# The Second Subconstituent of some Strongly Regular Graphs. Norman Biggs

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 The Second Subconstituent of some Strongly Regular Graphs Norman Biggs Department of Mathematics London School of Economics Houghton Street London WC2A 2AE U.K. February 2010 Abstract This is a report on a failed attempt to construct new graphs X h that are strongly regular with parameters ((h 4 +3h 2 +4)/2, h 2 +1, 0, 2). The approach is based on the assumption that the second subconstituent of X h has an equitable partition with four parts. For infinitely many odd prime power values of h we construct a graph G h that is a plausible candidate for the second subconstituent. Unfortunately we also show that the corresponding X h is strongly regular only when h = 3, in which case the graph is already known. 1

2 1. Introduction We should like to be able to construct graphs X that have the following properties: X is regular with degree k; X is triangle-free; any two non-adjacent vertices have just two common neighbours. Standard calculations with eigenvalues and multiplicities show that k 1 must be a square h 2, with h not congruent to 0 modulo 4. In the standard terminology [5,11], X is a strongly regular graph with parameters ((h 4 + 3h 2 + 4)/2, h 2 + 1, 0, 2). Although there are infinitely many possibilities, only a few graphs are known, even when the number of common neighbours is allowed to be an arbitrary constant c 2 [10]. The topic is particularly interesting because the known graphs are associated with remarkable groups. For each vertex v of X we denote by X 1 (v), X 2 (v) the sets of vertices at distance 1, 2 respectively from v. We call the graph induced by X 2 (v) the second subconstituent of X. We shall usually write it as X 2, although there is no reason why it should be independent of v. The results in [2,11] establish that X 2 is a connected graph of degree k 2 with diameter 2 or 3. Furthermore, the only numbers that can be eigenvalues of X 2 are: k 2, 2 and the eigenvalues λ 1, λ 2 of X. There are three known examples: h = 1, 2, 3 corresponding to k = 2, 5, 10. When k = 2 we have the 4-cycle. When k = 5 we have a graph with 16 vertices known as the Clebsch graph, a name suggested by Coxeter [6] because the graph represents a geometrical configuration discussed by Clebsch. For this graph X 2 is the Petersen graph. When k = 10 we have the Gewirtz graph with 56 vertices. It can be represented by taking the vertices to be a set of 56 ovals in PG(2, 4), and making two vertices adjacent when the corresponding ovals are disjoint. (An historical note about this graph is appended to this paper.) The algebraic properties of the Gewirtz graph have been studied in detail by Brouwer and Haemers [4], and a list of the 56 ovals may be found at [12]. Using this list, it can be verified that the 45 vertices of X 2 are partitioned with respect to their distance from a given vertex w X 2 as {w} P S, where P = 8 and S = 36. The 36 vertices are of two types. One set Q of 16 vertices has the property that each is adjacent to 1 vertex in P, while the complementary set R of 20 vertices is such that each is adjacent to 2 vertices in P. Further analysis shows that the partition {w} P Q R is equitable [11, p.195], with the intersection numbers given by the matrix 2

3 The eigenvalues of this intersection matrix are 8, 2, 2, 4. The numbers 2 and 4 are the eigenvalues of the Gewirtz graph, while 8 (= k 2) and 2 are the only other eigenvalues permitted by the general theorem mentioned above. On this basis, it seems worthwhile to investigate possible generalizations. 2. Properties of the second subconstituent We begin by constructing a suitable intersection matrix for the second subconstituent, for a general value of k. Let G = (V, E) be a graph with vertex-set V = K (2), the set of unordered pairs of elements of a set K, where K = k, and suppose the edge-set E is defined so that the following conditions hold. C1 For each vertex ab V there is a partition of V with four parts, V = {ab} P ab Q ab R ab such that P ab = {cd {ab, cd} E} and Q ab = {cd ab cd = 1}. C2 This partition is equitable with intersection matrix M = k k 5 k 5 k 8 The fact that P ab and Q ab are disjoint implies that if {ab, cd} is an edge, then a, b, c, d are distinct. It follows from the definition of Q ab that Q ab = 2(k 2). The other parameters then imply that P ab = k 2, R ab = 1 (k 2)(k 5). 2 It is easy to see that a graph G with the given properties would be trianglefree, regular with degree k 2, and have diameter 2. The conditions are clearly meaningful only when k 8. Since we know that the corresponding strongly regular graphs can exist only when k = h 2 + 1, and that they do exist when k = 2 and k = 5, we shall assume that k 10 in what follows. 3

4 Theorem 1 Let G be a graph satisfying conditions C1 and C2, and let C be the bipartite graph (claw) with vertex-set { } K. Denote by G C the graph formed from the disjoint union of G and C by adding edges joining each vertex ab in G to the vertices a and b in C. Then G C is a strongly regular graph with degree k, it is triangle-free, and each pair of non-adjacent vertices has just 2 common neighbours. Proof Since G is regular with degree k 2, G C is regular with degree k. Since C is a claw, there are no triangles containing the vertex. A triangle containing the vertex a K would have to contain vertices ab and ab in G, but these vertices are not adjacent. Finally, a triangle containing the vertex ab would lie wholly in G, but G is triangle-free. It remains to check that any two non-adjacent vertices in G C have exactly two common neighbours. If the two vertices are and ab, the neighbours are a and b, and if the two vertices are a, b, the common neighbours are and ab. If the two vertices are of the form ab and ac, then ac Q ab, and the neighbours are a and the unique vertex in P ab that is adjacent to ac. If the two vertices are of the form ab and cd, where cd R ab, then the neighbours are the two vertices in P ab that are adjacent to cd. 3. Construction of triangle-free graphs G q We attempt to construct graphs satisfying conditions C1 and C2. We know that k 1 must be a square, say h 2. Let h = q, where q is a prime power, so that k = q Take K to be the set of points on the projective line P G(1, q 2 ), that is K = F q 2 { } = t {0, }. Here F q 2 is the finite field of order q 2, is the conventional point at infinity, and t is a primitive element of the field, so that t is a cyclic group of order q 2 1 = k 2. The group PGL(2, q 2 ) of projective linear transformations acts 3-transitively on K, and hence transitively on the unordered pairs ab in K (2), and the stabilizer of the pair 0 is generated by x tx and x x 1. When q is an odd prime power (so that k is even) its orbits on K (2) are as follows: {0 }, and 1 (k 2) orbits of the form 2 O 0 = {0x x t } { x x t }, O v = {vx x x t } (v = t, t 2,..., t (k 2)/2 ). 4

5 The orbit O 0 has size 2(k 2), the orbits O v (v 1) have size k 2, and the orbit O 1 has size (k 2)/2. Note that when q is a power of 2 the orbit-partition takes a slightly different form: this is consistent with the fact that no construction can work when k 1 = h 2 with h 0 (mod 4), by the feasibility conditions. (The exceptional case q = 2 has already been covered.) The idea of the following construction is to define a graph with vertex-set V = K (2) such that for a suitable value of u, the partition postulated in condition C1 (taking the vertex ab to be 0 ) is given by P = O u, Q = O 0, R = v u,0 The construction depends on the cross-ratio, which is defined for any points a, b, c, d K by the rule (ab cd) = (a c)(b d) (a d)(b c), with the usual conventions about. The cross-ratio is 1 if and only if a = b or c = d or both, and so this value does not occur when ab and cd are in V = K (2). Given the unordered pair of unordered pairs ab and cd, the crossratio (ab cd) takes only two values ρ and ρ 1, which it is convenient to write in the form (ab cd) = ρ ±. Let V = K (2), and given u t, u ±1 define E u to be the set of pairs {ab, cd} such that (ab cd) = u ±. Since (0 ux x) = u, it follows that in the graph G u = (V, E u ) the set of vertices adjacent to 0 is the orbit O u, as defined above. We consider the possibility that, for a suitable value of u, G u is a graph in which the partition given above is equitable, with the intersection matrix M as in condition C2. The first step is to ensure that M P P = 0, which means that G u is triangle-free. Lemma Let O v. Ω = {v K v = (x + x 1 1) ± for some x t, x 1}. Then the graph G u is triangle-free if and only if u is not in Ω. Proof The group PGL(2, q 2 ) acts as a group of automorphisms of G u since it preserves cross-ratios, and so G u is vertex-transitive. Hence we need only consider the possibility of triangles containing a given vertex, say 0. The stabilizer of 0 contains x tx and x 1/x, and so we can assume that 5

6 two edges of the triangle are {0, u 1} and {0, ux x}, with x 1. Now, the vertices u 1 and ux x are adjacent if and only if (ux u)(u 1) (ux 1)(x u) = u±. After some rearrangement, this reduces to u = (x + x 1 1) ±. In other words, there is a triangle if and only if u is in Ω. Since x + x 1 1 is symmetrical with respect to inverting x, the set Ω can be found by calculating at the values of x + x 1 1 for x = t j, j = 1, 2, 3,..., (k 2)/2. For example, when the field is F 9 with the primitive element t satisfying t 2 + t + 2 = 0, we have the table j x x + x 1 1 (x + x 1 1) 1 1 t 2t 2 + 2t t t 1 + t t Since 1 + 2t and its inverse 2 + t are not in Ω, we conclude that the graph G 1+2t is triangle-free. Generally, the special orbit O u could be any one of the O v except O 0 and O 1, thus {u, u 1 } could be any one of the (k 4)/2 pairs {t j, t j }, j = 1, 2,..., (k 4)/2. As a working definition let us say that u is admissible if (1) u = 0,, 1, 1, and (2) {u, u 1 } / Ω. At first sight it appears that as many as (k 2)/2 pairs are not admissible, because they are in Ω, but fortunately things are not so bad. Theorem 2 Suppose that q is an odd prime power and there is an element ζ in F q 2 such that ζ 2 = 3. Then there is at least one u of the form t j with j {1, 2,..., (k 4)/2} such that u is not in Ω, and hence the graph G u is triangle-free. Proof When q is odd q 2 is congruent to 1 mod 4, and so there is an element ι such that ι 2 = 1. Then ι + ι 1 1 = (ι + ι 1 1) 1 = 1,. 6

7 which means that the pair { 1, 1} occurs in Ω. But u = 1 is not admissible anyway, and so the number of non-admissible pairs in Ω is effectively reduced to at most (k 4)/2. Similarly, if we can find an x such that x + x 1 1 = 0 then the pair {0, } will occur in Ω, and since this pair is also not admissible, the number of non-admissible pairs in Ω will be reduced to at most (k 6)/2. It is easy to see that this happens if there is an element ζ F q 2 such that ζ 2 = 3. In that case, let θ = 2 1 (1 + ιζ), so that θ 1 = 2 1 (1 ιζ) and θ + θ 1 1 = 0. Hence an admissible u must exist. For example, in the field F 25 with the primitive element t satisfying t 2 +t+2 = 0, we have ι = 2, ζ = 4 + 3t, θ = 2 + 3t. Hence the pair {2 + 3t, 4 + 2t} is admissible. A complete check shows that there are two other admissible pairs {1 + 2t, 2 + 4t}, and {3 + t, 4 + 3t}. It is easy to see that there are infinitely many fields F q 2 which contain an element with ζ 2 = 3, for example by applying the law of quadratic reciprocity. We do not pursue this matter, since the final step is to rule out all fields except F 9, where explicit calculation shows that the construction works. 4. Failure of the construction in general We now know that in many cases a graph G u can be constructed satisfying the condition M P P = 0. But it remains to check that the other entries of M are correct. In fact, several of them can be verified, but it turns out that the condition M P R = 2 cannot be satisfied in general. Theorem 3 Let G u be defined for an odd prime power q as in Section 3, and let the partition {0 } P Q R of the vertices of G u be as stated there. Then this partition is equitable with an intersection matrix of the form required by condition C2 only when q = 3. Proof q = 3. We shall show that the condition M P R = 2 cannot hold, except when A typical vertex in R is vw w where v u, 0,, 1 and w t. This vertex is adjacent to the vertices ux x in P for which (ux x vw w) = u or u 1. These two equations can be written as quadratics in x: ux 2 (1 + u)vwx + vw 2 = 0, ux 2 (1 + u)wx + vw 2 = 0, 7

8 and their discriminants are + = w 2 ((1 + u) 2 v 2 4uv), = w 2 ((1 + u) 2 4uv). If there are just two solutions for x then either (1) exactly one of +, is a square in F q 2, or (2) + and are both zero. Consider first the case v = 1. Here + = and so their common value must be zero. That is, (1 + u 2 ) + 4u = 0. Then for all v 1 + = w 2 ( 4uv 2 4uv) = vw 2 ( 4u 4uv) = v. Hence in order that exactly one of +, is a square, v must be a nonsquare, and this must hold for all the orbits O v R except O 1. In the case q = 3 we chose u = 1 + t = t 2, so R = O t O t 3 O 1, and the condition is satisfied. But for q 5 there must be at least one square among the relevant values of v and the condition cannot be satisfied. Historical note on the Gewirtz graph Gewirtz discussed his graph in two papers published in 1969 [8,9]. Brouwer [3] says that the graph was discovered by Sims, and calls it the Sims-Gewirtz graph. My own interest in strongly regular graphs dates from the late 1960s, when I was told by John McKay about the exciting discoveries of new simple groups. The topic (but not the Gewirtz graph) is mentioned in a paper I gave at the 1969 Oxford Conference [1]. I do not wish to claim any originality for myself, but I am fairly sure that I initially derived my knowledge of the Gewirtz graph from a 1965 paper of W.L. Edge On some implications of the geometry of the 21-point plane [7]. In that paper the three sets of 56 ovals in PG(2, 4) are clearly described, with the critical property that any one of the sets of 56 has the property that two of them intersect in 0 or 2 points. References 1. N.L. Biggs. Intersection matrices for linear graphs. In: Combinatorial Mathematics and its Applications (ed. D.J.A. Welsh), Academic Press, 1971, N.L. Biggs. Strongly regular graphs with no triangles. arxiv v1, September Families of Parameters for SRNT Graphs. arxiv v1, October

9 3. A.E. Brouwer. Sims-Gewirtz graph. Gewirtz.html (accessed 10/11/09). 4. A.E. Brouwer, W. Haemers. The Gewirtz Graph: an exercise in the theory of graph spectra. Europ. J. Combinatorics 14 (1993) P.J. Cameron, J. van Lint. Designs, Graphs, Codes and their Links. Cambridge University Press, H.S.M. Coxeter. Self-dual configurations and regular graphs. Bull. Amer. Math. Soc. 56 (1950) W.L. Edge. Some implications of the geometry of the 21-point plane. Math. Zeitschr. 87 (1965) A. Gewirtz. The uniqueness of g(2, 2, 10, 56). Trans. New York Acad. Sci. 31 (1969) A. Gewirtz. Graphs with maximal even girth. Canad. J. Math 21 (1969) C.D. Godsil. Problems in algebraic combinatorics. Elect. J. Combinatorics 2 (1995) F C.D. Godsil, G.F. Royle. Algebraic Graph Theory. Springer, Wolfram MathWorld. mathworld.wolfram.com/gewirtzgraph.html (accessed 10/11/09). 9

### INCIDENCE-BETWEENNESS GEOMETRY

INCIDENCE-BETWEENNESS GEOMETRY MATH 410, CSUSM. SPRING 2008. PROFESSOR AITKEN This document covers the geometry that can be developed with just the axioms related to incidence and betweenness. The full

### The Open University s repository of research publications and other research outputs

Open Research Online The Open University s repository of research publications and other research outputs The degree-diameter problem for circulant graphs of degree 8 and 9 Journal Article How to cite:

### arxiv:1203.1525v1 [math.co] 7 Mar 2012

Constructing subset partition graphs with strong adjacency and end-point count properties Nicolai Hähnle haehnle@math.tu-berlin.de arxiv:1203.1525v1 [math.co] 7 Mar 2012 March 8, 2012 Abstract Kim defined

### On Integer Additive Set-Indexers of Graphs

On Integer Additive Set-Indexers of Graphs arxiv:1312.7672v4 [math.co] 2 Mar 2014 N K Sudev and K A Germina Abstract A set-indexer of a graph G is an injective set-valued function f : V (G) 2 X such that

### Frans J.C.T. de Ruiter, Norman L. Biggs Applications of integer programming methods to cages

Frans J.C.T. de Ruiter, Norman L. Biggs Applications of integer programming methods to cages Article (Published version) (Refereed) Original citation: de Ruiter, Frans and Biggs, Norman (2015) Applications

### Labeling outerplanar graphs with maximum degree three

Labeling outerplanar graphs with maximum degree three Xiangwen Li 1 and Sanming Zhou 2 1 Department of Mathematics Huazhong Normal University, Wuhan 430079, China 2 Department of Mathematics and Statistics

### SHARP BOUNDS FOR THE SUM OF THE SQUARES OF THE DEGREES OF A GRAPH

31 Kragujevac J. Math. 25 (2003) 31 49. SHARP BOUNDS FOR THE SUM OF THE SQUARES OF THE DEGREES OF A GRAPH Kinkar Ch. Das Department of Mathematics, Indian Institute of Technology, Kharagpur 721302, W.B.,

### Math 181 Handout 16. Rich Schwartz. March 9, 2010

Math 8 Handout 6 Rich Schwartz March 9, 200 The purpose of this handout is to describe continued fractions and their connection to hyperbolic geometry. The Gauss Map Given any x (0, ) we define γ(x) =

### Cameron Liebler line classes

Cameron Liebler line classes Alexander Gavrilyuk Krasovsky Institute of Mathematics and Mechanics, (Yekaterinburg, Russia) based on joint work with Ivan Mogilnykh, Institute of Mathematics (Novosibirsk,

### Classification of Cartan matrices

Chapter 7 Classification of Cartan matrices In this chapter we describe a classification of generalised Cartan matrices This classification can be compared as the rough classification of varieties in terms

### All trees contain a large induced subgraph having all degrees 1 (mod k)

All trees contain a large induced subgraph having all degrees 1 (mod k) David M. Berman, A.J. Radcliffe, A.D. Scott, Hong Wang, and Larry Wargo *Department of Mathematics University of New Orleans New

### Cycles in a Graph Whose Lengths Differ by One or Two

Cycles in a Graph Whose Lengths Differ by One or Two J. A. Bondy 1 and A. Vince 2 1 LABORATOIRE DE MATHÉMATIQUES DISCRÉTES UNIVERSITÉ CLAUDE-BERNARD LYON 1 69622 VILLEURBANNE, FRANCE 2 DEPARTMENT OF MATHEMATICS

### FRACTIONAL COLORINGS AND THE MYCIELSKI GRAPHS

FRACTIONAL COLORINGS AND THE MYCIELSKI GRAPHS By G. Tony Jacobs Under the Direction of Dr. John S. Caughman A math 501 project submitted in partial fulfillment of the requirements for the degree of Master

### Chapter 3.1 Angles. Geometry. Objectives: Define what an angle is. Define the parts of an angle.

Chapter 3.1 Angles Define what an angle is. Define the parts of an angle. Recall our definition for a ray. A ray is a line segment with a definite starting point and extends into infinity in only one direction.

### ON GALOIS REALIZATIONS OF THE 2-COVERABLE SYMMETRIC AND ALTERNATING GROUPS

ON GALOIS REALIZATIONS OF THE 2-COVERABLE SYMMETRIC AND ALTERNATING GROUPS DANIEL RABAYEV AND JACK SONN Abstract. Let f(x) be a monic polynomial in Z[x] with no rational roots but with roots in Q p for

### Removing Even Crossings

EuroComb 2005 DMTCS proc. AE, 2005, 105 110 Removing Even Crossings Michael J. Pelsmajer 1, Marcus Schaefer 2 and Daniel Štefankovič 2 1 Department of Applied Mathematics, Illinois Institute of Technology,

### Factoring Patterns in the Gaussian Plane

Factoring Patterns in the Gaussian Plane Steve Phelps Introduction This paper describes discoveries made at the Park City Mathematics Institute, 00, as well as some proofs. Before the summer I understood

### FACTORING POLYNOMIALS IN THE RING OF FORMAL POWER SERIES OVER Z

FACTORING POLYNOMIALS IN THE RING OF FORMAL POWER SERIES OVER Z DANIEL BIRMAJER, JUAN B GIL, AND MICHAEL WEINER Abstract We consider polynomials with integer coefficients and discuss their factorization

### The Independence Number in Graphs of Maximum Degree Three

The Independence Number in Graphs of Maximum Degree Three Jochen Harant 1 Michael A. Henning 2 Dieter Rautenbach 1 and Ingo Schiermeyer 3 1 Institut für Mathematik, TU Ilmenau, Postfach 100565, D-98684

### THREE DIMENSIONAL GEOMETRY

Chapter 8 THREE DIMENSIONAL GEOMETRY 8.1 Introduction In this chapter we present a vector algebra approach to three dimensional geometry. The aim is to present standard properties of lines and planes,

### ALGEBRAIC APPROACH TO COMPOSITE INTEGER FACTORIZATION

ALGEBRAIC APPROACH TO COMPOSITE INTEGER FACTORIZATION Aldrin W. Wanambisi 1* School of Pure and Applied Science, Mount Kenya University, P.O box 553-50100, Kakamega, Kenya. Shem Aywa 2 Department of Mathematics,

### Introduction to Algebraic Geometry. Bézout s Theorem and Inflection Points

Introduction to Algebraic Geometry Bézout s Theorem and Inflection Points 1. The resultant. Let K be a field. Then the polynomial ring K[x] is a unique factorisation domain (UFD). Another example of a

### The positive minimum degree game on sparse graphs

The positive minimum degree game on sparse graphs József Balogh Department of Mathematical Sciences University of Illinois, USA jobal@math.uiuc.edu András Pluhár Department of Computer Science University

### Total colorings of planar graphs with small maximum degree

Total colorings of planar graphs with small maximum degree Bing Wang 1,, Jian-Liang Wu, Si-Feng Tian 1 Department of Mathematics, Zaozhuang University, Shandong, 77160, China School of Mathematics, Shandong

GENERATING SETS KEITH CONRAD 1 Introduction In R n, every vector can be written as a unique linear combination of the standard basis e 1,, e n A notion weaker than a basis is a spanning set: a set of vectors

### The Clar Structure of Fullerenes

The Clar Structure of Fullerenes Liz Hartung Massachusetts College of Liberal Arts June 12, 2013 Liz Hartung (Massachusetts College of Liberal Arts) The Clar Structure of Fullerenes June 12, 2013 1 / 25

### P. Jeyanthi and N. Angel Benseera

Opuscula Math. 34, no. 1 (014), 115 1 http://dx.doi.org/10.7494/opmath.014.34.1.115 Opuscula Mathematica A TOTALLY MAGIC CORDIAL LABELING OF ONE-POINT UNION OF n COPIES OF A GRAPH P. Jeyanthi and N. Angel

### Numerical Analysis Lecture Notes

Numerical Analysis Lecture Notes Peter J. Olver 5. Inner Products and Norms The norm of a vector is a measure of its size. Besides the familiar Euclidean norm based on the dot product, there are a number

### ON DEGREES IN THE HASSE DIAGRAM OF THE STRONG BRUHAT ORDER

Séminaire Lotharingien de Combinatoire 53 (2006), Article B53g ON DEGREES IN THE HASSE DIAGRAM OF THE STRONG BRUHAT ORDER RON M. ADIN AND YUVAL ROICHMAN Abstract. For a permutation π in the symmetric group

### = 2 + 1 2 2 = 3 4, Now assume that P (k) is true for some fixed k 2. This means that

Instructions. Answer each of the questions on your own paper, and be sure to show your work so that partial credit can be adequately assessed. Credit will not be given for answers (even correct ones) without

### Revised Version of Chapter 23. We learned long ago how to solve linear congruences. ax c (mod m)

Chapter 23 Squares Modulo p Revised Version of Chapter 23 We learned long ago how to solve linear congruences ax c (mod m) (see Chapter 8). It s now time to take the plunge and move on to quadratic equations.

### On the representability of the bi-uniform matroid

On the representability of the bi-uniform matroid Simeon Ball, Carles Padró, Zsuzsa Weiner and Chaoping Xing August 3, 2012 Abstract Every bi-uniform matroid is representable over all sufficiently large

### Solving Simultaneous Equations and Matrices

Solving Simultaneous Equations and Matrices The following represents a systematic investigation for the steps used to solve two simultaneous linear equations in two unknowns. The motivation for considering

### COUNTING INDEPENDENT SETS IN SOME CLASSES OF (ALMOST) REGULAR GRAPHS

COUNTING INDEPENDENT SETS IN SOME CLASSES OF (ALMOST) REGULAR GRAPHS Alexander Burstein Department of Mathematics Howard University Washington, DC 259, USA aburstein@howard.edu Sergey Kitaev Mathematics

### α = u v. In other words, Orthogonal Projection

Orthogonal Projection Given any nonzero vector v, it is possible to decompose an arbitrary vector u into a component that points in the direction of v and one that points in a direction orthogonal to v

### Algebra 1 Course Title

Algebra 1 Course Title Course- wide 1. What patterns and methods are being used? Course- wide 1. Students will be adept at solving and graphing linear and quadratic equations 2. Students will be adept

### FACTORING CERTAIN INFINITE ABELIAN GROUPS BY DISTORTED CYCLIC SUBSETS

International Electronic Journal of Algebra Volume 6 (2009) 95-106 FACTORING CERTAIN INFINITE ABELIAN GROUPS BY DISTORTED CYCLIC SUBSETS Sándor Szabó Received: 11 November 2008; Revised: 13 March 2009

### Zachary Monaco Georgia College Olympic Coloring: Go For The Gold

Zachary Monaco Georgia College Olympic Coloring: Go For The Gold Coloring the vertices or edges of a graph leads to a variety of interesting applications in graph theory These applications include various

### Graphs without proper subgraphs of minimum degree 3 and short cycles

Graphs without proper subgraphs of minimum degree 3 and short cycles Lothar Narins, Alexey Pokrovskiy, Tibor Szabó Department of Mathematics, Freie Universität, Berlin, Germany. August 22, 2014 Abstract

### Tenacity and rupture degree of permutation graphs of complete bipartite graphs

Tenacity and rupture degree of permutation graphs of complete bipartite graphs Fengwei Li, Qingfang Ye and Xueliang Li Department of mathematics, Shaoxing University, Shaoxing Zhejiang 312000, P.R. China

### Codes for Network Switches

Codes for Network Switches Zhiying Wang, Omer Shaked, Yuval Cassuto, and Jehoshua Bruck Electrical Engineering Department, California Institute of Technology, Pasadena, CA 91125, USA Electrical Engineering

### SPERNER S LEMMA AND BROUWER S FIXED POINT THEOREM

SPERNER S LEMMA AND BROUWER S FIXED POINT THEOREM ALEX WRIGHT 1. Intoduction A fixed point of a function f from a set X into itself is a point x 0 satisfying f(x 0 ) = x 0. Theorems which establish the

### U.C. Berkeley CS276: Cryptography Handout 0.1 Luca Trevisan January, 2009. Notes on Algebra

U.C. Berkeley CS276: Cryptography Handout 0.1 Luca Trevisan January, 2009 Notes on Algebra These notes contain as little theory as possible, and most results are stated without proof. Any introductory

### UNIFORMLY DISCONTINUOUS GROUPS OF ISOMETRIES OF THE PLANE

UNIFORMLY DISCONTINUOUS GROUPS OF ISOMETRIES OF THE PLANE NINA LEUNG Abstract. This paper discusses 2-dimensional locally Euclidean geometries and how these geometries can describe musical chords. Contents

### GEOMETRY. Chapter 1: Foundations for Geometry. Name: Teacher: Pd:

GEOMETRY Chapter 1: Foundations for Geometry Name: Teacher: Pd: Table of Contents Lesson 1.1: SWBAT: Identify, name, and draw points, lines, segments, rays, and planes. Pgs: 1-4 Lesson 1.2: SWBAT: Use

### The degree, size and chromatic index of a uniform hypergraph

The degree, size and chromatic index of a uniform hypergraph Noga Alon Jeong Han Kim Abstract Let H be a k-uniform hypergraph in which no two edges share more than t common vertices, and let D denote the

### Graphical degree sequences and realizations

swap Graphical and realizations Péter L. Erdös Alfréd Rényi Institute of Mathematics Hungarian Academy of Sciences MAPCON 12 MPIPKS - Dresden, May 15, 2012 swap Graphical and realizations Péter L. Erdös

### minimal polyonomial Example

Minimal Polynomials Definition Let α be an element in GF(p e ). We call the monic polynomial of smallest degree which has coefficients in GF(p) and α as a root, the minimal polyonomial of α. Example: We

### E3: PROBABILITY AND STATISTICS lecture notes

E3: PROBABILITY AND STATISTICS lecture notes 2 Contents 1 PROBABILITY THEORY 7 1.1 Experiments and random events............................ 7 1.2 Certain event. Impossible event............................

### ON TORI TRIANGULATIONS ASSOCIATED WITH TWO-DIMENSIONAL CONTINUED FRACTIONS OF CUBIC IRRATIONALITIES.

ON TORI TRIANGULATIONS ASSOCIATED WITH TWO-DIMENSIONAL CONTINUED FRACTIONS OF CUBIC IRRATIONALITIES. O. N. KARPENKOV Introduction. A series of properties for ordinary continued fractions possesses multidimensional

### THE CONGRUENT NUMBER PROBLEM

THE CONGRUENT NUMBER PROBLEM KEITH CONRAD 1. Introduction A right triangle is called rational when its legs and hypotenuse are all rational numbers. Examples of rational right triangles include Pythagorean

### Mathematical Induction

Mathematical Induction (Handout March 8, 01) The Principle of Mathematical Induction provides a means to prove infinitely many statements all at once The principle is logical rather than strictly mathematical,

### Lecture 15 An Arithmetic Circuit Lowerbound and Flows in Graphs

CSE599s: Extremal Combinatorics November 21, 2011 Lecture 15 An Arithmetic Circuit Lowerbound and Flows in Graphs Lecturer: Anup Rao 1 An Arithmetic Circuit Lower Bound An arithmetic circuit is just like

### Class One: Degree Sequences

Class One: Degree Sequences For our purposes a graph is a just a bunch of points, called vertices, together with lines or curves, called edges, joining certain pairs of vertices. Three small examples of

### ABSTRACT. For example, circle orders are the containment orders of circles (actually disks) in the plane (see [8,9]).

Degrees of Freedom Versus Dimension for Containment Orders Noga Alon 1 Department of Mathematics Tel Aviv University Ramat Aviv 69978, Israel Edward R. Scheinerman 2 Department of Mathematical Sciences

### Linear Programming I

Linear Programming I November 30, 2003 1 Introduction In the VCR/guns/nuclear bombs/napkins/star wars/professors/butter/mice problem, the benevolent dictator, Bigus Piguinus, of south Antarctica penguins

### Integer Factorization using the Quadratic Sieve

Integer Factorization using the Quadratic Sieve Chad Seibert* Division of Science and Mathematics University of Minnesota, Morris Morris, MN 56567 seib0060@morris.umn.edu March 16, 2011 Abstract We give

### Mathematics Review for MS Finance Students

Mathematics Review for MS Finance Students Anthony M. Marino Department of Finance and Business Economics Marshall School of Business Lecture 1: Introductory Material Sets The Real Number System Functions,

### Introduction to Finite Fields (cont.)

Chapter 6 Introduction to Finite Fields (cont.) 6.1 Recall Theorem. Z m is a field m is a prime number. Theorem (Subfield Isomorphic to Z p ). Every finite field has the order of a power of a prime number

### Every tree contains a large induced subgraph with all degrees odd

Every tree contains a large induced subgraph with all degrees odd A.J. Radcliffe Carnegie Mellon University, Pittsburgh, PA A.D. Scott Department of Pure Mathematics and Mathematical Statistics University

### ON INDUCED SUBGRAPHS WITH ALL DEGREES ODD. 1. Introduction

ON INDUCED SUBGRAPHS WITH ALL DEGREES ODD A.D. SCOTT Abstract. Gallai proved that the vertex set of any graph can be partitioned into two sets, each inducing a subgraph with all degrees even. We prove

### On the crossing number of K m,n

On the crossing number of K m,n Nagi H. Nahas nnahas@acm.org Submitted: Mar 15, 001; Accepted: Aug 10, 00; Published: Aug 1, 00 MR Subject Classifications: 05C10, 05C5 Abstract The best lower bound known

### Mean Ramsey-Turán numbers

Mean Ramsey-Turán numbers Raphael Yuster Department of Mathematics University of Haifa at Oranim Tivon 36006, Israel Abstract A ρ-mean coloring of a graph is a coloring of the edges such that the average

### CHAPTER SIX IRREDUCIBILITY AND FACTORIZATION 1. BASIC DIVISIBILITY THEORY

January 10, 2010 CHAPTER SIX IRREDUCIBILITY AND FACTORIZATION 1. BASIC DIVISIBILITY THEORY The set of polynomials over a field F is a ring, whose structure shares with the ring of integers many characteristics.

### AN ALGORITHM FOR DETERMINING WHETHER A GIVEN BINARY MATROID IS GRAPHIC

AN ALGORITHM FOR DETERMINING WHETHER A GIVEN BINARY MATROID IS GRAPHIC W. T. TUTTE. Introduction. In a recent series of papers [l-4] on graphs and matroids I used definitions equivalent to the following.

### On three zero-sum Ramsey-type problems

On three zero-sum Ramsey-type problems Noga Alon Department of Mathematics Raymond and Beverly Sackler Faculty of Exact Sciences Tel Aviv University, Tel Aviv, Israel and Yair Caro Department of Mathematics

### Groups in Cryptography

Groups in Cryptography Çetin Kaya Koç http://cs.ucsb.edu/~koc/cs178 koc@cs.ucsb.edu Koç (http://cs.ucsb.edu/~koc) ucsb cs 178 intro to crypto winter 2013 1 / 13 Groups in Cryptography A set S and a binary

### Row Ideals and Fibers of Morphisms

Michigan Math. J. 57 (2008) Row Ideals and Fibers of Morphisms David Eisenbud & Bernd Ulrich Affectionately dedicated to Mel Hochster, who has been an inspiration to us for many years, on the occasion

### A modular equality for Cameron-Liebler line classes

A modular equality for Cameron-Liebler line classes Alexander L. Gavrilyuk Research Center for Pure and Applied Mathematics, Graduate School of Information Sciences, Tohoku University, Sendai 980-8579,

### G = G 0 > G 1 > > G k = {e}

Proposition 49. 1. A group G is nilpotent if and only if G appears as an element of its upper central series. 2. If G is nilpotent, then the upper central series and the lower central series have the same

### DATA ANALYSIS II. Matrix Algorithms

DATA ANALYSIS II Matrix Algorithms Similarity Matrix Given a dataset D = {x i }, i=1,..,n consisting of n points in R d, let A denote the n n symmetric similarity matrix between the points, given as where

### most 4 Mirka Miller 1,2, Guillermo Pineda-Villavicencio 3, The University of Newcastle Callaghan, NSW 2308, Australia University of West Bohemia

Complete catalogue of graphs of maimum degree 3 and defect at most 4 Mirka Miller 1,2, Guillermo Pineda-Villavicencio 3, 1 School of Electrical Engineering and Computer Science The University of Newcastle

### 3. Linear Programming and Polyhedral Combinatorics

Massachusetts Institute of Technology Handout 6 18.433: Combinatorial Optimization February 20th, 2009 Michel X. Goemans 3. Linear Programming and Polyhedral Combinatorics Summary of what was seen in the

### Section 8.8. 1. The given line has equations. x = 3 + t(13 3) = 3 + 10t, y = 2 + t(3 + 2) = 2 + 5t, z = 7 + t( 8 7) = 7 15t.

. The given line has equations Section 8.8 x + t( ) + 0t, y + t( + ) + t, z 7 + t( 8 7) 7 t. The line meets the plane y 0 in the point (x, 0, z), where 0 + t, or t /. The corresponding values for x and

### Example SECTION 13-1. X-AXIS - the horizontal number line. Y-AXIS - the vertical number line ORIGIN - the point where the x-axis and y-axis cross

CHAPTER 13 SECTION 13-1 Geometry and Algebra The Distance Formula COORDINATE PLANE consists of two perpendicular number lines, dividing the plane into four regions called quadrants X-AXIS - the horizontal

### Chapter 7. Permutation Groups

Chapter 7 Permutation Groups () We started the study of groups by considering planar isometries In the previous chapter, we learnt that finite groups of planar isometries can only be cyclic or dihedral

### Group Theory. Contents

Group Theory Contents Chapter 1: Review... 2 Chapter 2: Permutation Groups and Group Actions... 3 Orbits and Transitivity... 6 Specific Actions The Right regular and coset actions... 8 The Conjugation

### Sign changes of Hecke eigenvalues of Siegel cusp forms of degree 2

Sign changes of Hecke eigenvalues of Siegel cusp forms of degree 2 Ameya Pitale, Ralf Schmidt 2 Abstract Let µ(n), n > 0, be the sequence of Hecke eigenvalues of a cuspidal Siegel eigenform F of degree

### Split Nonthreshold Laplacian Integral Graphs

Split Nonthreshold Laplacian Integral Graphs Stephen Kirkland University of Regina, Canada kirkland@math.uregina.ca Maria Aguieiras Alvarez de Freitas Federal University of Rio de Janeiro, Brazil maguieiras@im.ufrj.br

### Curriculum Map by Block Geometry Mapping for Math Block Testing 2007-2008. August 20 to August 24 Review concepts from previous grades.

Curriculum Map by Geometry Mapping for Math Testing 2007-2008 Pre- s 1 August 20 to August 24 Review concepts from previous grades. August 27 to September 28 (Assessment to be completed by September 28)

### Dear Accelerated Pre-Calculus Student:

Dear Accelerated Pre-Calculus Student: I am very excited that you have decided to take this course in the upcoming school year! This is a fastpaced, college-preparatory mathematics course that will also

### ISOMETRIES OF R n KEITH CONRAD

ISOMETRIES OF R n KEITH CONRAD 1. Introduction An isometry of R n is a function h: R n R n that preserves the distance between vectors: h(v) h(w) = v w for all v and w in R n, where (x 1,..., x n ) = x

### The Dirichlet Unit Theorem

Chapter 6 The Dirichlet Unit Theorem As usual, we will be working in the ring B of algebraic integers of a number field L. Two factorizations of an element of B are regarded as essentially the same if

### ON FIBER DIAMETERS OF CONTINUOUS MAPS

ON FIBER DIAMETERS OF CONTINUOUS MAPS PETER S. LANDWEBER, EMANUEL A. LAZAR, AND NEEL PATEL Abstract. We present a surprisingly short proof that for any continuous map f : R n R m, if n > m, then there

### Best Monotone Degree Bounds for Various Graph Parameters

Best Monotone Degree Bounds for Various Graph Parameters D. Bauer Department of Mathematical Sciences Stevens Institute of Technology Hoboken, NJ 07030 S. L. Hakimi Department of Electrical and Computer

### RINGS WITH A POLYNOMIAL IDENTITY

RINGS WITH A POLYNOMIAL IDENTITY IRVING KAPLANSKY 1. Introduction. In connection with his investigation of projective planes, M. Hall [2, Theorem 6.2]* proved the following theorem: a division ring D in

### 1 The Line vs Point Test

6.875 PCP and Hardness of Approximation MIT, Fall 2010 Lecture 5: Low Degree Testing Lecturer: Dana Moshkovitz Scribe: Gregory Minton and Dana Moshkovitz Having seen a probabilistic verifier for linearity

### Tools for parsimonious edge-colouring of graphs with maximum degree three. J.L. Fouquet and J.M. Vanherpe. Rapport n o RR-2010-10

Tools for parsimonious edge-colouring of graphs with maximum degree three J.L. Fouquet and J.M. Vanherpe LIFO, Université d Orléans Rapport n o RR-2010-10 Tools for parsimonious edge-colouring of graphs

### Algebra Unpacked Content For the new Common Core standards that will be effective in all North Carolina schools in the 2012-13 school year.

This document is designed to help North Carolina educators teach the Common Core (Standard Course of Study). NCDPI staff are continually updating and improving these tools to better serve teachers. Algebra

### Mathematical Research Letters 1, 249 255 (1994) MAPPING CLASS GROUPS ARE AUTOMATIC. Lee Mosher

Mathematical Research Letters 1, 249 255 (1994) MAPPING CLASS GROUPS ARE AUTOMATIC Lee Mosher Let S be a compact surface, possibly with the extra structure of an orientation or a finite set of distinguished

### On an anti-ramsey type result

On an anti-ramsey type result Noga Alon, Hanno Lefmann and Vojtĕch Rödl Abstract We consider anti-ramsey type results. For a given coloring of the k-element subsets of an n-element set X, where two k-element

### Research Article On the Rank of Elliptic Curves in Elementary Cubic Extensions

Numbers Volume 2015, Article ID 501629, 4 pages http://dx.doi.org/10.1155/2015/501629 Research Article On the Rank of Elliptic Curves in Elementary Cubic Extensions Rintaro Kozuma College of International

### SOLUTIONS TO EXERCISES FOR. MATHEMATICS 205A Part 3. Spaces with special properties

SOLUTIONS TO EXERCISES FOR MATHEMATICS 205A Part 3 Fall 2008 III. Spaces with special properties III.1 : Compact spaces I Problems from Munkres, 26, pp. 170 172 3. Show that a finite union of compact subspaces

### BOUNDARY EDGE DOMINATION IN GRAPHS

BULLETIN OF THE INTERNATIONAL MATHEMATICAL VIRTUAL INSTITUTE ISSN (p) 0-4874, ISSN (o) 0-4955 www.imvibl.org /JOURNALS / BULLETIN Vol. 5(015), 197-04 Former BULLETIN OF THE SOCIETY OF MATHEMATICIANS BANJA

### On an algorithm for classification of binary self-dual codes with minimum distance four

Thirteenth International Workshop on Algebraic and Combinatorial Coding Theory June 15-21, 2012, Pomorie, Bulgaria pp. 105 110 On an algorithm for classification of binary self-dual codes with minimum

### Orthogonal Projections

Orthogonal Projections and Reflections (with exercises) by D. Klain Version.. Corrections and comments are welcome! Orthogonal Projections Let X,..., X k be a family of linearly independent (column) vectors

### Stationary random graphs on Z with prescribed iid degrees and finite mean connections

Stationary random graphs on Z with prescribed iid degrees and finite mean connections Maria Deijfen Johan Jonasson February 2006 Abstract Let F be a probability distribution with support on the non-negative