presents Schur s theorem and some of its consequences It roughly corresponds to Sections

More information