SEISMIC DESIGN CRITERIA FOR R.C. STRUCTURES IN SAUDI ARABIA: WHY DIFFERENT FROM THE UBC AND ACI REQUIREMENTS

Size: px
Start display at page:

Download "SEISMIC DESIGN CRITERIA FOR R.C. STRUCTURES IN SAUDI ARABIA: WHY DIFFERENT FROM THE UBC AND ACI REQUIREMENTS"

Transcription

1 SEISMIC DESIGN CRITERIA FOR R.C. STRUCTURES IN SAUDI ARABIA: WHY DIFFERENT FROM THE UBC AND ACI REQUIREMENTS Abdulrahim M. Arafah, Mohammed S. Al-Haddad, and Rajeh Z. Al-Zaid Associate Professors, Civil Engineering Department, College of Engineering, King Saud University, Riyadh ABSTRACT: This paper presents the major differences between in the design criteria that recommended for the Kingdom and those required by the Uniform building Code and ACI 318M design code. These differences are classified to analytical and design aspects. The reasons of these differences are attributed to reliability, economical and quality aspects. The recommended deviations are intended to increase the structural reliability, strength, ductility and integrity. 1. INTRODUCTION Recently, there has been an increasing concern about the seismic activity along the western coast of the Kingdom. Several studies were conducted to estimate the level of the seismic risk in the Kingdom [1,2] and develop rational design criteria for reinforced concrete structures [3]. The seismic hazard analysis for the Kingdom was performed [1,2]. A zonation map, as shown in Fig. 1, was developed for the Kingdom based on the peak ground acceleration, PGA, values calculated for 50 years service lifetime with 10% probability of being exceeded. Figure 1. Seismic Zonation Map for the Kingdom [1,2]

2 Following the Uniform Building Code (UBC 1991) model [4], the Kingdom was divided into four zones with seismic zone numbers (SZN) of 0, 1, 2A and 2B as shown in Table 1. The framework of ACI 318M-95 [5] code was adopted for the design of reinforced concrete structures in the Kingdom [3]. This paper highlights the reasons why the design criteria recommended for the Kingdom are different from those required by the UBC [4] and ACI318M [5] design codes. Table 1 : Seismic Zone Number (SZN) and Corresponding PGA According to UBC [4] SZN 0 1 2A 2B PGA in g's < to to and above 2. DIFFERENCES IN ANALYSIS ASPECTS According to the UBC [4], the minimum design base shear, V, is calculated from, V ZIC = W (1) R w where Z is the seismic zone factor, I is the importance factor, R w is the system performance factor and W is the total seismic dead load. The factor C is a numerical factor which depends on the at site soil characteristics and the fundamental period of the structure. The proposed criteria [1,2] involved two modifications to this formula as explained in the following. 2.1 Earthquake Risk level According to the ACI 318M [5] table number R21.2.1, the zones of SZN = 0 and 1 are considered of no and low risk levels, respectively. The zones of SZN = 2A and 2B are considered as areas with moderate risk level whereas the zones of SZN = 3 and 4 are considered to be high seismic risk areas. Thus according to the seismic zonation map [1,2] most of the Kingdom regions fall in the zone of no and low risk level. Areas along the western coast, especially in the northwest and southwest are considered to be of moderate risk level. According to the ACI 318M [5] the design requirements depend on the risk and classified into three categories: special, intermediate and ordinary requirements for high, moderate, and low risk levels regardless the occupancy type. Al-Haddad et. al. [1,6] introduced the concept of seismic performance category, SPC, to identify the risk level and corresponding design requirements. The concept of SPC classifies structures according to importance (essential, special and standard) and risk level of its location as shown in Table 2 where A, B and C are corresponding to low, moderate and high risk levels as specified in ACI 318M [4]. As it is clear, the proposed modification is on the conservative side especially for essential structures.

3 Table 2 Seismic Performance Categories [1,6] SZN OC ES SP ST 2B C C B 2A B B A 1 B A A 0 A A A Note: OC is for occupancy category. ES, SP, and ST are, respectively, for essential, special, and standard occupancy categories as specified in UBC. 2.2 System Performance Factor, R w It is essential to design a reinforced concrete member with sufficient ductility to avoid brittle failure in flexure particularly for seismic resistant design. The current philosophy of seismic design of moment resisting reinforced concrete frames is based on formation of plastic hinges at the critical sections of a frame under the effect of substantial load reversals in the inelastic range. Therefore, the system performance factor, R w, in the UBC equation for the design base shear accounts for the inelastic behavior and reduces the base shear force depending upon the type of the structural system and its level of ductility. Fig. 2 shows the relationship between ductility and performance factor according to equal displacement and equal energy principles. (a) Equal displacement (b) Equal energy Figure 2 Relationship between ductility and force reduction factor

4 The proposed criteria [1,6] recommended reducing the factor R w as required in UBC 1991 [5] as shown in Table 3. This reduction means an increase in the design base shear force. In latest edition of UBC (1997) R w values are reduced to values consistent with the values proposed for the Kingdom. However the based shear equation was also modified. Table 3 System Performance Factors for Reinforced Concrete Structures [1] Structural System Lateral Load Resisting System R w (UBC) Moment Resisting Space Special MRSF (high seismic risk) 12 Frame, MRSF Intermediate MRSF (moderate seismic risk) 7 Shear Wall System Dual System Bearing Wall System Ordinary MRSF (low seismic risk) Reinforced Concrete Reinforced Masonry Concrete with Special MRSF Concrete with Intermediate MRSF Reinforced Concrete Reinforced Masonry Rw (KSA) The modifications in the criteria of the seismic risk level and the system performance factor are attributed to (1) reliability, (2) economical, and (3) quality aspects. A brief discussion of these aspects is presented here after. 1. High uncertainties associated with seismic hazard assessment involved in the development of the zonation map. This is mainly attributed to limited information on seismotictonics, past seismic activity, and ground attenuation in the Kingdom. 2. In the Kingdom, it is usually recommended to be on the safe side and increase the safety margin in the design process even though this will slightly increase the initial cost of the structural system. This mainly attributed the fact that structural repair and rehabilitation is very costly process in the Kingdom. 3. The quality control and quality assurance programs in the Kingdom are far behind those in the industrial countries. Majority of designers and contractors do not pay enough attention to the design and construction details. Therefore, such unacceptable low levels of practice adversely affect the structural strength, ductility, and integrity.

5 3. DIFFERENCES IN DESIGN ASPECTS 3.1 Flexural Design for Moderate Risk Levels To ensure that the failure of reinforced concrete beams is initiated and proceeded by yielding of tensile steel, the ACI 318M, Section for non-seismic conditions limits the maximum tensile reinforcement ratio (ρ ρ') to be not more than 0.75 ρ b where ρ, ρ, and ρ b are the tension, compression and balanced reinforcement ratios, respectively. Reinforced concrete sections at the flexural limit state may fail by concrete crushing even when they are reinforced below the maximum reinforcement ratio specified by the ACI Code [5]. One of the factors contributing to this uncertainty is the variability of the strength of concrete and reinforcing steel. The margin provided by the ACI criterion for maximum reinforcement ratio does not ensure a ductile failure especially when the mean-to-nominal ratio of yield strength, λs, is high. In the Kingdom two types of concrete can be identified: the ready-mix (RM) concrete and the at-site mechanically-mixed (SM) concrete. Arafah [7], estimated the statistics of RM concrete and the SM concrete under the prevailing concreting practices in the Kingdom. The results from 636 strength tests on RM concrete indicated that mean-to-nominal ratio of concrete strength, λc, and the strength coefficient of variation, Vc, are about 1.0 and 20 percent respectively, and the strength is well represented by the normal distribution. The results of 45 strength tests on SM concrete indicated that λc and Vc are about 0.85 and 40 percent respectively, and concrete strength is well represented by the log-normal distribution. Al-Behairi [8] investigated the probabilistic characteristics of steel bars produced by the Saudi Steel and Iron Company through the bar quenching process. It was concluded that the mean-to-nominal yield strength of reinforcing steel, λs, and the strength coefficient of variation, Vs, are 1.34 and 4.3 percent respectively. The yield strength is found to be well represented by the normal distribution function. Since, the mean yield strength of Saudi steel is higher than its nominal value (420 MPa) and the mean compressive strength of saudi concrete is lower than its nominal value, it is recommended to replace the nominal strengths by their respective mean values [9]. The modified balanced reinforcement ratio, ρ b, becomes, ρ b (2)!خطا = where ' f c and fy are the nominal compressive strength of concrete and nominal yield strength of reinforcing steel, and λc is the mean-to-nominal ratio for concrete which is about 1.0 and 0.85 for RM and SM concretes, respectively. The mean-to-nominal ratio for Saudi steel, λs, is about This approach reduces the value of balanced reinforcement ratio and increases the ductility of reinforced concrete beams.

6 As an alternative approach, the nominal values for the concrete and reinforcement strengths can be employed in the ρb equation as specified in ACI 318M [4] and limit the maximum ratios of (ρ ρ')/ρb to about 0.6 and 0.4 for RM and SM concretes, respectively [9]. 3.2 Seismic Design for High Seismic Risk The current philosophy of seismic design of moment resisting reinforced concrete frames, in high seismic risk regions, is based on formation of plastic hinges at the critical sections of a frame under the effect of substantial load reversals in the inelastic range. The approach is known as the Capacity Design Procedure. The following features characterize the capacity design procedure [10]: 1. Potential plastic hinge regions within the structure are clearly defined. These are designed to have dependable flexural strengths as close as practicable to the required strength. Subsequently, these regions are carefully detailed to ensure that estimated ductility demands in these regions can be reliably accommodated. This is achieved primarily by close-spaced and well-anchored transverse reinforcement. 2. Undesirable modes of inelastic deformation within members containing plastic hinges are inhibited by ensuring that the strengths of these modes exceeds the capacity of the plastic hinges at over-strength. 3. Potentially brittle regions, or those components not suited for stable energy dissipation, are protected by ensuring that their strength exceeds the demands originating from the over-strength of the plastic hinges. Therefore, these regions are designed to remain elastic irrespective of the intensity of the ground shaking or the magnitudes of inelastic deformations that may occur. The sequence of capacity design process includes: beam flexural design, beam shear design, column flexural strength, transverse reinforcement for columns, and beam-column joint design. It should be noted that only for the case of beam flexural design will design actions correspond to the code level of lateral seismic forces. For beam shear and all column design actions, the design forces are calculated on the assumption of beam plastic hinge sections developing maximum feasible flexural strength using simple equilibrium relationships. To ensure that the plastic hinges form at the ends of beams rather than in columns, ACI 318M design code requires that the sum of flexural strength of columns at any joint shall be 20 percent larger than that for beams connected to the same joint. Fig. 3a shows the energydissipating mechanism employing capacity design procedure and Fig. 3b shows a mechanism in which the plastic hinges formed in the columns causing the undesirable soft story mode of failure.

7 Figure 3 Comparison of energy-dissipation mechanisms Shear Reinforcement in Beams and Columns: ACI 318M-95 [4], Section , requires that compressive strength f c ' of the concrete shall be not less than 20 MPa. Therefore, SM concrete should not be permitted for structures with C performance category. ACI 318M-95, Section , requires that (a) the actual yield strength based on mill tests does not exceed the specified yield strength by more than 120 MPa, and (b) the ratio of the actual ultimate tensile strength to the actual tensile yield strength is not less than These two conditions are not met by the steel produced by Saudi Steel and Iron Company [8]. The first requirement limits the magnitude of the actual shears that can develop in a flexural member in the inelastic range. Use of longitudinal reinforcement with strength substantially higher than that assumed in design will lead to higher shear and bond stresses at yield moments. These conditions may lead to brittle failures in shear or bond and should be avoided even if such failures may occur at higher loads than those anticipated in design. Therefore, a ceiling is placed on the actual yield strength of the steel. The second requirement is intended to ensure steel with a sufficiently long yield plateau. ACI 318M, Sections and requires using a factor of 1.25 for the reinforcement yield strength, fy, in calculating the design forces for shear strength of beams and columns. same factor for the joint design. Knowing that the mean to nominal value of U.S. steel is about 1.12, this factor from the statistical point of view means replacing the nominal value of yield strength, which is about the 5 th percentile of the strength distribution, with the 95 th percentile. This reduces the probability of exceeding the design strength by not more than 5 percent. When the same philosophy is employed to the Saudi reinforcing steel the factor 1.25 shall be increased to Design of Joints: ACI 318M, Section specifies that forces in longitudinal beam reinforcement at the joint face shall be determined by assuming that the stress in the flexural tensile reinforcement is 1.25f y. consequently, joint shear forces generated by flexural reinforcement is calculated. To account for the high mean to nominal

8 ratio of Saudi steel, it is recommended to increase the design yield strength 1.25 f y specified by ACI code for seismic design of shear to 1.5 f y.. ACI 318M, Section , requires that where longitudinal beam reinforcement extends through a beam-column joint, the column dimension parallel to the beam reinforcement shall not be less than 20 times the diameter of the largest longitudinal bar, i.e., d h column beambar 20 hbeam and 20 d columnbar (3) In the Kingdom, it is recommended to increase the factor of 20 to 25 to account for the large mean to nominal ratio of the Saudi reinforcing steel. This condition increases the depth requirements for both columns and beams of the frame system Development Length of Bars in Tension: ACI 318M, Section requires that the development length l dh for a bar with a standard 90-deg hook shall not be less than 8d b, 150 mm, and the length required by f y d b l = (4) dh ' 5.4 f c for bar sizes No. 10 through No. 36. In the Kingdom the factor 5.4 should be reduced to 4.5. This will increase the development length to account for the high mean to nominal ratio of the Saudi reinforcing steel. 4. CONCLUSIONS This paper presents the major differences between the design criteria recommended for the Kingdom and those required by the Uniform building Code and ACI 318M design code. These differences include, 1. The design requirements are based on the concept of seismic performance category rather than the zone factor. 2. The system performance factor in the UBC base shear equation is reduced which means an increase in the design base shear force. 3. For flexural design under moderate seismic risk, the maximum tension reinforcement ratio is reduced to account for high yield strength in the Kingdom and improve flexural ductility. 4. In structures with C performance category, at-site mechanically mixed concrete is not permitted. 5. The design yield strength of 1.25 f y employed by the ACI Code for seismic design is increased to 1.5 f y to account for the high mean yield strength of the Saudi reinforcing steel. This factor is applied for the design of shear in beams and columns, design of joints and calculation of development length of bars in tension. 6. The column dimension parallel to the beam longitudinal reinforcement shall not be less than 25 times the diameter of the largest longitudinal bar instead of The factor 5.4 in the equation of development length for a bar with a 90-deg standard hook as specified in ACI code should be reduced to 4.5. This will increase the development length to account for the high mean yield strength of the Saudi reinforcing steel.

9 These differences were attributed to reliability, economical, and quality aspects. They account for the properties of concrete and reinforcing steel produced in the Kingdom. These modifications are intended to increase the structural strength, ductility and integrity. Acknowledgement This paper is part of a study sponsored by King Abdul-Aziz City for Science and Technology under grand number AR The authors would like to express their thanks and appreciation for this support. References [1] AL-Haddad, M., Siddiqi, G.S., Al-Zaid, R., Arafah, A., Necioglu, A., and Turkelli, N., " A Study Leading to a Preliminary Seismic Design Criteria, for the Kindom," Final Report, KACST project No. AR-9-31, Riyadh, [2] Al-Haddad, M., Siddiqi, G.S., Al-Zaid, R., Arafah, A., Necioglu, A., and Turkelli, N., A Basis for Evaluation of Seismic Hazard and Design Criteria for Saudi Arabia, Journal of Earthquake Engineering Research Institute, EERI, Spectra, Vol. 10, No. 2, May 1994, Okland, California. [3] Al-Zaid, R., Arafah, A. M., AL-Haddad, M., Siddiqi, G. H., and Al-Sulimani, G., "Development of a National Design Code for RC Buildings -Phase II," Third Progress Report, KACST Project No. AR-12-58, Riyadh, 1994, 206 pp. [4] "Uniform Building Code", International Conference of Building Officials, California, USA, [5] ACI Committee 318, "Building Code Requirements for Reinforced Concrete (ACI 318M- 95) and Commentary ACI 318M", American Concrete Institute, Farmington Hill,,1989, 353 pp. [6] ] Al-Haddad, M., Siddiqi, G.S., Seismic Design Recommendations for Building Structures in Saudi Arabia, Journal of King Saud University Engineering Science [1], Vol. 7, pp , Riyadh, [7] Arafah, A. M., "Statistics for Concrete and Steel Quality in Saudi Arabia," Magazine of Concrete Research, London, Vol. 49, No. 180, September 1997, pp [8] Al-Behairi, S., "Mechanical Properties of Saudi Rebar and their Effect on Behavior of RC Members," Master Thesis, Civil Engineering Department, College of Engineering, KSU, Riyadh, November [9] Al-Nufaie, A., "Probabilistic Study of Brittle Flexural Failure in R.C. Beams Employing Saudi Materials," Master Thesis, Civil Engineering Department, College of Engineering, KSU, Riyadh, November [10] Pauley, T. and Priestly, M., Seismic Design of Reinforced Concrete and Masonry Buildings. John Wiley and Sons, Inc., N.Y., 1995.

SEISMIC DESIGN. Various building codes consider the following categories for the analysis and design for earthquake loading:

SEISMIC DESIGN. Various building codes consider the following categories for the analysis and design for earthquake loading: SEISMIC DESIGN Various building codes consider the following categories for the analysis and design for earthquake loading: 1. Seismic Performance Category (SPC), varies from A to E, depending on how the

More information

Reinforced Concrete Design

Reinforced Concrete Design FALL 2013 C C Reinforced Concrete Design CIVL 4135 ii 1 Chapter 1. Introduction 1.1. Reading Assignment Chapter 1 Sections 1.1 through 1.8 of text. 1.2. Introduction In the design and analysis of reinforced

More information

SEISMIC DESIGN PROVISIONS FOR PRECAST CONCRETE STRUCTURES. S.K. Ghosh, Ph. D. President S.K. Ghosh Associates Inc. Northbrook, IL BACKGROUND

SEISMIC DESIGN PROVISIONS FOR PRECAST CONCRETE STRUCTURES. S.K. Ghosh, Ph. D. President S.K. Ghosh Associates Inc. Northbrook, IL BACKGROUND SEISMIC DESIGN PROVISIONS FOR PRECAST CONCRETE STRUCTURES S.K. Ghosh, Ph. D. President S.K. Ghosh Associates Inc. Northbrook, IL BACKGROUND Until recently, precast concrete structures could be built in

More information

Modern Codes for Design of Concrete Concrete Structures Presentation Outline

Modern Codes for Design of Concrete Concrete Structures Presentation Outline Modern Codes for Design of Concrete Structures James K. Wight F.E. Richart, Jr. Professor of Civil Eng. University of Michigan Presentation Outline Current Codes Where did they come from? What is their

More information

REVISION OF GUIDELINE FOR POST- EARTHQUAKE DAMAGE EVALUATION OF RC BUILDINGS IN JAPAN

REVISION OF GUIDELINE FOR POST- EARTHQUAKE DAMAGE EVALUATION OF RC BUILDINGS IN JAPAN 10NCEE Tenth U.S. National Conference on Earthquake Engineering Frontiers of Earthquake Engineering July 21-25, 2014 Anchorage, Alaska REVISION OF GUIDELINE FOR POST- EARTHQUAKE DAMAGE EVALUATION OF RC

More information

IMPROVING THE STRUT AND TIE METHOD BY INCLUDING THE CONCRETE SOFTENING EFFECT

IMPROVING THE STRUT AND TIE METHOD BY INCLUDING THE CONCRETE SOFTENING EFFECT International Journal of Civil Engineering and Technology (IJCIET) Volume 7, Issue 2, March-April 2016, pp. 117 127, Article ID: IJCIET_07_02_009 Available online at http://www.iaeme.com/ijciet/issues.asp?jtype=ijciet&vtype=7&itype=2

More information

Requirements for the Use of PRESSS Moment-Resisting Frame Systems

Requirements for the Use of PRESSS Moment-Resisting Frame Systems Requirements for the Use of PRESSS Moment-Resisting Frame Systems Neil M. Hawkins, Ph.D. Professor Emeritus Department of Civil Engineering University of Illinois at Urbana-Champaign Urbana, Illinois S.

More information

Seismic Risk Prioritization of RC Public Buildings

Seismic Risk Prioritization of RC Public Buildings Seismic Risk Prioritization of RC Public Buildings In Turkey H. Sucuoğlu & A. Yakut Middle East Technical University, Ankara, Turkey J. Kubin & A. Özmen Prota Inc, Ankara, Turkey SUMMARY Over the past

More information

Cover. When to Specify Intermediate Precast Concrete Shear Walls. 10.10 Rev 4. White Paper WP004

Cover. When to Specify Intermediate Precast Concrete Shear Walls. 10.10 Rev 4. White Paper WP004 Cover Introduction In regard to precast concrete systems, the addition of two new categories of Seismic Force Resisting Systems (SFRS) in IBC 2006 has created some confusion about whether to specify intermediate

More information

SPECIFICATIONS, LOADS, AND METHODS OF DESIGN

SPECIFICATIONS, LOADS, AND METHODS OF DESIGN CHAPTER Structural Steel Design LRFD Method Third Edition SPECIFICATIONS, LOADS, AND METHODS OF DESIGN A. J. Clark School of Engineering Department of Civil and Environmental Engineering Part II Structural

More information

PERFORMANCE BASED SEISMIC EVALUATION AND RETROFITTING OF UNSYMMETRICAL MEDIUM RISE BUILDINGS- A CASE STUDY

PERFORMANCE BASED SEISMIC EVALUATION AND RETROFITTING OF UNSYMMETRICAL MEDIUM RISE BUILDINGS- A CASE STUDY Paper No. 682 PERFORMANCE BASED SEISMIC EVALUATION AND RETROFITTING OF UNSYMMETRICAL MEDIUM RISE BUILDINGS- A CASE STUDY Jimmy Chandra, Pennung Warnitchai, Deepak Rayamajhi, Naveed Anwar and Shuaib Ahmad

More information

EVALUATION OF SEISMIC RESPONSE - FACULTY OF LAND RECLAMATION AND ENVIRONMENTAL ENGINEERING -BUCHAREST

EVALUATION OF SEISMIC RESPONSE - FACULTY OF LAND RECLAMATION AND ENVIRONMENTAL ENGINEERING -BUCHAREST EVALUATION OF SEISMIC RESPONSE - FACULTY OF LAND RECLAMATION AND ENVIRONMENTAL ENGINEERING -BUCHAREST Abstract Camelia SLAVE University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59 Marasti

More information

Seismic performance evaluation of an existing school building in Turkey

Seismic performance evaluation of an existing school building in Turkey CHALLENGE JOURNAL OF STRUCTURAL MECHANICS 1 (4) (2015) 161 167 Seismic performance evaluation of an existing school building in Turkey Hüseyin Bilgin * Department of Civil Engineering, Epoka University,

More information

Miss S. S. Nibhorkar 1 1 M. E (Structure) Scholar,

Miss S. S. Nibhorkar 1 1 M. E (Structure) Scholar, Volume, Special Issue, ICSTSD Behaviour of Steel Bracing as a Global Retrofitting Technique Miss S. S. Nibhorkar M. E (Structure) Scholar, Civil Engineering Department, G. H. Raisoni College of Engineering

More information

bi directional loading). Prototype ten story

bi directional loading). Prototype ten story NEESR SG: Behavior, Analysis and Design of Complex Wall Systems The laboratory testing presented here was conducted as part of a larger effort that employed laboratory testing and numerical simulation

More information

Technical Notes 3B - Brick Masonry Section Properties May 1993

Technical Notes 3B - Brick Masonry Section Properties May 1993 Technical Notes 3B - Brick Masonry Section Properties May 1993 Abstract: This Technical Notes is a design aid for the Building Code Requirements for Masonry Structures (ACI 530/ASCE 5/TMS 402-92) and Specifications

More information

Prepared For San Francisco Community College District 33 Gough Street San Francisco, California 94103. Prepared By

Prepared For San Francisco Community College District 33 Gough Street San Francisco, California 94103. Prepared By Project Structural Conditions Survey and Seismic Vulnerability Assessment For SFCC Civic Center Campus 750 Eddy Street San Francisco, California 94109 Prepared For San Francisco Community College District

More information

SEISMIC APPROACH DESIGN COMPARISON BETWEEN

SEISMIC APPROACH DESIGN COMPARISON BETWEEN IABSE ANNUAL MEETING, LONDON, 19 TH SEPTEMBER 2011 SEISMIC APPROACH DESIGN COMPARISON BETWEEN IBC AND ITALIAN DM2008 Ing. Luca Zanaica Senior Structural Engineer Ing. Francesco Caobianco Senior Structural

More information

SEISMIC RETROFITTING OF STRUCTURES

SEISMIC RETROFITTING OF STRUCTURES SEISMIC RETROFITTING OF STRUCTURES RANJITH DISSANAYAKE DEPT. OF CIVIL ENGINEERING, FACULTY OF ENGINEERING, UNIVERSITY OF PERADENIYA, SRI LANKA ABSTRACT Many existing reinforced concrete structures in present

More information

ANALYSIS FOR BEHAVIOR AND ULTIMATE STRENGTH OF CONCRETE CORBELS WITH HYBRID REINFORCEMENT

ANALYSIS FOR BEHAVIOR AND ULTIMATE STRENGTH OF CONCRETE CORBELS WITH HYBRID REINFORCEMENT International Journal of Civil Engineering and Technology (IJCIET) Volume 6, Issue 10, Oct 2015, pp. 25-35 Article ID: IJCIET_06_10_003 Available online at http://www.iaeme.com/ijciet/issues.asp?jtype=ijciet&vtype=6&itype=10

More information

Optimum proportions for the design of suspension bridge

Optimum proportions for the design of suspension bridge Journal of Civil Engineering (IEB), 34 (1) (26) 1-14 Optimum proportions for the design of suspension bridge Tanvir Manzur and Alamgir Habib Department of Civil Engineering Bangladesh University of Engineering

More information

DESIGN OF SLABS. 3) Based on support or boundary condition: Simply supported, Cantilever slab,

DESIGN OF SLABS. 3) Based on support or boundary condition: Simply supported, Cantilever slab, DESIGN OF SLABS Dr. G. P. Chandradhara Professor of Civil Engineering S. J. College of Engineering Mysore 1. GENERAL A slab is a flat two dimensional planar structural element having thickness small compared

More information

Concrete Design Manual

Concrete Design Manual The Reinforced Concrete Design Manual In Accordance with ACI 318-11 SP-17(11) Vol 2 ACI SP-17(11) Volume 2 THE REINFORCED CONCRETE DESIGN MANUAL in Accordance with ACI 318-11 Anchoring to concrete Publication:

More information

Untopped Precast Concrete Diaphragms in High-Seismic Applications. Ned M. Cleland, Ph.D., P.E. President Blue Ridge Design, Inc. Winchester, Virginia

Untopped Precast Concrete Diaphragms in High-Seismic Applications. Ned M. Cleland, Ph.D., P.E. President Blue Ridge Design, Inc. Winchester, Virginia Untopped Precast Concrete Diaphragms in High-Seismic Applications Ned M. Cleland, Ph.D., P.E. President Blue Ridge Design, Inc. Winchester, Virginia S. K. Ghosh, Ph.D. President S. K. Ghosh Associates,

More information

Draft Table of Contents. Building Code Requirements for Structural Concrete and Commentary ACI 318-14

Draft Table of Contents. Building Code Requirements for Structural Concrete and Commentary ACI 318-14 Draft Table of Contents Building Code Requirements for Structural Concrete and Commentary ACI 318-14 BUILDING CODE REQUIREMENTS FOR STRUCTURAL CONCRETE (ACI 318 14) Chapter 1 General 1.1 Scope of ACI 318

More information

Basics of Reinforced Concrete Design

Basics of Reinforced Concrete Design Basics of Reinforced Concrete Design Presented by: Ronald Thornton, P.E. Define several terms related to reinforced concrete design Learn the basic theory behind structural analysis and reinforced concrete

More information

Seismic design of beam-column joints in RC moment resisting frames Review of codes

Seismic design of beam-column joints in RC moment resisting frames Review of codes Structural Engineering and Mechanics, Vol. 23, No. 5 (2006) 579-597 579 Technical Report Seismic design of beam-column joints in RC moment resisting frames Review of codes S. R. Uma Department of Civil

More information

USE OF CFRP LAMINATES FOR STRENGTHENING OF REINFORCED CONCRETE CORBELS

USE OF CFRP LAMINATES FOR STRENGTHENING OF REINFORCED CONCRETE CORBELS International Journal of Civil Engineering and Technology (IJCIET) Volume 6, Issue 11, Nov 2015, pp. 11-20, Article ID: IJCIET_06_11_002 Available online at http://www.iaeme.com/ijciet/issues.asp?jtype=ijciet&vtype=6&itype=11

More information

DEVELOPMENT OF A NEW TEST FOR DETERMINATION OF TENSILE STRENGTH OF CONCRETE BLOCKS

DEVELOPMENT OF A NEW TEST FOR DETERMINATION OF TENSILE STRENGTH OF CONCRETE BLOCKS 1 th Canadian Masonry Symposium Vancouver, British Columbia, June -5, 013 DEVELOPMENT OF A NEW TEST FOR DETERMINATION OF TENSILE STRENGTH OF CONCRETE BLOCKS Vladimir G. Haach 1, Graça Vasconcelos and Paulo

More information

DESIGN OF SLABS. Department of Structures and Materials Engineering Faculty of Civil and Environmental Engineering University Tun Hussein Onn Malaysia

DESIGN OF SLABS. Department of Structures and Materials Engineering Faculty of Civil and Environmental Engineering University Tun Hussein Onn Malaysia DESIGN OF SLABS Department of Structures and Materials Engineering Faculty of Civil and Environmental Engineering University Tun Hussein Onn Malaysia Introduction Types of Slab Slabs are plate elements

More information

SEISMIC ANALYSIS AND RETROFITTING OF R.C.C STRUCTURE

SEISMIC ANALYSIS AND RETROFITTING OF R.C.C STRUCTURE International Journal of Advanced Research in Biology Engineering Science and Technology (IJARBEST) Vol., Issue, April 1 SEISMIC ANALYSIS AND RETROFITTING OF R.C.C STRUCTURE M.R.NAVANEETHA KRISHNAN 1,

More information

SECTION 3 DESIGN OF POST TENSIONED COMPONENTS FOR FLEXURE

SECTION 3 DESIGN OF POST TENSIONED COMPONENTS FOR FLEXURE SECTION 3 DESIGN OF POST TENSIONED COMPONENTS FOR FLEXURE DEVELOPED BY THE PTI EDC-130 EDUCATION COMMITTEE LEAD AUTHOR: TREY HAMILTON, UNIVERSITY OF FLORIDA NOTE: MOMENT DIAGRAM CONVENTION In PT design,

More information

SEISMIC CAPACITY OF EXISTING RC SCHOOL BUILDINGS IN OTA CITY, TOKYO, JAPAN

SEISMIC CAPACITY OF EXISTING RC SCHOOL BUILDINGS IN OTA CITY, TOKYO, JAPAN SEISMIC CAPACITY OF EXISTING RC SCHOOL BUILDINGS IN OTA CITY, TOKYO, JAPAN Toshio OHBA, Shigeru TAKADA, Yoshiaki NAKANO, Hideo KIMURA 4, Yoshimasa OWADA 5 And Tsuneo OKADA 6 SUMMARY The 995 Hyogoken-nambu

More information

CSA S16-09 Design of Steel Structures Canada

CSA S16-09 Design of Steel Structures Canada CSA S16-09 Design of Steel Structures Canada Ed Whalen, P.Eng CISC President CSA S16-09 1 CSA Standard S16-09 Standard, Design of Steel Structures. Sets out minimum requirements used by engineers in the

More information

Seismic Risk Evaluation of a Building Stock and Retrofit Prioritization

Seismic Risk Evaluation of a Building Stock and Retrofit Prioritization Seismic Risk Evaluation of a Building Stock and Retrofit Prioritization Seismic risk assessment of large building stocks can be conducted at various s depending on the objectives, size of the building

More information

SEISMIC RETROFIT DESIGN CRITERIA

SEISMIC RETROFIT DESIGN CRITERIA SEISMIC RETROFIT DESIGN CRITERIA British Columbia Ministry of Transportation June 30, 2005 Prepared by: Recommended by: Approved by: Don Kennedy, P.Eng., Associated Engineering (BC) Sharlie Huffman, P.

More information

SEISMIC RETROFITTING TECHNIQUE USING CARBON FIBERS FOR REINFORCED CONCRETE BUILDINGS

SEISMIC RETROFITTING TECHNIQUE USING CARBON FIBERS FOR REINFORCED CONCRETE BUILDINGS Fracture Mechanics of Concrete Structures Proceedings FRAMCOS-3 AEDIFICA TIO Publishers, D-79104 Freiburg, Germany SEISMIC RETROFITTING TECHNIQUE USING CARBON FIBERS FOR REINFORCED CONCRETE BUILDINGS H.

More information

SECTION 3 DESIGN OF POST- TENSIONED COMPONENTS FOR FLEXURE

SECTION 3 DESIGN OF POST- TENSIONED COMPONENTS FOR FLEXURE SECTION 3 DESIGN OF POST- TENSIONED COMPONENTS FOR FLEXURE DEVELOPED BY THE PTI EDC-130 EDUCATION COMMITTEE LEAD AUTHOR: TREY HAMILTON, UNIVERSITY OF FLORIDA NOTE: MOMENT DIAGRAM CONVENTION In PT design,

More information

1.054/1.541 Mechanics and Design of Concrete Structures (3-0-9) Outline 1 Introduction / Design Criteria for Reinforced Concrete Structures

1.054/1.541 Mechanics and Design of Concrete Structures (3-0-9) Outline 1 Introduction / Design Criteria for Reinforced Concrete Structures Prof. Oral Buyukozturk Massachusetts Institute of Technology Outline 1 1.054/1.541 Mechanics and Design of Concrete Structures (3-0-9) Outline 1 Introduction / Design Criteria for Reinforced Concrete Structures

More information

16. Beam-and-Slab Design

16. Beam-and-Slab Design ENDP311 Structural Concrete Design 16. Beam-and-Slab Design Beam-and-Slab System How does the slab work? L- beams and T- beams Holding beam and slab together University of Western Australia School of Civil

More information

BEHAVIOR OF SHORT CONCRETE COLUMNS REINFORCED BY CFRP BARS AND SUBJECTED TO ECCENTRIC LOAD

BEHAVIOR OF SHORT CONCRETE COLUMNS REINFORCED BY CFRP BARS AND SUBJECTED TO ECCENTRIC LOAD International Journal of Civil Engineering and Technology (IJCIET) Volume 6, Issue 10, Oct 2015, pp. 15-24 Article ID: IJCIET_06_10_002 Available online at http://www.iaeme.com/ijciet/issues.asp?jtype=ijciet&vtype=6&itype=10

More information

Design of reinforced concrete columns. Type of columns. Failure of reinforced concrete columns. Short column. Long column

Design of reinforced concrete columns. Type of columns. Failure of reinforced concrete columns. Short column. Long column Design of reinforced concrete columns Type of columns Failure of reinforced concrete columns Short column Column fails in concrete crushed and bursting. Outward pressure break horizontal ties and bend

More information

Chapter 3 DESIGN AND CONSTRUCTION FEATURES IMPORTANT TO SEISMIC PERFORMANCE

Chapter 3 DESIGN AND CONSTRUCTION FEATURES IMPORTANT TO SEISMIC PERFORMANCE Chapter 3 DESIGN AND CONSTRUCTION FEATURES IMPORTANT TO SEISMIC PERFORMANCE To satisfy the performance goals of the NEHRP Recommended Seismic Provisions, a number of characteristics are important to the

More information

Detailing of Reinforcment in Concrete Structures

Detailing of Reinforcment in Concrete Structures Chapter 8 Detailing of Reinforcment in Concrete Structures 8.1 Scope Provisions of Sec. 8.1 and 8.2 of Chapter 8 shall apply for detailing of reinforcement in reinforced concrete members, in general. For

More information

ETABS. Integrated Building Design Software. Concrete Frame Design Manual. Computers and Structures, Inc. Berkeley, California, USA

ETABS. Integrated Building Design Software. Concrete Frame Design Manual. Computers and Structures, Inc. Berkeley, California, USA ETABS Integrated Building Design Software Concrete Frame Design Manual Computers and Structures, Inc. Berkeley, California, USA Version 8 January 2002 Copyright The computer program ETABS and all associated

More information

INTRODUCTION TO BEAMS

INTRODUCTION TO BEAMS CHAPTER Structural Steel Design LRFD Method INTRODUCTION TO BEAMS Third Edition A. J. Clark School of Engineering Department of Civil and Environmental Engineering Part II Structural Steel Design and Analysis

More information

The following sketches show the plans of the two cases of one-way slabs. The spanning direction in each case is shown by the double headed arrow.

The following sketches show the plans of the two cases of one-way slabs. The spanning direction in each case is shown by the double headed arrow. 9.2 One-way Slabs This section covers the following topics. Introduction Analysis and Design 9.2.1 Introduction Slabs are an important structural component where prestressing is applied. With increase

More information

Performance-based Evaluation of the Seismic Response of Bridges with Foundations Designed to Uplift

Performance-based Evaluation of the Seismic Response of Bridges with Foundations Designed to Uplift Performance-based Evaluation of the Seismic Response of Bridges with Foundations Designed to Uplift Marios Panagiotou Assistant Professor, University of California, Berkeley Acknowledgments Pacific Earthquake

More information

DESIGN SPECIFICATIONS FOR HIGHWAY BRIDGES PART V SEISMIC DESIGN

DESIGN SPECIFICATIONS FOR HIGHWAY BRIDGES PART V SEISMIC DESIGN DESIGN SPECIFICATIONS FOR HIGHWAY BRIDGES PART V SEISMIC DESIGN MARCH 2002 CONTENTS Chapter 1 General... 1 1.1 Scope... 1 1.2 Definition of Terms... 1 Chapter 2 Basic Principles for Seismic Design... 4

More information

PROHITECH WP3 (Leader A. IBEN BRAHIM) A short Note on the Seismic Hazard in Israel

PROHITECH WP3 (Leader A. IBEN BRAHIM) A short Note on the Seismic Hazard in Israel PROHITECH WP3 (Leader A. IBEN BRAHIM) A short Note on the Seismic Hazard in Israel Avigdor Rutenberg and Robert Levy Technion - Israel Institute of Technology, Haifa 32000, Israel Avi Shapira International

More information

AN IMPROVED SEISMIC DESIGN APPROACH FOR TWO-COLUMN REINFORCED CONCRETE BENTS OVER FLEXIBLE FOUNDATIONS WITH PREDEFINED DAMAGE LEVELS

AN IMPROVED SEISMIC DESIGN APPROACH FOR TWO-COLUMN REINFORCED CONCRETE BENTS OVER FLEXIBLE FOUNDATIONS WITH PREDEFINED DAMAGE LEVELS AN IMPROVED SEISMIC DESIGN APPROACH FOR TWO-COLUMN REINFORCED CONCRETE BENTS OVER FLEXIBLE FOUNDATIONS WITH PREDEFINED DAMAGE LEVELS ABSTRACT: T. Yılmaz 1 ve A. Caner 2 1 Araştırma Görevlisi, İnşaat Müh.

More information

Objectives. Experimentally determine the yield strength, tensile strength, and modules of elasticity and ductility of given materials.

Objectives. Experimentally determine the yield strength, tensile strength, and modules of elasticity and ductility of given materials. Lab 3 Tension Test Objectives Concepts Background Experimental Procedure Report Requirements Discussion Objectives Experimentally determine the yield strength, tensile strength, and modules of elasticity

More information

APE T CFRP Aslan 500

APE T CFRP Aslan 500 Carbon Fiber Reinforced Polymer (CFRP) Tape is used for structural strengthening of concrete, masonry or timber elements using the technique known as Near Surface Mount or NSM strengthening. Use of CFRP

More information

MODELLING OF AN INFILL WALL FOR THE ANALYSIS OF A BUILDING FRAME SUBJECTED TO LATERAL FORCE

MODELLING OF AN INFILL WALL FOR THE ANALYSIS OF A BUILDING FRAME SUBJECTED TO LATERAL FORCE International Journal of Civil Engineering and Technology (IJCIET) Volume 7, Issue 1, Jan-Feb 2016, pp. 180-187, Article ID: IJCIET_07_01_015 Available online at http://www.iaeme.com/ijciet/issues.asp?jtype=ijciet&vtype=7&itype=1

More information

Performance of Existing Reinforced Concrete Columns under Bidirectional Shear & Axial Loading

Performance of Existing Reinforced Concrete Columns under Bidirectional Shear & Axial Loading Performance of Existing Reinforced Concrete Columns under Bidirectional Shear & Axial Loading Laura M. Flores University of California, San Diego REU Institution: University of California, Berkeley REU

More information

FOUNDATION DESIGN. Instructional Materials Complementing FEMA 451, Design Examples

FOUNDATION DESIGN. Instructional Materials Complementing FEMA 451, Design Examples FOUNDATION DESIGN Proportioning elements for: Transfer of seismic forces Strength and stiffness Shallow and deep foundations Elastic and plastic analysis Foundation Design 14-1 Load Path and Transfer to

More information

ASSESSMENT AND PROPOSED STRUCTURAL REPAIR STRATEGIES FOR BRIDGE PIERS IN TAIWAN DAMAGED BY THE JI-JI EARTHQUAKE ABSTRACT

ASSESSMENT AND PROPOSED STRUCTURAL REPAIR STRATEGIES FOR BRIDGE PIERS IN TAIWAN DAMAGED BY THE JI-JI EARTHQUAKE ABSTRACT ASSESSMENT AND PROPOSED STRUCTURAL REPAIR STRATEGIES FOR BRIDGE PIERS IN TAIWAN DAMAGED BY THE JI-JI EARTHQUAKE Pei-Chang Huang 1, Graduate Research Assistant / MS Candidate Yao T. Hsu 2, Ph.D., PE, Associate

More information

Eurocode 2: Design of concrete structures

Eurocode 2: Design of concrete structures Eurocode 2: Design of concrete structures Owen Brooker, The Concrete Centre Introduction The transition to using the Eurocodes is a daunting prospect for engineers, but this needn t be the case. Industry

More information

CE591 Fall 2013 Lecture 26: Moment Connections

CE591 Fall 2013 Lecture 26: Moment Connections CE591 Fall 2013 Lecture 26: Moment Connections Explain basic design procedure for moment (FR) connections Explain considerations for connections in momentresisting frames for seismic demands Describe problems

More information

Uniaxial Compressive Strength of Cold-formed Steel Tubular Sections with Recycled Aggregate Concrete Infill

Uniaxial Compressive Strength of Cold-formed Steel Tubular Sections with Recycled Aggregate Concrete Infill Uniaxial Compressive Strength of Cold-formed Steel Tubular Sections with Recycled Aggregate Concrete Infill N.Umamaheswari 1, S. Arul Jayachandran 2 1 Associate Professor/Civil, SRM University, Kattankulathur,

More information

CH 6: Fatigue Failure Resulting from Variable Loading

CH 6: Fatigue Failure Resulting from Variable Loading CH 6: Fatigue Failure Resulting from Variable Loading Some machine elements are subjected to static loads and for such elements static failure theories are used to predict failure (yielding or fracture).

More information

Local buckling of plates made of high strength steel

Local buckling of plates made of high strength steel Local buckling of plates made of high strength steel Tapani Halmea, Lauri Huusko b,a, Gary Marquis a, Timo Björk a a Lappeenranta University of Technology, Faculty of Technology Engineering, Lappeenranta,

More information

THE EFFECT OF STIRRUPS AND HOOKED STEEL FIBERS INSTEAD ON MOMENT-ROTATION CAPACITY OF BEAM-COLUMN CONNECTIONS

THE EFFECT OF STIRRUPS AND HOOKED STEEL FIBERS INSTEAD ON MOMENT-ROTATION CAPACITY OF BEAM-COLUMN CONNECTIONS THE EFFECT OF STIRRUPS AND HOOKED STEEL FIBERS INSTEAD ON MOMENT-ROTATION CAPACITY OF BEAM-COLUMN CONNECTIONS Assist. Prof. Dr. S. KamilAkın 1, Assist. Prof. Dr. Nail Kara 1, 1 Department of Civil Engineering,

More information

EFFECT OF POSITIONING OF RC SHEAR WALLS OF DIFFERENT SHAPES ON SEISMIC PERFORMANCE OF BUILDING RESTING ON SLOPING GROUND

EFFECT OF POSITIONING OF RC SHEAR WALLS OF DIFFERENT SHAPES ON SEISMIC PERFORMANCE OF BUILDING RESTING ON SLOPING GROUND International Journal of Civil Engineering and Technology (IJCIET) Volume 7, Issue 3, May June 2016, pp. 373 384, Article ID: IJCIET_07_03_038 Available online at http://www.iaeme.com/ijciet/issues.asp?jtype=ijciet&vtype=7&itype=3

More information

1997 Uniform Administrative Code Amendment for Earthen Material and Straw Bale Structures Tucson/Pima County, Arizona

1997 Uniform Administrative Code Amendment for Earthen Material and Straw Bale Structures Tucson/Pima County, Arizona for Earthen Material and Straw Bale Structures SECTION 70 - GENERAL "APPENDIX CHAPTER 7 - EARTHEN MATERIAL STRUCTURES 70. Purpose. The purpose of this chapter is to establish minimum standards of safety

More information

NONLINEAR BEHAVIOR AND FRAGILITY ASSESSMENT OF MULTI-STORY CONFINED MASONRY WALLS UNDER CYCLIC LOADS

NONLINEAR BEHAVIOR AND FRAGILITY ASSESSMENT OF MULTI-STORY CONFINED MASONRY WALLS UNDER CYCLIC LOADS International Journal of Civil Engineering and Technology (IJCIET) Volume 7, Issue 1, Jan-Feb 216, pp. 113-127, Article ID: IJCIET_7_1_1 Available online at http://www.iaeme.com/ijciet/issues.asp?jtype=ijciet&vtype=7&itype=1

More information

EGYPTIAN CODES FOR DESIGN AND CONSTRUCTION OF BUILDINGS

EGYPTIAN CODES FOR DESIGN AND CONSTRUCTION OF BUILDINGS in the Euro-Mediterranean Area EGYPTIAN CODES FOR DESIGN AND CONSTRUCTION OF BUILDINGS By Prof. Amr Ezzat Salama Chairman of Housing, Building National Center Cairo, Egypt Former Minister of High Education

More information

Chapter Outline. Mechanical Properties of Metals How do metals respond to external loads?

Chapter Outline. Mechanical Properties of Metals How do metals respond to external loads? Mechanical Properties of Metals How do metals respond to external loads? Stress and Strain Tension Compression Shear Torsion Elastic deformation Plastic Deformation Yield Strength Tensile Strength Ductility

More information

Expected Performance Rating System

Expected Performance Rating System Expected Performance Rating System In researching seismic rating systems to determine how to best classify the facilities within the Portland Public School system, we searched out what was used by other

More information

Deflection Calculation of RC Beams: Finite Element Software Versus Design Code Methods

Deflection Calculation of RC Beams: Finite Element Software Versus Design Code Methods Deflection Calculation of RC Beams: Finite Element Software Versus Design Code Methods G. Kaklauskas, Vilnius Gediminas Technical University, 1223 Vilnius, Lithuania (gintaris.kaklauskas@st.vtu.lt) V.

More information

Design of Concentrically Braced Frames

Design of Concentrically Braced Frames Design of Concentrically Braced Frames Anindya Dutta, Ph.D., S.E. Example Configurations X-Braced Inverted V (Chevron) 2 Story X-Braced 1 Example Configurations V (Inverted Chevron) Zipper Special Concentrically

More information

Behavior of High-Strength Concrete Rectangular Columns

Behavior of High-Strength Concrete Rectangular Columns Seventh International Congress on Advances in Civil Engineering, October11-13, 26 Yildiz TechnicalUniversity, Istanbul, Turkey Behavior of High-Strength Concrete Rectangular Columns S. Kim, H. C. Mertol,

More information

REHABILITATION OF THE FIGUEIRA DA FOZ BRIDGE

REHABILITATION OF THE FIGUEIRA DA FOZ BRIDGE REHABILITATION OF THE FIGUEIRA DA FOZ BRIDGE A.Rito Proponte, Lda, Lisbon, Portugal J. Appleton A2P Consult, Lda, Lisbon, Portugal ABSTRACT: The Figueira da Foz Bridge includes a 405 m long cable stayed

More information

TECHNICAL NOTE. Design of Diagonal Strap Bracing Lateral Force Resisting Systems for the 2006 IBC. On Cold-Formed Steel Construction INTRODUCTION

TECHNICAL NOTE. Design of Diagonal Strap Bracing Lateral Force Resisting Systems for the 2006 IBC. On Cold-Formed Steel Construction INTRODUCTION TECHNICAL NOTE On Cold-Formed Steel Construction 1201 15th Street, NW, Suite 320 W ashington, DC 20005 (202) 785-2022 $5.00 Design of Diagonal Strap Bracing Lateral Force Resisting Systems for the 2006

More information

SLAB DESIGN. Introduction ACI318 Code provides two design procedures for slab systems:

SLAB DESIGN. Introduction ACI318 Code provides two design procedures for slab systems: Reading Assignment SLAB DESIGN Chapter 9 of Text and, Chapter 13 of ACI318-02 Introduction ACI318 Code provides two design procedures for slab systems: 13.6.1 Direct Design Method (DDM) For slab systems

More information

Analysis and Repair of an Earthquake-Damaged High-rise Building in Santiago, Chile

Analysis and Repair of an Earthquake-Damaged High-rise Building in Santiago, Chile Analysis and Repair of an Earthquake-Damaged High-rise Building in Santiago, Chile J. Sherstobitoff Ausenco Sandwell, Vancouver, Canada P. Cajiao AMEC, Vancouver, Canada P. Adebar University of British

More information

SECTION 5 ANALYSIS OF CONTINUOUS SPANS DEVELOPED BY THE PTI EDC-130 EDUCATION COMMITTEE LEAD AUTHOR: BRYAN ALLRED

SECTION 5 ANALYSIS OF CONTINUOUS SPANS DEVELOPED BY THE PTI EDC-130 EDUCATION COMMITTEE LEAD AUTHOR: BRYAN ALLRED SECTION 5 ANALYSIS OF CONTINUOUS SPANS DEVELOPED BY THE PTI EDC-130 EDUCATION COMMITTEE LEAD AUTHOR: BRYAN ALLRED NOTE: MOMENT DIAGRAM CONVENTION In PT design, it is preferable to draw moment diagrams

More information

CEE 227 -- Earthquake Resistant Design. General Information

CEE 227 -- Earthquake Resistant Design. General Information University of California at Berkeley Civil and Environmental Engineering Instructor: Stephen A. Mahin Spring Semester 2007 CEE 227 -- Earthquake Resistant Design General Information Course Objectives This

More information

SOUTH AFRICAN NATIONAL INSTITUTE OF ROCK MECHANICS CHAMBER OF MINES OF SOUTH AFRICA CERTIFICATE IN ROCK MECHANICS PART 1 ROCK MECHANICS THEORY

SOUTH AFRICAN NATIONAL INSTITUTE OF ROCK MECHANICS CHAMBER OF MINES OF SOUTH AFRICA CERTIFICATE IN ROCK MECHANICS PART 1 ROCK MECHANICS THEORY SOUTH AFRICAN NATIONAL INSTITUTE OF ROCK MECHANICS CHAMBER OF MINES OF SOUTH AFRICA CERTIFICATE IN ROCK MECHANICS PART 1 ROCK MECHANICS THEORY SYLLABUS Copyright 2006 SANIRE CONTENTS PREAMBLE... 3 TOPICS

More information

SEISMIC UPGRADE OF OAK STREET BRIDGE WITH GFRP

SEISMIC UPGRADE OF OAK STREET BRIDGE WITH GFRP 13 th World Conference on Earthquake Engineering Vancouver, B.C., Canada August 1-6, 2004 Paper No. 3279 SEISMIC UPGRADE OF OAK STREET BRIDGE WITH GFRP Yuming DING 1, Bruce HAMERSLEY 2 SUMMARY Vancouver

More information

Review of Code Provisions on Design Seismic Forces for Liquid Storage Tanks

Review of Code Provisions on Design Seismic Forces for Liquid Storage Tanks Document No. :: IITK-GSDMA-EQ1-V1. Final Report :: A - Earthquake Codes IITK-GSDMA Project on Building Codes Review of Code Provisions on Design Seismic Forces for Liquid Storage Tanks by Dr. O. R. Jaiswal

More information

METHOD OF STATEMENT FOR STATIC LOADING TEST

METHOD OF STATEMENT FOR STATIC LOADING TEST Compression Test, METHOD OF STATEMENT FOR STATIC LOADING TEST Tension Test and Lateral Test According to the American Standards ASTM D1143 07, ASTM D3689 07, ASTM D3966 07 and Euro Codes EC7 Table of Contents

More information

LEGACY REPORT ER-5110. www.icc-es.org. ICC Evaluation Service, Inc. Reissued November 1, 2003. Legacy report on the 1997 Uniform Building Code

LEGACY REPORT ER-5110. www.icc-es.org. ICC Evaluation Service, Inc. Reissued November 1, 2003. Legacy report on the 1997 Uniform Building Code LEGACY REPORT Reissued November 1, 2003 ICC Evaluation Service, Inc. www.icc-es.org Business/Regional Office # 5360 Workman Mill Road, Whittier, California 90601 # (562) 699-0543 Regional Office # 900

More information

Design Parameters for Steel Special Moment Frame Connections

Design Parameters for Steel Special Moment Frame Connections SEAOC 2011 CONVENTION PROCEEDINGS Design Parameters for Steel Special Moment Frame Connections Scott M. Adan, Ph.D., S.E., SECB, Chair SEAONC Structural Steel Subcommittee Principal Adan Engineering Oakland,

More information

ASSESSMENT AND RETROFITTING OF EXISTING RC BUILDINGS IN VIETNAM IN TERMS OF EARTHQUAKE RESISTANCES

ASSESSMENT AND RETROFITTING OF EXISTING RC BUILDINGS IN VIETNAM IN TERMS OF EARTHQUAKE RESISTANCES GEM-SEA Workshop on Seismic Vulnerability of Buildings Nanyang Technological University, Singapore 1 st July 2013 ASSESSMENT AND RETROFITTING OF EXISTING RC BUILDINGS IN VIETNAM IN TERMS OF EARTHQUAKE

More information

Methods for Seismic Retrofitting of Structures

Methods for Seismic Retrofitting of Structures Methods for Seismic Retrofitting of Structures Retrofitting of existing structures with insufficient seismic resistance accounts for a major portion of the total cost of hazard mitigation. Thus, it is

More information

Comparison of Seismic Performance of D-region of Existing RC Structures Designed with Different Recommendations

Comparison of Seismic Performance of D-region of Existing RC Structures Designed with Different Recommendations Comparison of Seismic Performance of D-region of Existing RC Structures Designed with Different Recommendations Balthasar Novák 1, K.Ramanjaneyulu 2, Constanze Roehm 3 and Saptarshi Sasmal 4 1 Professor,

More information

NONLINEAR FINITE ELEMENT ANALYSIS FOR REINFORCED CONCRETE SLABS UNDER PUNCHING LOADS

NONLINEAR FINITE ELEMENT ANALYSIS FOR REINFORCED CONCRETE SLABS UNDER PUNCHING LOADS International Journal of Civil Engineering and Technology (IJCIET) Volume 7, Issue 3, May June 2016, pp. 392 397, Article ID: IJCIET_07_03_040 Available online at http://www.iaeme.com/ijciet/issues.asp?jtype=ijciet&vtype=7&itype=3

More information

Chapter - 3 Design of Rectangular Beams and One-way Slabs

Chapter - 3 Design of Rectangular Beams and One-way Slabs Rectangular Beams and One-way Slabs Page 1 of 9 Chapter - 3 Design of Rectangular Beams and One-way Slabs 12 h A 12 strip in a simply supported one-way slab h b=12 L Rectangular Beams and One-way Slabs

More information

Section 5A: Guide to Designing with AAC

Section 5A: Guide to Designing with AAC Section 5A: Guide to Designing with AAC 5A.1 Introduction... 3 5A.3 Hebel Reinforced AAC Panels... 4 5A.4 Hebel AAC Panel Design Properties... 6 5A.5 Hebel AAC Floor and Roof Panel Spans... 6 5A.6 Deflection...

More information

Chapter 5 Bridge Deck Slabs. Bridge Engineering 1

Chapter 5 Bridge Deck Slabs. Bridge Engineering 1 Chapter 5 Bridge Deck Slabs Bridge Engineering 1 Basic types of bridge decks In-situ reinforced concrete deck- (most common type) Pre-cast concrete deck (minimize the use of local labor) Open steel grid

More information

The ACI 562 Repair Code

The ACI 562 Repair Code The ACI 562 Repair Code Code Requirements for Evaluation, Repair and Rehabilitation of Concrete Buildings by Keith Kesner 1 Chair ACI 562 Lawrence Kahn 2 Former Chair ACI 562 1. Associate WDP & Associates,

More information

Basic principles of steel structures. Dr. Xianzhong ZHAO x.zhao@mail.tongji.edu.cn

Basic principles of steel structures. Dr. Xianzhong ZHAO x.zhao@mail.tongji.edu.cn Basic principles of steel structures Dr. Xianzhong ZHAO x.zhao@mail.tongji.edu.cn 1 Lecture Questionnaire (1) Language preferred ( C = in Chinese, E = in English) NO. Oral Presentation Writing on the blackboard

More information

4B-2. 2. The stiffness of the floor and roof diaphragms. 3. The relative flexural and shear stiffness of the shear walls and of connections.

4B-2. 2. The stiffness of the floor and roof diaphragms. 3. The relative flexural and shear stiffness of the shear walls and of connections. Shear Walls Buildings that use shear walls as the lateral force-resisting system can be designed to provide a safe, serviceable, and economical solution for wind and earthquake resistance. Shear walls

More information

HOW TO DESIGN CONCRETE STRUCTURES Foundations

HOW TO DESIGN CONCRETE STRUCTURES Foundations HOW TO DESIGN CONCRETE STRUCTURES Foundations Instructions for the Members of BIBM, CEMBUREAU, EFCA and ERMCO: It is the responsibility of the Members (national associations) of BIBM, CEMBUREAU, EFCA and

More information

In-situ Load Testing to Evaluate New Repair Techniques

In-situ Load Testing to Evaluate New Repair Techniques In-situ Load Testing to Evaluate New Repair Techniques W.J. Gold 1 and A. Nanni 2 1 Assistant Research Engineer, Univ. of Missouri Rolla, Dept. of Civil Engineering 2 V&M Jones Professor, Univ. of Missouri

More information

Hardened Concrete. Lecture No. 14

Hardened Concrete. Lecture No. 14 Hardened Concrete Lecture No. 14 Strength of Concrete Strength of concrete is commonly considered its most valuable property, although in many practical cases, other characteristics, such as durability

More information

Design and Construction of Cantilevered Reinforced Concrete Structures

Design and Construction of Cantilevered Reinforced Concrete Structures Buildings Department Practice Note for Authorized Persons, Registered Structural Engineers and Registered Geotechnical Engineers APP-68 Design and Construction of Cantilevered Reinforced Concrete Structures

More information

Concrete Frame Design Manual

Concrete Frame Design Manual Concrete Frame Design Manual Turkish TS 500-2000 with Turkish Seismic Code 2007 For SAP2000 ISO SAP093011M26 Rev. 0 Version 15 Berkeley, California, USA October 2011 COPYRIGHT Copyright Computers and Structures,

More information