# Pennies and Blood. Mike Bomar

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 Pennies and Blood Mike Bomar In partial fulfillment of the requirements for the Master of Arts in Teaching with a Specialization in the Teaching of Middle Level Mathematics in the Department of Mathematics. Dr. Gordon Woodward, Advisor July 29

2 If you had three coins, one of which is counterfeit, and the counterfeit coin was a bit heavier than the other 2, one way in which to find which coin was the counterfeit coin would be to weigh two of the coins on a balance scale. If the scale tipped either way then the heavier coin on the scale would be the counterfeit coin. If the scale were perfectly balanced, then the coin we did not weigh would be the counterfeit coin. So if we had three coins, in which one was a counterfeit, it would only take one weighing on the balance scale to find the counterfeit coin. What if we have 9 coins and we know that one coin is a counterfeit coin, and so, is a bit heavier than the other coins? To find the counterfeit coin, we could use the same process. In our first scenario, we divided our one group of three coins into three equal groups (of one coin) and weighed two of those groups. We can do the same process if we have one group of nine coins. We can divide that group of nine coins into three equal groups of three. We would weigh two of those groups on the scale, and if the scale tipped one way or the other, then we would know that the counterfeit coin existed in the heavier group. If the scale did not tip either way and both groups that we weighed were perfectly balanced, then we know that the counterfeit coin existed in the group that we did not weigh. Through this process, we would be able to find in which sub-group of three coins that the counterfeit coin was by using just one weighing. However, this does not find us the counterfeit coin. At this point we have it narrowed down to three possible coins. We can now take the three coins and divide them into three smaller groups of one coin each. We can weigh two of those coins and if there is a heavier coin on the scale, then that coin is the counterfeit coin. If both coins on the scale are equal in weight, then the counterfeit coin is the coin we did not weigh. So, if we had 9 coins, we could find the counterfeit coin in exactly two weighings. In summary, if we had three coins, it would take one weighing to find the counterfeit coin, whereas if we had nine coins, it would take two weighings to find the counterfeit coin. In order for this problem to work out perfectly we would need the ability to divide the number of coins that we have into three equal groups. This would allow us to weigh two of the groups and keep one group off to the side. The groups must have the same number of coins in them so that the only determining factor in one side of the scale

3 being heavier than the other side is that one of the coins is heavier. However, it is not just enough to be able to divide the original group of coins into three equal groups, me must also be able to divide any subgroups of more than one coin into three equal groups. This would allow us continually use this process until we were down one coin in each group. At that point, we would be able to find the counterfeit coin with just one more weighing. In order for the original number of coins to be divisible by three and each subsequent subgroup to be divisible by three, the original group of coins must be a power of three. This means we must be able to write the original number of coins into the form of 3 m, where m is any positive integer. When we had three coins, we could write 3 as 3 1. When we had nine coins, we could write 9 as 3 2. This means that when we divide our original group of coins into three equal groups we would get: 3m 3 = 3m 1. Since 3 m-1 is a power of 3, we know it is divisible by three. So each of the three equal subgroups of 3 m-1 could be divided into three more equal subgroups when we find which one includes the counterfeit coin. This would be: 3m 1 3 = 3m 1 1 = 3 m 2. Again, since this is a power of three, then this subgroup can be divided into three more equal subgroups. Also, to get to a subgroup of 3 m-2, it would take two weighings. So when do we know that we are down to just one more weighing? We are down to just one more weighing when each of the three subgroups consists of just one coin that is, 3 coins. So in order to get 3 m down to 3 we would have to get to 3 m-m. Since 3 m-2 would require 2 weighings, then 3 m-m would require m number of weighings. So when we start with 3 m number of coins, of which one is a counterfeit coin, it would take m number of weighings to find which coin is the counterfeit coin. This held true with 3 and 9 coins. When we had 3 or 3 1 coins, it took 1 weigh. When we had 9 or 3 2 coins, it took 2 weighings. The coin problem worked in powers of 3 because weight was the determining factor. We could weigh two groups at one time and if those two were balanced, the other group held the defect, while if one side of the scale was heavier, the heavier side held the defect. Any characteristic that can be compared, such as an electrical charge, can be compared in this manner. However, in many situations no such comparison works.

4 Suppose a medical biologist has developed a blood test for detecting a certain abnormality in infants. There are only two possible cases: the infant s blood is clear or infected. We could pool the blood into smaller subgroups and test each pool of blood. If a pool tests as infected then we know that at least one of the samples in that pool is infected. If we test a pool and the result is clear, then we know that every sample in that pool is clear. This is different from our coin problem, because we need to test every pool in order to see if it contains the defect. Now suppose that we have 1 samples, and we know that exactly one sample is infected and the rest are clear. We could realistically test all 1 samples to find the infected one. However, that process doesn t seem very cost effective. We would like to find the infected sample with the least amount of tests. So we would pool the blood. Realistically, we could pool the blood in any way that we wanted. We could make two pools, one of 9 samples and another of 1 samples, and we could get lucky and have the infected sample contained in the pool of 1. However, there is only a 1% chance that the infected sample would be in the pool of 1. In order to make our testing more efficient, we would like to have each pool to have the same chance of containing the infected sample. This means that we divide the total number of samples into two equal groups of 5. We no longer need to test any of the samples in the pool that tests clear, and we will need to divide the pool again in order to test the samples that test infected. Here is a diagram that shows a couple of different possibilities for the total number of tests that it would take to determine which sample out of 1 is the infected sample. Note that some subgroups could not be divided evenly, and this was the cause of the different number of outcomes. Test Test Test

5 Test Test By testing in this manner, we can guarantee that the most number of tests that need to be done is seven. It is possible to find the infected sample in fewer tests, in a couple of the examples we found it implementing only six tests. However, if you wanted to find the infected sample in fewer tests it would require you using a different method. This method works in the following way. First, I divide the total number of samples in half and make two pools of all of the samples. It is important that I know that only one sample is infected so that if I test the first pool and find that it is infected, then I do not need to test the second pool. I then continue to divide the infected pools in half and test one of those pools each time until I find a pool with just a sample of one that is infected. When we generalized the counterfeit coin problem, we said that the number of coins had to be of the form 3 m, for some positive integer m, for we were dividing our collective group of coins into three separate piles for weighing. In determining the infected blood samples, using our method, we are dividing the samples into two separate pools, which means that the total number of samples must be of the form 2 m, where m is a positive integer. Looking at the diagram, when we had 1 samples, it took at most 7 tests to find the infected sample. However, it is not possible to get 1 from 2 m if m is a whole number. Since 2 6 = 64 and 2 7 = 128 and because 1 has a prime factor of 5. So, we know 2 6 <1 < 2 7. Actually 1 is about It appears that using this method we can round m up to the next whole number and this will tell us the most tests we would need to conduct in order to find the infected blood sample. Also, the number of tests cannot be any larger then m, since we would need to add good clear blood samples to get

6 2 m samples, in which it would take us then a maximum of m tests to find the infected sample. In general, if we have s samples, such that 2 m 1 < s 2 m, the most number of tests that we would need to conduct is m number of tests. Just like in the counterfeit coin problem, when we have 2 m number of samples and we divide them in half, each pool consists of 2 m-1 number of samples. We then divide the pool of 2 m-1 samples in half, and so, each of the new pools consists of 2 m-2 samples. We could only do this m number of times because at that point each of the new pools would consist of 2 m-m number of samples, which would be 2 or 1 sample. At that point we would be able to tell which sample is infected. Now, since 2 m 1 < s 2 m, it may take fewer tests because we won t always be able to divide our infected pools perfectly in half. However, the greatest number of tests that will be required is m tests, because you could add 2 m-s good samples and complete the testing in m number of tests. The unrealistic part of the example with the 1 samples is that we knew that exactly one sample was infected. In real life it is not likely that only one sample will be infected. This will affect our method, for it is no longer enough to test just one pool for infected samples; we will have to test both pools. If one of the pools tested clear, we know that all of the samples in that pool were clear. So we will look at the scenario that we have n number of samples. We will say that n = 2 m. However, we will say that we have x number of infected samples where x 2 m. Here is an example, where m = 3, so n = 8, and x = 1. I will mark where the infected sample is in the diagram. The shaded regions represent pools that came up as infected after testing. Tests I 1 I 2 & 3 I 4 & 5 I 6 & 7

7 This shows that we would need to perform 7 tests if there is only 1 infected sample. Let s look at a few examples of how the positioning of the infected samples could affect the number of tests it we would need to use if x = 2 and m = 3. Tests I I 1 I I 2 & 3 I I 4 & 5 I I 6 & 7 Tests I I 1 I I 2 & 3 I I 4 & 5 I I 6, 7, 8, & 9 Tests I I 1 I I 2 & 3 I I 4, 5, 6, & 7 I I 8, 9, 1, & 11 So, with x = 2 and m = 3, we can see that, depending on the positioning of the infected samples, it took us anywhere from 7 to 11 tests to find the infected samples. Now I will look at what happens with x = 3 and m = 3.

8 Tests I I I 1 I I I 2 & 3 I I I 4 & 5 I I I 6, 7, 8, & 9 Tests I I I 1 I I I 2 & 3 I I I 4, 5, 6, & 7 I I I 8, 9, 1, 11, 12, & 13 As we can see, for these examples, with x = 3 and m = 3, it would take from 9 to 13 tests. Let s try an example in case x = 4 and m = 3. Tests I I I I 1 I I I I 2 & 3 I I I I 4 & 5 I I I I 6, 7, 8, & 9 Tests I I I I 1 I I I I 2 & 3 I I I I 4, 5, 6, & 7 I I I I 8, 9, 1, & 11 Tests I I I I 1 I I I I 2 & 3 I I I I 4, 5, 6, & 7 I I I I 8, 9, 1, 11, 12, & 13 Tests I I I I 1 I I I I 2 & 3 I I I I 4, 5, 6, & 7 I I I I 8, 9, 1, 11, 12, 13, 14, & 15

9 This shows that with x = 4 and m = 3, we might have to complete anywhere from 9 to 15 tests. Furthermore, 15 tests is the maximum in case m = 3 using this method because in this case we will have tested every possible pool, and this is shown in the last diagram. So, with m = 3, it appears that the least amount of tests we could use with this method is 7 and the most is 15. Now, there were only two cases in which it took 7 tests using this method, whereas the remainder took more then 8. With m = 3 or n = 8, this method might not be the most cost efficient because we could test each test individually which would take only 8 tests and we would still find all of the infected samples. Sometimes it might be more cost efficient to simply just test all of the samples. It would be nice in that case to know that there is a number of tests that we couldn t possibly surpass by knowing the values of x and m. I think it would be best to start from the bottom of our diagram. If we know that there are x number of infected samples, we know that the most number of boxes or samples to test would be 2x. This is true because the tests before the last row consisted of sample sizes of 2, so in order for us to test both of the samples individually, when the two samples were pooled together individually that pool had to have tested infected. Here is a diagram that shows the last few rows of a test. >>>>>>>> >>>>>>>> >>>>>>>> >>>>>>>> Now, since with each new set of tests we are dividing the pools by two and we start with 2 m number of samples, we know that we can only divide the pools in half m number of times, as shown from the counterfeit coin example and our example with 1 samples and one infected sample. We know that at each stage of testing there will be at most x infected samples. So, the next stage will have no more then 2x pools to test. Since the most number of stages we can have is m and that we need to test the entire pool to start

10 the process, we know that we couldn t possibly test more 1 + 2mx times. However, this is an overestimate, since according to this expression, each row would take the same number of tests as the last row. So, this does give us a number that is definitely greater than the possible number tests we could do (i.e. it gives us an upper bound). Furthermore, when x = 1, the expression 1 + 2mx gives us the exact number of tests needed using this method. Recall that m is the number of rows we would have after the initial row and each row would have two tests, one with the infected pool and the other with the clear pool. This means that after the initial row there would be 2m number of tests done, when x = 1, then 2mx is just 2m. Then we would add one for the initial test of all of the samples. So, 1 + 2mx is an exact number of tests required using this method when x = 1. In our last example, x represented the number of infected samples. In real life, we won t know that number. However, we might have a good idea. We might expect 1% of a population to be infected, so if we had n number of people in a population, we would expect (.1)n number of people to be infected. So we could call the expected percentage of infected people p. Thus, if n represents the number of people in a population, we expect np to be the number of infected people. This means that if we wanted to know an upper bound for the number of tests performed, we could use the formula 1 + 2mx and replace x with np. So our new formula would be 1 + 2mnp. Also, since n = 2 m, we know that m = log 2 (n). So an upper bound on the number of tests necessary is given by the expression 1 + 2[log 2 (n)]np.

11 Suppose we wanted to know which of the following methods of testing blood samples would be the most cost effective: our method or testing each sample individually. We know that the estimated maximum number of tests t needed using our method can be represented by t = 1 + 2[log 2 (n)]np, and the number tests t needed by Testing Each Sample VS Our Method (p =.1) Testing Each Sample Our Method E+5 2E+5 2E+5 2E+5 3E+5 3E+5 4E+5 4E+5 4E+5 5E+5 5E+5 6E+5 6E+5 6E+5 7E+5 7E+5 8E+5 8E+5 8E+5 9E+5 9E+5 1E+6 1E+6 1E+6 Number of Samples using the method of testing each sample individually would be represented by t = n. We can graph these two equations on the same plane and see at which different values of n which method would take fewer tests to find the infected samples.

12 Testing Each Sample VS Our Method (p =.5) Testing Each Sample Our Method Number of Samples Testing Each Sample VS Our Method (p =.1) Testing Each Sample Our Method Number of Samples

13 Testing Each Sample VS Our Method (p =.15) Testing Each Sample Our Method Number of Samples Testing Each Sample VS Our Method (p =.2) Testing Each Sample Our Method Number of Samples

14 Testing Each Sample VS Our Method (p =.25) Testing Each Sample Our Method Number of Samples As we can see by the graphs, as the percentage of infected samples increases, fewer samples are required before testing each sample becomes the more efficient way of testing. When p =.1, our method was the most efficient method of testing up to about 1 15 samples. When p =.5, we needed to have around 1 samples in order for testing each sample to be the most efficient way of testing. When p =.1, we needed to have around 3 samples in order for testing each sample to be the most efficient way of testing. When p =.15, we needed to have around 7 samples in order for testing each sample to be the most efficient way of testing. When p =.2, we needed to have around 3 samples in order for testing each sample to be the most efficient way of testing. When p =.25, the most efficient way of testing will always be to test each sample since when n = 1 and n = 2 equations were equal. Then for n > 2, the most efficient method was to test each sample. So, it would be important to know about how many infected samples that we have along with knowing the total number of samples, because we could save ourselves a considerable money and time by using the optimal method

15 Let s now suppose that we are working in a laboratory that tests many thousands of samples each day. We are now looking for a specific infection in these samples. We expect that about 2% of the samples will carry the infection. We would like to know which method of testing will be more efficient: either testing every sample once or testing the samples in pools where we divide each infected pool by two until we are down to pools of sample size one. If we look at the chart when p =.2, it shows that at right around 3 samples it will become more efficient to test each sample individually. If we wanted to find out exactly at what point it becomes more efficient we can substitute different values of n into our equation t = 1 + 2[log 2 (n)]np and when t > n, then it will become more efficient to test each sample individually. Also, since you can t have a partial sample I will only use whole numbers for n. So: n 1 + 2[log 2 (n)]n(.2) t [log 2 (1)](1)(.2) [log 2 (2)](2)(.2) [log 2 (3)](3)(.2) [log 2 (4)](4)(.2) [log 2 (5)](5)(.2) 5.64 So, we can see that if we had a sample size of 1, each method requires only one test. With a sample size of 2 or 3, testing each sample individually is not the most efficient method. However, when n is greater than or equal to 4, the most efficient method of testing is to test each sample individually. Furthermore, as soon as 2[log 2 (n)](.2) > 1 our method of testing would require more tests then the method of testing each sample individually. Since in our example we were told that we had thousands of samples each day and that about 2% are infected, we can assume that the most efficient method of testing is to test each sample individually. Another use of finding the minimum number of weighings for testing purposes would be in the case of the Rh-antigen. If we are trying to determine if a person is Rhpositive, one way to detect this is through weight. If the Rh-antigen is present in a person s blood, the sample weighs slightly more. If we had several samples and knew

16 that exactly one of the samples was Rh-negative and wanted to find that sample we could use the same method as the counterfeit coin example. We could consider the total number of samples as 3 m. Then we would divide the entire pool of 3 m samples into three pools of 3 m-1 samples in each pool. We would weigh two of the pools and leave one off to the side. If the scale tips one way or the other, we know that the lighter side of the scale is the pool that contains the Rh-negative sample. If the balance is even, then the pool that we did not weigh is the pool that contains the Rh-negative sample. We would then divide the pool of size 3 m-1 that we had determined to contain the Rh-negative sample into 3 smaller pools all of size 3 m-2 and repeat the weighing process. We then would continue dividing the pools that we had determined to contain the Rh-negative sample into 3 equal pools until we were down to pools of size 3 m-m or 3. At that point we will be able to find the Rh-negative sample with one last weigh. This works out perfectly if our total sample is of size 3 m and m is a whole number. However, what if the integer m is not of the form 3 m? In this case, we would make three pools, two of size 3 n, where n is a whole number and where 2(3 n ) is greater than the remaining samples. We can then weigh the two pools of size 3 n. If one of the sides of the scale is lighter, then that pool contains the sample that is Rh-negative. Since that pool, would be a power of 3, we can continue use the process described in the previous paragraph. If the scale is balanced, then the pool that was left aside is the pool with the Rh-negative sample. This pool would be of size 3 x, where x is a real number. We can then continue with the process described in this paragraph. Eventually, we will find the sample of Rh-negative in a pool that is a size of a power of 3 or we will be left with just one or two samples. At that point, if we were left with just two samples, we can do one more weighing. If we were left with just one sample, that is the Rh-negative sample. However, the way that the Rh-antigen is usually detected is to mix the blood with a chemical. If the blood is Rh-positive then an observable agglutination occurs. Since, the agglutination occurs when the Rh-antigen is present, it would only make sense to test each sample individually. If we consider the entire pool as size 2 m, then divide them into 2 pools of size 2 m-1, and then test each pool, both pools would show the agglutination because each pool would have contained at least one sample of Rh-positive blood. Since there is only one sample in the entire pool that is Rh-negative, then every pool we test

17 would show the agglutination unless every sample in the pool was Rh-negative. The only possibility of finding a sample in which the agglutination will not occur is the pool size of sample one that is the sample of Rh-negative blood. For that same reason, our process of dividing samples of size 3 m into groups of three would not work either. Since there is only one sample in the pool that is Rh-negative, the most efficient way to find that sample would be to test each sample individually. In conclusion, we can see how a simple math problem involving counterfeit coins which some might see as nothing more than a puzzling problem to bring out at parties blossomed into a very practical discussion about efficient blood testing strategies. A laboratory might be able to save a considerable amount of money by employing such a strategy, but as we saw, there are many factors to consider.

18 References Castillo, Joan Joseph. (29). Probability Sampling and Randomization. Retrieved 22 August, 211, from Experiment Resources: Multistage Sampling. (n.d.). In Wikipedia. Retrieved 22 August, 211, from Probability Sampling. (2 April 29). In Statistics Canada. Retrieved 22 August, 211, from Sampling. (28). International Encyclopedia of the Social Sciences. Retrieved 22 August, 211, from Encyclopedia.com:

### If A is divided by B the result is 2/3. If B is divided by C the result is 4/7. What is the result if A is divided by C?

Problem 3 If A is divided by B the result is 2/3. If B is divided by C the result is 4/7. What is the result if A is divided by C? Suggested Questions to ask students about Problem 3 The key to this question

### MATH THAT MAKES ENTS

The Bureau of Labor statistics share this data to describe the difference in earnings and unemployment rates by the amount of education attained. (1) Take a look at this table, describe what you notice

### POLYNOMIAL FUNCTIONS

POLYNOMIAL FUNCTIONS Polynomial Division.. 314 The Rational Zero Test.....317 Descarte s Rule of Signs... 319 The Remainder Theorem.....31 Finding all Zeros of a Polynomial Function.......33 Writing a

### 3.2 The Factor Theorem and The Remainder Theorem

3. The Factor Theorem and The Remainder Theorem 57 3. The Factor Theorem and The Remainder Theorem Suppose we wish to find the zeros of f(x) = x 3 + 4x 5x 4. Setting f(x) = 0 results in the polynomial

### LAB 4: APPROXIMATING REAL ZEROS OF POLYNOMIAL FUNCTIONS

LAB 4: APPROXIMATING REAL ZEROS OF POLYNOMIAL FUNCTIONS Objectives: 1. Find real zeros of polynomial functions. 2. Solve nonlinear inequalities by graphing. 3. Find the maximum value of a function by graphing.

### Probability and Expected Value

Probability and Expected Value This handout provides an introduction to probability and expected value. Some of you may already be familiar with some of these topics. Probability and expected value are

### A permutation can also be represented by describing its cycles. What do you suppose is meant by this?

Shuffling, Cycles, and Matrices Warm up problem. Eight people stand in a line. From left to right their positions are numbered,,,... 8. The eight people then change places according to THE RULE which directs

### OPTIONS TRADING AS A BUSINESS UPDATE: Using ODDS Online to Find A Straddle s Exit Point

This is an update to the Exit Strategy in Don Fishback s Options Trading As A Business course. We re going to use the same example as in the course. That is, the AMZN trade: Buy the AMZN July 22.50 straddle

### Gaming the Law of Large Numbers

Gaming the Law of Large Numbers Thomas Hoffman and Bart Snapp July 3, 2012 Many of us view mathematics as a rich and wonderfully elaborate game. In turn, games can be used to illustrate mathematical ideas.

### IB Maths SL Sequence and Series Practice Problems Mr. W Name

IB Maths SL Sequence and Series Practice Problems Mr. W Name Remember to show all necessary reasoning! Separate paper is probably best. 3b 3d is optional! 1. In an arithmetic sequence, u 1 = and u 3 =

### The normal approximation to the binomial

The normal approximation to the binomial The binomial probability function is not useful for calculating probabilities when the number of trials n is large, as it involves multiplying a potentially very

### Statistical Inference

Statistical Inference Idea: Estimate parameters of the population distribution using data. How: Use the sampling distribution of sample statistics and methods based on what would happen if we used this

### Sample Solutions for Assignment 2.

AMath 383, Autumn 01 Sample Solutions for Assignment. Reading: Chs. -3. 1. Exercise 4 of Chapter. Please note that there is a typo in the formula in part c: An exponent of 1 is missing. It should say 4

### Chapter 18 Combined Values Chart

Chapter 18 Combined Values Chart INTRODUCTION After impairment ratings have been obtained for all accepted conditions they must be combined to a single value known as the combined impairment rating. The

### Graph Theory Lecture 3: Sum of Degrees Formulas, Planar Graphs, and Euler s Theorem Spring 2014 Morgan Schreffler Office: POT 902

Graph Theory Lecture 3: Sum of Degrees Formulas, Planar Graphs, and Euler s Theorem Spring 2014 Morgan Schreffler Office: POT 902 http://www.ms.uky.edu/~mschreffler Different Graphs, Similar Properties

### 2.5 Zeros of a Polynomial Functions

.5 Zeros of a Polynomial Functions Section.5 Notes Page 1 The first rule we will talk about is Descartes Rule of Signs, which can be used to determine the possible times a graph crosses the x-axis and

MA 134 Lecture Notes August 20, 2012 Introduction The purpose of this lecture is to... Introduction The purpose of this lecture is to... Learn about different types of equations Introduction The purpose

### Grade 6 Math Circles. Binary and Beyond

Faculty of Mathematics Waterloo, Ontario N2L 3G1 The Decimal System Grade 6 Math Circles October 15/16, 2013 Binary and Beyond The cool reality is that we learn to count in only one of many possible number

### Fine-Tuning Your Money Management System

Avoid The Risk Of Ruin Fine-Tuning Your Money Management System Acknowledge the risks in trading the markets by making sure your money management system is sound. hen you hear of someone making a huge

### 3.2 Roulette and Markov Chains

238 CHAPTER 3. DISCRETE DYNAMICAL SYSTEMS WITH MANY VARIABLES 3.2 Roulette and Markov Chains In this section we will be discussing an application of systems of recursion equations called Markov Chains.

### The normal approximation to the binomial

The normal approximation to the binomial In order for a continuous distribution (like the normal) to be used to approximate a discrete one (like the binomial), a continuity correction should be used. There

### Payment streams and variable interest rates

Chapter 4 Payment streams and variable interest rates In this chapter we consider two extensions of the theory Firstly, we look at payment streams A payment stream is a payment that occurs continuously,

### Induction. Margaret M. Fleck. 10 October These notes cover mathematical induction and recursive definition

Induction Margaret M. Fleck 10 October 011 These notes cover mathematical induction and recursive definition 1 Introduction to induction At the start of the term, we saw the following formula for computing

### 13 Two-Sample T Tests

www.ck12.org CHAPTER 13 Two-Sample T Tests Chapter Outline 13.1 TESTING A HYPOTHESIS FOR DEPENDENT AND INDEPENDENT SAMPLES 270 www.ck12.org Chapter 13. Two-Sample T Tests 13.1 Testing a Hypothesis for

### In a triangle with a right angle, there are 2 legs and the hypotenuse of a triangle.

PROBLEM STATEMENT In a triangle with a right angle, there are legs and the hypotenuse of a triangle. The hypotenuse of a triangle is the side of a right triangle that is opposite the 90 angle. The legs

### Unit 19: Probability Models

Unit 19: Probability Models Summary of Video Probability is the language of uncertainty. Using statistics, we can better predict the outcomes of random phenomena over the long term from the very complex,

### An Innocent Investigation

An Innocent Investigation D. Joyce, Clark University January 2006 The beginning. Have you ever wondered why every number is either even or odd? I don t mean to ask if you ever wondered whether every number

### 1.4 Rounding. It doesn t matter if use the same cards again because you ll probably ask for a different degree of rounding.

1.4 Rounding Rounding to the nearest integer, or nearest 10, 100, etc. and decimal places (another way of saying nearest tenth, nearest hundredth, etc.) need to be clear before venturing into significant

### U.C. Berkeley CS276: Cryptography Handout 0.1 Luca Trevisan January, 2009. Notes on Algebra

U.C. Berkeley CS276: Cryptography Handout 0.1 Luca Trevisan January, 2009 Notes on Algebra These notes contain as little theory as possible, and most results are stated without proof. Any introductory

### Ex. 2.1 (Davide Basilio Bartolini)

ECE 54: Elements of Information Theory, Fall 00 Homework Solutions Ex.. (Davide Basilio Bartolini) Text Coin Flips. A fair coin is flipped until the first head occurs. Let X denote the number of flips

### Induction Problems. Tom Davis November 7, 2005

Induction Problems Tom Davis tomrdavis@earthlin.net http://www.geometer.org/mathcircles November 7, 2005 All of the following problems should be proved by mathematical induction. The problems are not necessarily

### Math 1526 Consumer and Producer Surplus

Math 156 Consumer and Producer Surplus Scenario: In the grocery store, I find that two-liter sodas are on sale for 89. This is good news for me, because I was prepared to pay \$1.9 for them. The store manager

### Chapter 21: The Discounted Utility Model

Chapter 21: The Discounted Utility Model 21.1: Introduction This is an important chapter in that it introduces, and explores the implications of, an empirically relevant utility function representing intertemporal

Some Tips for Using WebAssign in Calculus The problems you see on your WebAssign homework are generally questions taken from your textbook but sometimes randomized so that the numbers and functions may

### IN THE HANDS OF TIME

MATHS B-DAY 2006 Friday 24 November IN THE HANDS OF TIME The Maths B-Day is sponsored by and Maths B-day 2006-1- Wiskunde B-dag 2006 0 Introduction The maths B-day assignment this year is totally focused

### Kindergarten Math I can statements

Kindergarten Math I can statements Student name:. Number sense Date Got it Nearly I can count by 1s starting anywhere from 1 to 10 and from 10 to 1, forwards and backwards. I can look at a group of 1 to

### In this section, you will develop a method to change a quadratic equation written as a sum into its product form (also called its factored form).

CHAPTER 8 In Chapter 4, you used a web to organize the connections you found between each of the different representations of lines. These connections enabled you to use any representation (such as a graph,

### Some Polynomial Theorems. John Kennedy Mathematics Department Santa Monica College 1900 Pico Blvd. Santa Monica, CA 90405 rkennedy@ix.netcom.

Some Polynomial Theorems by John Kennedy Mathematics Department Santa Monica College 1900 Pico Blvd. Santa Monica, CA 90405 rkennedy@ix.netcom.com This paper contains a collection of 31 theorems, lemmas,

### Irrational Numbers. A. Rational Numbers 1. Before we discuss irrational numbers, it would probably be a good idea to define rational numbers.

Irrational Numbers A. Rational Numbers 1. Before we discuss irrational numbers, it would probably be a good idea to define rational numbers. Definition: Rational Number A rational number is a number that

### FACTORING POLYNOMIALS

296 (5-40) Chapter 5 Exponents and Polynomials where a 2 is the area of the square base, b 2 is the area of the square top, and H is the distance from the base to the top. Find the volume of a truncated

### Packet: Lines (Part 1) Standards covered:

Packet: Lines (Part 1) Standards covered: *(2)MA.912.A.3.8 Graph a line given any of the following information: a table of values, the x and y- intercepts, two points, the slope and a point, the equation

### SQUARE-SQUARE ROOT AND CUBE-CUBE ROOT

UNIT 3 SQUAREQUARE AND CUBEUBE (A) Main Concepts and Results A natural number is called a perfect square if it is the square of some natural number. i.e., if m = n 2, then m is a perfect square where m

### Information Theory and Coding Prof. S. N. Merchant Department of Electrical Engineering Indian Institute of Technology, Bombay

Information Theory and Coding Prof. S. N. Merchant Department of Electrical Engineering Indian Institute of Technology, Bombay Lecture - 17 Shannon-Fano-Elias Coding and Introduction to Arithmetic Coding

### Answer on Question #48173 Math Algebra

Answer on Question #48173 Math Algebra On graph paper, draw the axes, and the lines y = 12 and x = 6. The rectangle bounded by the axes and these two lines is a pool table with pockets in the four corners.

### = 2 + 1 2 2 = 3 4, Now assume that P (k) is true for some fixed k 2. This means that

Instructions. Answer each of the questions on your own paper, and be sure to show your work so that partial credit can be adequately assessed. Credit will not be given for answers (even correct ones) without

### Taylor Polynomials and Taylor Series Math 126

Taylor Polynomials and Taylor Series Math 26 In many problems in science and engineering we have a function f(x) which is too complicated to answer the questions we d like to ask. In this chapter, we will

### 2013 Texas Education Agency. All Rights Reserved 2013 Introduction to the Revised Mathematics TEKS: Vertical Alignment Chart Kindergarten Algebra I 1

2013 Texas Education Agency. All Rights Reserved 2013 Introduction to the Revised Mathematics TEKS: Vertical Alignment Chart Kindergarten Algebra I 1 The materials are copyrighted (c) and trademarked (tm)

### ELLIPTIC CURVES AND LENSTRA S FACTORIZATION ALGORITHM

ELLIPTIC CURVES AND LENSTRA S FACTORIZATION ALGORITHM DANIEL PARKER Abstract. This paper provides a foundation for understanding Lenstra s Elliptic Curve Algorithm for factoring large numbers. We give

### Algebra 2/Trigonometry Practice Test

Algebra 2/Trigonometry Practice Test Part I Answer all 27 questions in this part. Each correct answer will receive 2 credits. No partial credit will be allowed. For each question, write on the separate

### Section 1.5 Linear Models

Section 1.5 Linear Models Some real-life problems can be modeled using linear equations. Now that we know how to find the slope of a line, the equation of a line, and the point of intersection of two lines,

### 2010 Solutions. a + b. a + b 1. (a + b)2 + (b a) 2. (b2 + a 2 ) 2 (a 2 b 2 ) 2

00 Problem If a and b are nonzero real numbers such that a b, compute the value of the expression ( ) ( b a + a a + b b b a + b a ) ( + ) a b b a + b a +. b a a b Answer: 8. Solution: Let s simplify the

### Solution to Exercise 2.2. Both m and n are divisible by d, som = dk and n = dk. Thus m ± n = dk ± dk = d(k ± k ),som + n and m n are divisible by d.

[Chap. ] Pythagorean Triples 6 (b) The table suggests that in every primitive Pythagorean triple, exactly one of a, b,orc is a multiple of 5. To verify this, we use the Pythagorean Triples Theorem to write

Third Grade Math Games Unit 1 Lesson Less than You! 1.3 Addition Top-It 1.4 Name That Number 1.6 Beat the Calculator (Addition) 1.8 Buyer & Vendor Game 1.9 Tic-Tac-Toe Addition 1.11 Unit 2 What s My Rule?

### MA 1125 Lecture 14 - Expected Values. Friday, February 28, 2014. Objectives: Introduce expected values.

MA 5 Lecture 4 - Expected Values Friday, February 2, 24. Objectives: Introduce expected values.. Means, Variances, and Standard Deviations of Probability Distributions Two classes ago, we computed the

### Welcome to Harcourt Mega Math: The Number Games

Welcome to Harcourt Mega Math: The Number Games Harcourt Mega Math In The Number Games, students take on a math challenge in a lively insect stadium. Introduced by our host Penny and a number of sporting

### 36 Odds, Expected Value, and Conditional Probability

36 Odds, Expected Value, and Conditional Probability What s the difference between probabilities and odds? To answer this question, let s consider a game that involves rolling a die. If one gets the face

### Chapter 4 Lecture Notes

Chapter 4 Lecture Notes Random Variables October 27, 2015 1 Section 4.1 Random Variables A random variable is typically a real-valued function defined on the sample space of some experiment. For instance,

### Equations of Lines Derivations

Equations of Lines Derivations If you know how slope is defined mathematically, then deriving equations of lines is relatively simple. We will start off with the equation for slope, normally designated

### Systems of Linear Equations in Two Variables

Chapter 6 Systems of Linear Equations in Two Variables Up to this point, when solving equations, we have always solved one equation for an answer. However, in the previous chapter, we saw that the equation

### SCRATCHING THE SURFACE OF PROBABILITY. Robert J. Russell, University of Paisley, UK

SCRATCHING THE SURFACE OF PROBABILITY Robert J. Russell, University of Paisley, UK Scratch cards are widely used to promote the interests of charities and commercial concerns. They provide a useful mechanism

### Intermediate Math Circles March 7, 2012 Linear Diophantine Equations II

Intermediate Math Circles March 7, 2012 Linear Diophantine Equations II Last week: How to find one solution to a linear Diophantine equation This week: How to find all solutions to a linear Diophantine

### MATHEMATICS FOR ENGINEERS STATISTICS TUTORIAL 4 PROBABILITY DISTRIBUTIONS

MATHEMATICS FOR ENGINEERS STATISTICS TUTORIAL 4 PROBABILITY DISTRIBUTIONS CONTENTS Sample Space Accumulative Probability Probability Distributions Binomial Distribution Normal Distribution Poisson Distribution

### 1 Introduction to Option Pricing

ESTM 60202: Financial Mathematics Alex Himonas 03 Lecture Notes 1 October 7, 2009 1 Introduction to Option Pricing We begin by defining the needed finance terms. Stock is a certificate of ownership of

### What to Look for in a Vibration Consultant By Alan Friedman, DLI Engineering. Introduction. The Most Basic Form of Vibration Analysis

What to Look for in a Vibration Consultant By Alan Friedman, DLI Engineering Introduction Many corporations are currently looking to outsource their machinery condition monitoring program, others wish

### Lectures 5-6: Taylor Series

Math 1d Instructor: Padraic Bartlett Lectures 5-: Taylor Series Weeks 5- Caltech 213 1 Taylor Polynomials and Series As we saw in week 4, power series are remarkably nice objects to work with. In particular,

### 6.042/18.062J Mathematics for Computer Science. Expected Value I

6.42/8.62J Mathematics for Computer Science Srini Devadas and Eric Lehman May 3, 25 Lecture otes Expected Value I The expectation or expected value of a random variable is a single number that tells you

### arxiv:1112.0829v1 [math.pr] 5 Dec 2011

How Not to Win a Million Dollars: A Counterexample to a Conjecture of L. Breiman Thomas P. Hayes arxiv:1112.0829v1 [math.pr] 5 Dec 2011 Abstract Consider a gambling game in which we are allowed to repeatedly

### Math Matters: Why Do I Need To Know This?

Math Matters: Why Do I Need To Know This? Bruce Kessler, Department of Mathematics Western Kentucky University Episode Fourteen 1 Annuities Investment strategies Objective: To illustrate how knowing the

### Chapter 8 Graphs and Functions:

Chapter 8 Graphs and Functions: Cartesian axes, coordinates and points 8.1 Pictorially we plot points and graphs in a plane (flat space) using a set of Cartesian axes traditionally called the x and y axes

### Introduction to the Practice of Statistics Fifth Edition Moore, McCabe

Introduction to the Practice of Statistics Fifth Edition Moore, McCabe Section 4.2 Homework Answers 4.17 Choose a young adult (age 25 to 34 years) at random. The probability is 0.12 that the person chosen

### SECTION 2.5: FINDING ZEROS OF POLYNOMIAL FUNCTIONS

SECTION 2.5: FINDING ZEROS OF POLYNOMIAL FUNCTIONS Assume f ( x) is a nonconstant polynomial with real coefficients written in standard form. PART A: TECHNIQUES WE HAVE ALREADY SEEN Refer to: Notes 1.31

### REVIEW EXERCISES DAVID J LOWRY

REVIEW EXERCISES DAVID J LOWRY Contents 1. Introduction 1 2. Elementary Functions 1 2.1. Factoring and Solving Quadratics 1 2.2. Polynomial Inequalities 3 2.3. Rational Functions 4 2.4. Exponentials and

### San Jose Math Circle October 17, 2009 ARITHMETIC AND GEOMETRIC PROGRESSIONS

San Jose Math Circle October 17, 2009 ARITHMETIC AND GEOMETRIC PROGRESSIONS DEFINITION. An arithmetic progression is a (finite or infinite) sequence of numbers with the property that the difference between

### UNIT PLAN: EXPONENTIAL AND LOGARITHMIC FUNCTIONS

UNIT PLAN: EXPONENTIAL AND LOGARITHMIC FUNCTIONS Summary: This unit plan covers the basics of exponential and logarithmic functions in about 6 days of class. It is intended for an Algebra II class. The

### 1 Computation Students will practice multiplication, division, addition, and subtraction. Order of operation will also be reviewed.

Fairfax Collegiate 703 481-3080 www.fairfaxcollegiate.com FCS FAIRFAX COLLEGIATE Intro to Pre-Algebra 6-8 Syllabus SUMMER PROGRAM Course Goals 1 Solidify Previous Knowledge Students will solidify previous

### 4. Continuous Random Variables, the Pareto and Normal Distributions

4. Continuous Random Variables, the Pareto and Normal Distributions A continuous random variable X can take any value in a given range (e.g. height, weight, age). The distribution of a continuous random

### A-Level Maths. in a week. Core Maths - Co-ordinate Geometry of Circles. Generating and manipulating graph equations of circles.

A-Level Maths in a week Core Maths - Co-ordinate Geometry of Circles Generating and manipulating graph equations of circles. Statistics - Binomial Distribution Developing a key tool for calculating probability

### If we denote the monthly payment by p, then we can compute the balance after one month as

Introduction to Modeling 6.2-1 6.2 How to Manage Credit Suppose you have a credit card with the Students R Us bank. When you started college, they gave you a credit card without requiring any credit history.

### Black Problems - Prime Factorization, Greatest Common Factor and Simplifying Fractions

Black Problems Prime Factorization, Greatest Common Factor and Simplifying Fractions A natural number n, such that n >, can t be written as the sum of two more consecutive odd numbers if and only if n

### 3. BINARY NUMBERS AND ARITHMETIC

3. BINARY NUMBERS AND ARITHMETIC 3.1. Binary Numbers The only place in a computer where you will find the number 9 is on the keyboard. Inside the computer you will only find 0 s and 1 s. All computer memory

### Appendix F: Mathematical Induction

Appendix F: Mathematical Induction Introduction In this appendix, you will study a form of mathematical proof called mathematical induction. To see the logical need for mathematical induction, take another

### Chapter 4: Exponential and Logarithmic Functions

Chapter 4: Eponential and Logarithmic Functions Section 4.1 Eponential Functions... 15 Section 4. Graphs of Eponential Functions... 3 Section 4.3 Logarithmic Functions... 4 Section 4.4 Logarithmic Properties...

Introduction to Quadratic Functions The St. Louis Gateway Arch was constructed from 1963 to 1965. It cost 13 million dollars to build..1 Up and Down or Down and Up Exploring Quadratic Functions...617.2

### INTRODUCTION TO PROBABILITY AND STATISTICS

INTRODUCTION TO PROBABILITY AND STATISTICS Conditional probability and independent events.. A fair die is tossed twice. Find the probability of getting a 4, 5, or 6 on the first toss and a,,, or 4 on the

### Book 3 Cost Estimating in an Agile Development Environment. (early release)

Book 3 Cost Estimating in an Agile Development Environment (early release) Book 3: Cost Estimating in an Agile Development Environment In this third book I ll use the slides I gave at a speech several

### 10.4 APPLICATIONS OF NUMERICAL METHODS Applications of Gaussian Elimination with Pivoting

59 CHAPTER NUMERICAL METHODS. APPLICATIONS OF NUMERICAL METHODS Applications of Gaussian Elimination with Pivoting In Section.5 you used least squares regression analysis to find linear mathematical models

### UNIT AUTHOR: Elizabeth Hume, Colonial Heights High School, Colonial Heights City Schools

Money & Finance I. UNIT OVERVIEW & PURPOSE: The purpose of this unit is for students to learn how savings accounts, annuities, loans, and credit cards work. All students need a basic understanding of how

### The Distributive Property

The Distributive Property Objectives To recognize the general patterns used to write the distributive property; and to mentally compute products using distributive strategies. www.everydaymathonline.com

### Prentice Hall: Middle School Math, Course 1 2002 Correlated to: New York Mathematics Learning Standards (Intermediate)

New York Mathematics Learning Standards (Intermediate) Mathematical Reasoning Key Idea: Students use MATHEMATICAL REASONING to analyze mathematical situations, make conjectures, gather evidence, and construct

### 2.1 Systems of Linear Equations

. Systems of Linear Equations Question : What is a system of linear equations? Question : Where do systems of equations come from? In Chapter, we looked at several applications of linear functions. One

### Interest Rates: Loans, Credit Cards, and Annuties. Interest Rates: Loans, Credit Cards, and Annuties 1/43

Interest Rates: Loans, Credit Cards, and Annuties Interest Rates: Loans, Credit Cards, and Annuties 1/43 Last Time Last time we discussed compound interest and saw that money can grow very large given

### White Paper: Impact of Inventory on Network Design

White Paper: Impact of Inventory on Network Design Written as Research Project at Georgia Tech with support from people at IBM, Northwestern, and Opex Analytics Released: January 2014 Georgia Tech Team

### Notes on Factoring. MA 206 Kurt Bryan

The General Approach Notes on Factoring MA 26 Kurt Bryan Suppose I hand you n, a 2 digit integer and tell you that n is composite, with smallest prime factor around 5 digits. Finding a nontrivial factor

### Why is Insurance Good? An Example Jon Bakija, Williams College (Revised October 2013)

Why is Insurance Good? An Example Jon Bakija, Williams College (Revised October 2013) Introduction The United States government is, to a rough approximation, an insurance company with an army. 1 That is

### Characteristics of Binomial Distributions

Lesson2 Characteristics of Binomial Distributions In the last lesson, you constructed several binomial distributions, observed their shapes, and estimated their means and standard deviations. In Investigation

BREAK-EVEN ANALYSIS In your business planning, have you asked questions like these? How much do I have to sell to reach my profit goal? How will a change in my fixed costs affect net income? How much do