# 1. What is the current in a circuit if 15 coulombs of electric charge move past a given point in 3 seconds? (1) 5 A (3) 18 A (2) 12 A (4) 45 A

Size: px
Start display at page:

Download "1. What is the current in a circuit if 15 coulombs of electric charge move past a given point in 3 seconds? (1) 5 A (3) 18 A (2) 12 A (4) 45 A"

## Transcription

1 1. What is the current in a circuit if 15 coulombs of electric charge move past a given point in 3 seconds? 5 A 18 A 12 A 45 A 2. If 60. electrons pass a given point in a conductor in one second, the current in this conductor is A A A A 3. An ampere can be defined as one coulomb per second joule per coulomb ohm per volt Newton per coulomb 4. The number of electrons that pass a certain point in a conductor in a given amount of time is defined as potential difference resistance charge electric current 5. An operating lamp draws a current of 0.50 ampere. The amount of charge passing through the lamp in 10. seconds is C 5.0 C 2.0 C 20 C 6. A current of 3.0 amperes is flowing in a circuit. How much charge passes a given point in the circuit in 30. seconds? 0.10 C 33 C 10. C 90. C 7. A uniform copper wire has a resistance of 100 ohms. If the wire is cut into 10 equal lengths, the resistance of each piece will be 1 Ω 100 Ω 10 Ω 1,000 Ω 8. A piece of wire has a resistance of 8 ohms. A second piece of wire of the same composition, diameter, and temperature, but one-half as long as the first wire, has a resistance of 8 Ω 16 Ω 2 Ω 4 Ω 9. If the length of a copper wire is reduced by half, then the resistance of the wire will be halved quartered doubled quadrupled 10. To reduce the resistance of a metal conductor one should cool the conductor to a low temperature heat the conductor to a high temperature coat the conductor with an insulator wire the conductor in series with another resistor 11. A copper wire is part of a complete circuit through which current flows. Which graph best represents the relationship between the wire's length and its resistance? 12. A manufacturer recommends that the longer the extension cord used with an electric drill, the thicker (heavier gauge) the extension cord should be. This recommendation is made because the resistance of a wire varies directly with length and inversely with cross-sectional area inversely with length and directly with cross-sectional area directly with both length and cross-sectional area inversely with both length and cross-sectional area 13. As the temperature of a coil of copper wire increases, its electrical resistance decreases remains the same s

2 14. A copper wire of length L and cross-sectional area A has resistance R. A second copper wire at the same temperature has a length of 2L and a cross-sectional area of 1 2A. What is the resistance of the second copper wire? R 2R 1 R 2 4R 21. If the diameter of a wire were to increase, its electrical resistance would decrease remain the same 22. Which graph below best represents how the resistance (R) of a series of copper wires of uniform length and temperature varies with cross-sectional area (A)? 15. When an incandescent light bulb is turned on, its thin wire filament heats up quickly. As the temperature of this wire filament increases, its electrical resistance decreases remains the same s 16. An incandescent light bulb is supplied with a constant potential difference of 120 volts. As the filament of the bulb heats up, its resistance increases and the current through it decreases s and the current through it increases decreases and the current through it decreases decreases and the current through it increases 17. The diagram below represents a lamp, a 10-volt battery, and a length of nichrome wire connected in series. 23. The diagram below shows a circuit in which a copper wire connects points A and B. As the temperature of the nichrome is decreased, the brightness of the lamp will decrease remain the same 18. If the cross-sectional area of a fixed length of wire were decreased, the resistance of the wire would decrease remain the same 19. A copper wire has a resistance of 200 ohms. A second copper wire with twice the cross-sectional area and the same length would have a resistance of 50Ω 200Ω 100Ω 400Ω 20. One watt is equivalent to one N m J s N/m J/s The electrical resistance between points A and B can be decreased by replacing the wire with a thicker copper wire of the same length replacing the wire with a longer copper wire of the same thickness increasing the temperature of the copper wire increasing the potential difference supplied by the battery 24. If both the cross-sectional area and the length of a metallic conductor were doubled, the resistance of the conductor would be halved unchanged doubled quadrupled 25. A student needs to increase the resistance in a circuit. All that is available for this task is a wide variety of wires of different lengths and thicknesses. To obtain the maximum resistance, the student should replace the wire with one that is shortest and thickest longest and thickest shortest and thinnest longest and thinnest

3 26. In the diagrams below, l represents a unit length of copper wire and A represents a unit cross-sectional area. Which copper wire has the smallest resistance at room temperature? 27. A metal wire has length L and cross-sectional area A. The resistance of the wire is directly proportional to L A L A A L L + A 28. Which graph best represents the relationship between resistance and length of a copper wire of uniform crosssectional area at constant temperature? 30. Which changes would cause the greatest increase in the rate of flow of charge through a conducting wire? increasing the applied potential difference and decreasing the length of wire increasing the applied potential difference and increasing the length of wire decreasing the applied potential difference and decreasing the length of wire decreasing the applied potential difference and increasing the length of wire 31. A potential difference of 12 volts is applied across a circuit which has a 4.0-ohm resistance. What is the magnitude of the current in the circuit? 0.33 A 3.0 A 48 A 4.0 A 32. The ratio of the potential difference across a metallic conductor to the current in the conductor is known as potential drop resistance conductivity electromagnetic force 33. The ratio of the potential difference across a conductor to the current in the conductor is called conductivity charge resistance power 34. A 20.-ohm resistor has 40. coulombs passing through it in 5.0 seconds. The potential difference across the resistor is 8.0 V 160 V 100 V 200 V 35. What is the current through a 25 ohm resistor connected to a 5.0 volt power supply? 0.20 A 25 A 5.0 A 30. A 36. In a simple electric circuit, a 110-volt electric heater draws 2.0 amperes of current. The resistance of the heater is Þ 55 Þ 28 Þ 220 Þ 37. A 330.-ohm resistor is connected to a 5.00-volt battery. The current through the resistor is ma 335 ma 15.2 ma 1650 ma 29. A lamp has a current of 2.0 amperes at 6.0 volts. The resistance of the lamp must be 1.5 Ω 3.0 Ω 6.0 Ω 12 Ω 38. A student needs a 4-ohm resistor to complete a circuit. Only a large quantity of 1-ohm resistors are available. Which of the following should be done to complete the circuit? Connect four 1-ohm resistors in series. Connect four 1-ohm resistors in parallel. Connect two of the 1-ohm resistors in series and two in parallel. Connect only two 1-ohm resistors in parallel.

4 39. The diagram below represents a simple circuit consisting of a variable resistor, a battery, an ammeter, and a voltmeter. 42. The graph below represents the relationship between the potential difference across a metal conductor and the current through the conductor at a constant temperature. What is the effect of increasing the resistance of the variable resistor from 1000 Þ to Þ? [Assume constant temperature.] The ammeter reading decreases. The ammeter reading increases. The voltmeter reading decreases. The voltmeter reading increases. 40. The graph below shows the relationship between current and potential difference for four resistors A, B, C, and D. What is the resistance of the conductor? The graph below represents the relationship between the potential difference (V) across a resistor and the current (I) through the resistor. Which resistor has the greatest resistance? A C B D 41. The slope of the line on the graph at the right represents Through which entire interval does the resistor obey Ohm s law? AB CD BC AD 44. Which circuit segment has an equivalent resistance of 6 ohms? resistance of a material electric field intensity power dissipated in a resistor electrical energy

6 Base your answers to questions 54 and 55 on the diagram below. 59. The diagram below represents a simple electric circuit. 54. What is the current in resistor R 2? 8.00 A 16.0 A 2.00 A 4.00 A 55. The voltage drop across R 1 is 0 V 12.0 V 8.00 V 24.0 V 56. A 5-ohm and a 10-ohm resistor are connected in series. The current in the 5-ohm resistor is 2 amperes. The current in the 10-ohm resistor is 1 A 0.5 A 2 A 8 A How much charge passes through the resistor in 2.0 seconds? 6.0 C 8.0 C 2.0 C 4.0 C 60. The diagram below shows two resistors connected in series to a 20.-volt battery. 57. When the circuit shown below is completed what will be the reading on the ammeter at B? If the current through the 5.0-ohm resistor is 1.0 ampere, the current through the 15.0-ohm resistor is 1.0 A 3.0 A 0.33 A 1.3 A less than the reading at A greater than the reading at A the same as the reading at A 61. The diagram below represents an electric circuit. 58. The potential difference between points A and B in the electric circuit shown below is 10 volts. What is the voltage between points B and C? 5 V 20 V 10 V 30 V If the voltage between A and B is 10 volts, the voltage between B and C is 5 V 15 V 10 V 20 V

7 Base your answers to questions 62 and 63 on the diagram below. 67. Base your answer to the following question on the circuit diagram below. 62. If the potential difference across R 1 is V volts, the potential difference across R 2 would equal V volts (60 V) volts (60 V) volts (60 + V) volts 63. If the potential difference of the source were decreased, the total heat developed in the circuit would decrease remain the same The voltage drop at R 1 will be less than 10 volts 20 volts 10 volts more than 20 volts 68. The diagram below shows three resistors, R 1, R 2, and R 3, connected to a 12-volt battery. 64. As more resistors are added in series across a battery, the potential drop across each resistor decreases remains the same s 65. What is the voltage of the power supply shown on the below? If voltmeter V 1 reads 3 volts and voltmeter V 2 reads 4 volts, what is the potential drop across resistor R 3? 12 V 0 V 5 V 4 V 69. What must be inserted between points A and B to establish a steady electric current in the incomplete circuit represented in the diagram below? 0.5 volt 15 volts 10 volts 50 volts 66. In the circuit shown below, how many coulombs of charge will pass through resistor R in 2.0 seconds? 36 C 3.0 C 6.0 C 4.0 C switch voltmeter magnetic field source source of potential difference 70. As the number of resistors connected in parallel to a constant voltage source is increased, the potential difference across each resistor decreases remains the same s

8 71. Base your answer to the following question on the circuit diagram below which represents a solenoid in series with a variable resistor and a voltage source. 75. A 6.0-ohm lamp requires 0.25 ampere of current to operate. In which circuit below would the lamp operate correctly when switch S is closed? The resistance of the circuit is 72 Ω 12 Ω 24 Ω 8.0 Ω 72. Base your answer to the following question on the circuit diagram below. If switch S 1 is open, the reading of ammeter A is 0.50 A 1.5 A 2.0 A 6.0 A Base your answers to questions 76 and 77 on the diagram below which represents three resistors connected in parallel across a 24- volt source. The ammeter reads 3.0 amperes. 73. The diagram below represents an electric circuit consisting of a 12-volt battery, a 3.0-ohm resistor, R 1, and a variable resistor, R The potential difference across R 3 is 8.0 V 48 V 24 V 72 V At what value must the variable resistor be set to produce a current of 1.0 ampere through R 1? 6.0 Þ 3.0 Þ 9.0 Þ 12 Þ 74. If a 15-ohm resistor is connected in parallel with a 30.-ohm resistor, the equivalent resistance is 15 ohm 10. ohm 2.0 ohm 45 ohm 77. The power supplied to the circuit is 220 W 72 W 190 W 24 W 78. Two identical resistors connected in series have a combined resistance of 8 ohms. When connected in parallel, the resistance of the combination will be 8 Ω 16 Ω 2 Ω 4 Ω

11 97. In which circuit would ammeter A show the greatest current? 98. Three ammeters are located near junction P in a direct current circuit as shown in the diagram below In the circuit represented below, which switches must be closed to produce a current in conductor AB? If ammeter A l reads 3 amperes and ammeter A 2 reads 4 amperes, then what does ammeter A 3 read? 5 A 3 A 7 A 8 A Base your answers to questions 99 and 100 on the information below. An electric heater rated at 4,800 watts is operated on 120 volts. 99. If another heater is connected in parallel with the first one and both operate at 120 volts, the current in the first heater will decrease remain the same 100. What is the resistance of the heater? 576,000 Ω 3.0 Ω 120 Ω 40. Ω 1 and 4 1, 2, and 3 2 and 3 2, 3, and As the number of resistors in a parallel circuit is increased, what happens to the equivalent resistance of the circuit and total current in the circuit? Both equivalent resistance and total current decrease. Both equivalent resistance and total current increase. Equivalent resistance decreases and total current increases. Equivalent resistance increases and total current decreases Which statement about ammeters and voltmeters is correct? The internal resistance of both meters should be low. Both meters should have a negligible effect on the circuit being measured. The potential drop across both meters should be made as large as possible. The scale range on both meters must be the same.

12 104. Which circuit shown below could be used to determine the total current and potential difference of a parallel circuit? 109. Which circuit shows the correct use of meters? (A-ammeter, V-voltmeter) 105. Compared to the resistance of the circuit being measured, the internal resistance of a voltmeter is designed to be very high so that the meter will draw no current from the circuit little current from the circuit most of the current from the circuit all the current from the circuit 106. A student uses a voltmeter to measure the potential difference across a circuit resistor. To obtain a correct reading, the student must connect the voltmeter in parallel with the circuit resistor in series with the circuit resistor before connecting the other circuit components after connecting the other circuit components 107. In simple electrical circuits, connecting wires are assumed to have a resistance of one ohm less than zero ohms greater than one ohm zero ohms 108. What quantities may be directly measured by the arrangement of meters shown in the diagram below? 110. A 120-volt toaster is rated at 600 watts. Under normal conditions, the current in the toaster is 0.20 A 10. A 5.0 A 25 A 111. Three resistors of 10 ohms, 20 ohms, and 30 ohms are connected in series to a 120-volt source. The power developed is greatest in the 10 Ω greatest in the 20 Ω resistor greatest in the 30 Ω resistor the same in all three resistors 112. If energy is used in an electric circuit at the rate of 20 joules per second, then the power supplied to the circuit is 5 watts 25 watts 20 watts 100 watts voltage drop across R 2 and current through R 2 current through R 1 and R 2 current through R 1 and voltage drop across R 2 the resistance of R l and R To increase the brightness of a desk lamp, a student replaces a 60-watt light bulb with a 100-watt bulb. Compared to the 60-watt bulb, the 100-watt bulb has less resistance and draws more current less resistance and draws less current more resistance and draws more current more resistance and draws less current

13 114. Which circuit diagram below correctly shows the connection of ammeter A and voltmeter V to measure the current through and potential difference across resistor R? 115. A lamp and an ammeter are connected to a source as shown. What is the electrical energy expended in the lamp in 3.0 seconds? 50. J 50. W 150 J 150 W 116. An electric motor draws 150 amperes of current while operating at 240 volts. What is the power rating of this motor? 1.6 W W W W 117. While operating at 120 volts, an electric toaster has a resistance of 15 ohms. The power used by the toaster is 8.0 W 960 W 120 W 1,800 W 118. A lamp operates at 10 volts and draws a current of.5 ampere for 60 seconds. What power is developed by the lamp? 5 watts 300 watts 30 watts 600 watts 119. An air conditioner is designed to operate at 110 volts and is rated at 2,400 watts. Is it possible to use the air conditioner in a circuit which has a 15-ampere circuit breaker (or fuse) on a 110-volt line? Yes, because the current needed is less than 15 amperes. No, because the voltage required is too high. Yes, because the voltage is lower than that needed. No, because the current needed is greater than 15 amperes A light bulb operating at 120 volts draws a current of 0.50 ampere for 240 seconds. The power rating of the light bulb is 30. W 75 W 60. W 120 W 121. The potential difference across a 100.-ohm resistor is 4.0 volts. What is the power dissipated in the resistor? 0.16 W 25 W W 4.0 W 122. The same potential difference is applied to two lamps, A and B. The resistance of lamp A is twice the resistance of lamp B. Compared to the power developed by lamp B, the power developed by lamp A is less the same greater 123. As the resistance of a lamp operating at a constant voltage increases, the power dissipated by the lamp decreases remains the same s 124. As the resistance of a constant-voltage circuit is increased, the power developed in the circuit decreases remains the same s 125. An electric circuit contains a variable resistor connected to a source of constant voltage. As the resistance of the variable resistor is increased, the power dissipated in the circuit decreases remains the same s 126. How long must a 100-watt light bulb be used in order to dissipate 1,000 joules of electrical energy? 10 s 1,000 s 100 s 100,000 s

14 127. The potential difference applied to a circuit element remains constant as the resistance of the element is varied. Which graph best represents the relationship between power (P) and resistance (R) of this element? 130. In the circuit diagram below, two 4.0-ohm resistors are connected to a 16-volt battery as shown. The rate at which electrical energy is expended in this circuit is 8.0 W 32 W 16 W 64 W Identical resistors (R) are connected across the same 12-volt battery. Which circuit uses the greatest power? 129. What is the approximate amount of electrical energy needed to operate a 1,600-watt toaster for 60. seconds? 27 J 1,700 J 1,500 J 96,000 J The circuit represented in the diagram above is a series circuit. The electrical energy expended in resistor R in 2.0 seconds is 20. J 80. J 40. J 120 J 132. A clothes dryer connected to a 240-volt line draws 30. amperes of current for 20. minutes. Approximately how much electrical energy is consumed by the dryer? J J J J 133. An iron has a current of 10. amperes when 120 volts of potential difference is applied for 60. seconds. The total energy dissipated during the 60. seconds is 10. J 1,200 J 20. J 72,000 J 134. An operating 75-watt lamp is connected to a 120-volt outlet. How much electrical energy is used by the lamp in 60. minutes? J J J J

15 135. How long will it take the immersion heater shown in the diagram below to deliver 1000 joules of heat to the water? 0.2 sec 20 sec 2 sec 200 sec

### PHYSICS 111 LABORATORY Experiment #3 Current, Voltage and Resistance in Series and Parallel Circuits

PHYSCS 111 LABORATORY Experiment #3 Current, Voltage and Resistance in Series and Parallel Circuits This experiment is designed to investigate the relationship between current and potential in simple series

### People s Physics Book

The Big Ideas: The name electric current is given to the phenomenon that occurs when an electric field moves down a wire at close to the speed of light. Voltage is the electrical energy density (energy

### STUDY GUIDE: ELECTRICITY AND MAGNETISM

319 S. Naperville Road Wheaton, IL 60187 www.questionsgalore.net Phone: (630) 580-5735 E-Mail: info@questionsgalore.net Fax: (630) 580-5765 STUDY GUIDE: ELECTRICITY AND MAGNETISM An atom is made of three

### Voltage Drop (Single-Phase)

Voltage Drop (Single-Phase) To Find: To Find Voltage Drop Formula: 2 x K x L x I V.D. = ------------------- C.M. Variables: C.M. = Circular Mill Area (Chapter 9, Table 8) To Find Voltage Drop Percentage

### PHYS 222 Spring 2012 Final Exam. Closed books, notes, etc. No electronic device except a calculator.

PHYS 222 Spring 2012 Final Exam Closed books, notes, etc. No electronic device except a calculator. NAME: (all questions with equal weight) 1. If the distance between two point charges is tripled, the

### Basic Principles of. Electricity. Basic Principles of Electricity. by Prof. Dr. Osman SEVAİOĞLU Electrical and Electronics Engineering Department

Basic Principles of Electricity METU by Prof. Dr. Osman SEVAİOĞLU Electrical and Electronics Engineering Department EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİOĞLU,

### Objectives. Capacitors 262 CHAPTER 5 ENERGY

Objectives Describe a capacitor. Explain how a capacitor stores energy. Define capacitance. Calculate the electrical energy stored in a capacitor. Describe an inductor. Explain how an inductor stores energy.

### 3.- What atom s particle moves through a conductor material? 4.- Which are the electric components of an elemental electric circuit?

1.- What is electricity? 2.- Write down the name of the atom s particles. 3.- What atom s particle moves through a conductor material? 4.- Which are the electric components of an elemental electric circuit?

### Objectives. Electric Current

Objectives Define electrical current as a rate. Describe what is measured by ammeters and voltmeters. Explain how to connect an ammeter and a voltmeter in an electrical circuit. Explain why electrons travel

### Electrical Circuit Theory

Electrical Circuit Theory Learning Objectives: 1. Review the basic electrical concepts of voltage, amperage, and resistance. 2. Review the components of a basic automotive electrical circuit. 3. Introduce

### Lecture Notes: ECS 203 Basic Electrical Engineering Semester 1/2010. Dr.Prapun Suksompong 1 June 16, 2010

Sirindhorn International Institute of Technology Thammasat University School of Information, Computer and Communication Technology Lecture Notes: ECS 203 Basic Electrical Engineering Semester 1/2010 Dr.Prapun

### Joule Equivalent of Electrical Energy

by Dr. James E. Parks Department of Physics and Astronomy 401 Nielsen Physics Building The University of Tennessee Knoxville, Tennessee 37996-1200 Copyright October, 2013 by James Edgar Parks* *All rights

### Electronics. Basic Concepts. Yrd. Doç. Dr. Aytaç GÖREN Yrd. Doç. Dr. Levent ÇETİN

Electronics Basic Concepts Electric charge Ordinary matter is made up of atoms which have positively charged nuclei and negatively charged electrons surrounding them. Charge is quantized as the subtraction

### Electrical Resistance Resistance (R)

Electrical Resistance Resistance (R) Any device in a circuit which converts electrical energy into some other form impedes the current. The device which converts electrical energy to heat energy is termed

### THE BREADBOARD; DC POWER SUPPLY; RESISTANCE OF METERS; NODE VOLTAGES AND EQUIVALENT RESISTANCE; THÉVENIN EQUIVALENT CIRCUIT

THE BREADBOARD; DC POWER SUPPLY; RESISTANCE OF METERS; NODE VOLTAGES AND EQUIVALENT RESISTANCE; THÉVENIN EQUIVALENT CIRCUIT YOUR NAME LAB MEETING TIME Reference: C.W. Alexander and M.N.O Sadiku, Fundamentals

### First Year (Electrical & Electronics Engineering)

Z PRACTICAL WORK BOOK For The Course EE-113 Basic Electrical Engineering For First Year (Electrical & Electronics Engineering) Name of Student: Class: Batch : Discipline: Class Roll No.: Examination Seat

### Exercises on Voltage, Capacitance and Circuits. A d = (8.85 10 12 ) π(0.05)2 = 6.95 10 11 F

Exercises on Voltage, Capacitance and Circuits Exercise 1.1 Instead of buying a capacitor, you decide to make one. Your capacitor consists of two circular metal plates, each with a radius of 5 cm. The

### I = V/r P = VI. I = P/V = 100 W / 6 V = 16.66 amps. What would happen if you use a 12-volt battery and a 12-volt light bulb to get 100 watts of power?

Volts, Amps and Ohms Measuring Electricity The three most basic units in electricity are voltage (V), current (I) and resistance (r). Voltage is measured in volts, current is measured in amps and resistance

### Induced voltages and Inductance Faraday s Law

Induced voltages and Inductance Faraday s Law concept #1, 4, 5, 8, 13 Problem # 1, 3, 4, 5, 6, 9, 10, 13, 15, 24, 23, 25, 31, 32a, 34, 37, 41, 43, 51, 61 Last chapter we saw that a current produces a magnetic

### Aircraft Electrical System

Chapter 9 Aircraft Electrical System Introduction The satisfactory performance of any modern aircraft depends to a very great degree on the continuing reliability of electrical systems and subsystems.

Last Name: First Name: Physics 102 Spring 2006: Exam #2 Multiple-Choice Questions 1. A charged particle, q, is moving with speed v perpendicular to a uniform magnetic field. A second identical charged

### Eðlisfræði 2, vor 2007

[ Assignment View ] [ Print ] Eðlisfræði 2, vor 2007 30. Inductance Assignment is due at 2:00am on Wednesday, March 14, 2007 Credit for problems submitted late will decrease to 0% after the deadline has

### Method 1: 30x50 30 50 18.75 15 18.75 0.8. 80 Method 2: 15

The University of New South Wales School of Electrical Engineering and Telecommunications ELEC Electrical and Telecommunications Engineering Tutorial Solutions Q. In the figure below a voltage source and

### Voltage Loss Formula s

www.litz-wire.com HM Wire International Inc. Phone: 330-244-8501 Fax: 330-244-8561 Voltage Loss Formula s www.hmwire.com Voltage loss in a wire is synonymous to pressure loss in a pipe. Electric current

### Digital Energy ITI. Instrument Transformer Basic Technical Information and Application

g Digital Energy ITI Instrument Transformer Basic Technical Information and Application Table of Contents DEFINITIONS AND FUNCTIONS CONSTRUCTION FEATURES MAGNETIC CIRCUITS RATING AND RATIO CURRENT TRANSFORMER

### Power measurement in balanced 3 phase circuits and power factor improvement. 1 Power in Single Phase Circuits. Experiment no 1

Experiment no 1 Power measurement in balanced 3 phase circuits and power factor improvement 1 Power in Single Phase Circuits Let v = m cos(ωt) = cos(ωt) is the voltage applied to a R-L circuit and i =

### Modified True/False Indicate whether the statement is true or false. If false, change the identified word or phrase to make the statement true.

ch 7 and 16 review Modified True/False Indicate whether the statement is true or false. If false, change the identified word or phrase to make the statement true. 1. The heat released by a burning candle

### Voltage, energy and power in electric circuits. Science teaching unit

Voltage, energy and power in electric circuits Science teaching unit Disclaimer The Department for Children, Schools and Families wishes to make it clear that the Department and its agents accept no responsibility

### Electrical Circuits. Section 2. Types of Circuits. Components of a Circuit

Electrical Circuits Types of Circuits A circuit is a complete path for current when voltage is applied. There are three basic types of circuits: Series Parallel Series parallel All circuits require the

### Equipment: Power Supply, DAI, Variable resistance (8311), Variable inductance (8321)

Lab 4: 3-phase circuits. Objective: to study voltage-current relationships in 3-phase circuits; to learn to make delta and Y connections; to calculate and measure real, apparent, and reactive powers. Equipment:

### Georgia Performance Standards Framework for Physical Science 8 th Grade. Powering Satellites

The following instructional plan is part of a GaDOE collection of Unit Frameworks, Performance Tasks, examples of Student Work, and Teacher Commentary. Many more GaDOE approved instructional plans are

### CURRENT ELECTRICITY INTRODUCTION TO RESISTANCE, CAPACITANCE AND INDUCTANCE

CURRENT ELECTRICITY INTRODUCTION TO RESI STANCE, CAPACITANCE AND INDUCTANCE P R E A M B L E This problem is adapted from an on-line knowledge enhancement module for a PGCE programme. It is used to cover

### Lab 2: Resistance, Current, and Voltage

2 Lab 2: Resistance, Current, and Voltage I. Before you come to la.. A. Read the following chapters from the text (Giancoli): 1. Chapter 25, sections 1, 2, 3, 5 2. Chapter 26, sections 1, 2, 3 B. Read

### I. R. D. T INSTITUTE OF RESEARCH DEVELOPMENT AND TRAINING

I. R. D. T INSTITUTE OF RESEARCH DEVELOPMENT AND TRAINING SYLLABUS SIX MONTHS FULL TIME Repair and Maintenance of Electrical gadgets EFFECTIVE FROM:- UNDER DEVELOPMENT Prepared By: Curriculum Development

### ELECTRICITY (E) So, what is this mysterious stuff that we call E? Where does it come from? Where does it go and why is it

ELECTRICITY (E) Electricity how it works, how we measure and pay for it. INTRODUCTION: HOW ELECTRICITY WORKS: E completely surrounds us. Modern life would be rather primitive without it. A few examples

### An Electrical Lab Exercise on Voltage Drop

An Electrical Lab Exercise on Voltage Drop Mark C. Tatum, P.E. Auburn University Auburn, AL Lab exercises are an excellent way to give students hands on experiences. Practice by doing has been demonstrated

### Electrical Safety Training for the Manufacturing Industry

Disclaimer Electrical Safety Training for the Manufacturing Industry This material was produced under grant number SH 20999 10 60 F 21 from the Occupational Safety and Health Administration, U.S. Department

### G482 Electrons, Waves and Photons; Revision Notes Module 1: Electric Current

G482 Electrons, Waves and Photons; Revision Notes Module 1: Electric Current Electric Current A net flow of charged particles. Electrons in a metal Ions in an electrolyte Conventional Current A model used

### Physics 133: tutorial week 4 Ohm s law, electrical power, emf and internal resistance.

Physics 133: tutorial week 4 Ohm s law, electrical power, emf and internal resistance. 41. The heating element of a clothes drier has a resistance of 11Ïand is connected across a 240V electrical outlet.

### Fundamentals of Power

Fundamentals of Power Fundamentals of Power 2008 American Power Conversion Corporation. All rights reserved. All trademarks provided are the property of their respective owners. Learning Objectives At

### Line Loss WSDOT Winter 2008 BZA

Electrical Design Training Class Line Loss WSDOT Winter 2008 BZA Presented by: Keith Calais 1 OHM S LAW P = Watts (Power) I = CURRENT (AMPERES) R = RESISTANCE (OHMS) E = ELECTROMOTIVE FORCE (VOLTS) P =

### VOLTAGE REGULATOR AND PARALLEL OPERATION

VOLTAGE REGULATOR AND PARALLEL OPERATION Generator sets are operated in parallel to improve fuel economy and reliability of the power supply. Economy is improved with multiple paralleled generators by

### HOW TO USE MULTIMETER. COMPILE BY: Dzulautotech

HOW TO USE MULTIMETER COMPILE BY: Dzulautotech 1. GENERAL Electricity is absolutely necessary for an automobile. It is indispensable when the engine is started, the air fuel mixture is ignited and exploded,

### Slide 1 / 26. Inductance. 2011 by Bryan Pflueger

Slide 1 / 26 Inductance 2011 by Bryan Pflueger Slide 2 / 26 Mutual Inductance If two coils of wire are placed near each other and have a current passing through them, they will each induce an emf on one

### Basic Laws Circuit Theorems Methods of Network Analysis Non-Linear Devices and Simulation Models

EE Modul 1: Electric Circuits Theory Basic Laws Circuit Theorems Methods of Network Analysis Non-Linear Devices and Simulation Models EE Modul 1: Electric Circuits Theory Current, Voltage, Impedance Ohm

### Electricity. Introduction. Key concepts of electricity. Static electricity. Current electricity

Electricity Introduction This topic explores the key concepts of electricity as they relate to: static electricity current electricity higher order models of electric circuits household electricity electricity

### UNIT D ELECTRICAL PRINCIPLES & TECHNOLOGIES. Science 9

UNIT D ELECTRICAL PRINCIPLES & TECHNOLOGIES Science 9 LEARNING GOALS Investigate and interpret devices that convert various forms of energy Describe technologies for the transfer and control of electrical

### Homework #11 203-1-1721 Physics 2 for Students of Mechanical Engineering

Homework #11 203-1-1721 Physics 2 for Students of Mechanical Engineering 2. A circular coil has a 10.3 cm radius and consists of 34 closely wound turns of wire. An externally produced magnetic field of

### Energy in Electrical Systems. Overview

Energy in Electrical Systems Overview How can Potential Energy be stored in electrical systems? Battery Stored as chemical energy then transformed to electrical energy on usage Water behind a dam Water

### FLORIDA STATE COLLEGE AT JACKSONVILLE NON-COLLEGE CREDIT COURSE OUTLINE

Form 2B, Page 1 FLORIDA STATE COLLEGE AT JACKSONVILLE NON-COLLEGE CREDIT COURSE OUTLINE COURSE NUMBER: ACR 0100 COURSE TITLE: PREREQUISITE(S): COREQUISITE(S): Basic Electricity and Schematics None None

### Solar Energy Discovery Lab

Solar Energy Discovery Lab Objective Set up circuits with solar cells in series and parallel and analyze the resulting characteristics. Introduction A photovoltaic solar cell converts radiant (solar) energy

### Diodes have an arrow showing the direction of the flow.

The Big Idea Modern circuitry depends on much more than just resistors and capacitors. The circuits in your computer, cell phone, Ipod depend on circuit elements called diodes, inductors, transistors,

### AJ s Technical Tips: Designing a Small Solar PV System Part IV; Selecting Wires for the System

AJ s Technical Tips: Designing a Small Solar PV System Part IV; Selecting Wires for the System A little while back Simon Nyukuri of Kitale wrote to ask me about sizing wires and cables for solar PV systems.

### SOLAR ENERGY. Solar Energy, Kit #6A: Efficiency of Solar Cells. Solar Energy, Kit #6B: Solar Extension Activities INSTITUTE FOR SCHOOL PARTNERSHIP

SOLAR ENERGY Solar Energy, Kit #6A: Efficiency of Solar Cells Solar Energy, Kit #6B: Solar Extension Activities INSTITUTE FOR SCHOOL PARTNERSHIP PARC Contents: Topic Template 3 Introduction: Photovoltaic

### INSTALLATION INSTRUCTION SPEC. SHEET 7/00. City of New York Calendar #40747 ETL LISTED UNDER U.L. STD. 2108 LOW VOLTAGE TRACK LIGHTING SYSTEM

7/00 INSTALLATION INSTRUCTION SPEC. SHEET 99052 99063 City of New York Calendar #40747 Copyright c 2000 ALFA Lighting, Inc. All rights reserved. Call:1-415-975-8080 QUICK JACK QJS R LISTED 9901483 ETL

### Direct Current Motors

Direct Current Motors DC MOTORS The DC machine can operate as a generator and as a motor. Chap 5. Electrical Machines by Wildi, 6 e Lecturer: R. Alba-Flores Alfred State College Spring 2008 When a DC machine

### Cambridge International Examinations Cambridge International General Certificate of Secondary Education

Cambridge International Examinations Cambridge International General Certificate of Secondary Education *0123456789* PHYSICS 0625/04 Paper 4 Theory (Extended) For Examination from 2016 SPECIMEN PAPER 1

### Voltage Drop. Voltage Drop 1

Voltage Drop The technical information provided herein is to assist qualifi ed persons in planning and installing electric service to farms and residences. Qualified person is defi ned in Article 100 of

### Forms of Energy. Freshman Seminar

Forms of Energy Freshman Seminar Energy Energy The ability & capacity to do work Energy can take many different forms Energy can be quantified Law of Conservation of energy In any change from one form

### The electrical field produces a force that acts

Physics Equipotential Lines and Electric Fields Plotting the Electric Field MATERIALS AND RESOURCES ABOUT THIS LESSON EACH GROUP 5 alligator clip leads 2 batteries, 9 V 2 binder clips, large computer LabQuest

### ABB ! CAUTION. Type COQ Negative Sequence Generator Relay. (50/60 Hertz) 41-161J. Instruction Leaflet

ABB Instruction Leaflet 41-161J Effective: May 1997 Supersedes I.L. 41-161H Dated July 1984 ( ) Denotes Change Since Previous Issue Type COQ Negative Sequence Generator Relay (50/60 Hertz)! CAUTION Before

### Solution Derivations for Capa #11

Solution Derivations for Capa #11 Caution: The symbol E is used interchangeably for energy and EMF. 1) DATA: V b = 5.0 V, = 155 Ω, L = 8.400 10 2 H. In the diagram above, what is the voltage across the

### BASIC ELECTRICITY TEST TEST INFORMATION PAMPHLET

BASIC ELECTRICITY TEST TEST INFORMATION PAMPHLET WHY DO AT&T AND ITS AFFILIATES TEST? When individuals are being considered for our available job openings, they go through a selection process to measure

### VCE VET ENGINEERING STUDIES

Victorian Certificate of Education 2013 SUPERVISOR TO ATTACH PROCESSING LABEL HERE STUDENT NUMBER Letter Figures Words VCE VET ENGINEERING STUDIES Written examination Section Wednesday 20 November 2013

### (Issued 1 Dec. 1965) CRD-C 45-65 METHOD OF TEST FOR THERMAL CONDUCTIVITY OF LIGHTWEIGHT INSULATING CONCRETE 1

CRD-C 45-65 METHOD OF TEST FOR THERMAL CONDUCTIVITY OF LIGHTWEIGHT INSULATING CONCRETE 1 Scope 1. This method of test covers a procedure for measuring the thermal conductivity of lightweight concrete of

### Errors Related to Cable Resistance Imbalance in Three Wire RTDs

Errors Related to Cable Resistance Imbalance in Three Wire RTDs 1.0 Introduction There are multiple sources of error that can impact the accuracy of an RTD measurement. The cable incorporated into the

### CHAPTER 2 EXAMPLES AND TABLES

CHAPTER 2 EXAMPLES AND TABLES COMMENTARY AT 210.20(A) EXCEPTION An overcurrent device that supplies continuous and noncontinuous loads must have a rating that is not less than the sum of 100 percent of

### Think About This How do the generators located inside the dam convert the kinetic and potential energy of the water into electric energy?

What You ll Learn You will describe how changing magnetic fields can generate electric potential differences. You will apply this phenomenon to the construction of generators and transformers. Why It s

### TIPS ON ENERGY SAVING

TIPS ON ENERGY SAVING IN HOME APPLIANCES AND ELECTRICITY SAFETY The Domestic Sector accounts for 30% of total energy consumption in the country. There is a tremendous scope to conserve energy by adopting

### WIRE, TERMINAL AND CONNECTOR REPAIR CONDUCTORS

CONDUCTORS Conductors are needed to complete the path for electrical current to flow from the power source to the working devices and back to the power source. Special wiring is needed for battery cables

### Motor Protection Voltage Unbalance and Single-Phasing

Motor Protection Voltage Unbalance and Single-Phasing Cooper Bussmann contributes the following information, which is an excerpt from their 190-page handbook SPD Selecting Protective Devices Based on the

### HOUSING QUALITY STANDARDS (HQS)

HOUSING QUALITY STANDARDS (HQS) Series 5 Electrical Safety And INSPECTIONS 5.01 ELS Revised 8-17-06 Electricity is Dangerous All electrical repairs should be made by licensed professionals. Touching any

### E2 Series Electric Furnaces

E2 Series Electric Furnaces Service Manual Table of Contents Electrical Requirements... 10 Codes, Specifications Requirements... 10 Connection Supply Service Wires... 10 Furnace Sequence of Operation...

### Understanding Power Factor and How it Affects Your Electric Bill. Presented by Scott Peele PE

Understanding Power Factor and How it Affects Your Electric Bill Presented by Scott Peele PE Understanding Power Factor Definitions kva, kvar, kw, Apparent Power vs. True Power Calculations Measurements

### Electrical Grounding. Appendix C

Appendix C Electrical Grounding Low-Voltage Equipment Grounding The most frequently cited Office of Safety and Health Administration (OSHA) electrical violation is improper occupational grounding of equipment

### Electrical Symbols and Line Diagrams

Electrical Symbols and Line Diagrams Chapter 3 Material taken from Chapter 3 of One-Line Diagrams One-line diagram a diagram that uses single lines and graphic symbols to indicate the path and components

### Malestrom. Electrical Installation Calculations: Basic

Electrical Installation Calculations: Basic This page intentionally left blank Electrical Installation Calculations: Basic FOR TECHNICAL CERTIFICATE LEVEL 2 EIGHTH EDITION A. J. WATKINS CHRIS KITCHER AMSTERDAM

### Apprentice Telecommunications Technician Test (CTT) Study Guide

Apprentice Telecommunications Technician Test (CTT) Study Guide 1 05/2014 Study Guide for Pacific Gas & Electric Company Apprentice Telecommunications Technician Qualifying Test (CTT) About the Test The

### Electricity Fundamentals

Refrigeration and HVAC Electricity Fundamentals 89688-F0 Order no.: 89688-10 First Edition Revision level: 03/2016 By the staff of Festo Didactic Festo Didactic Ltée/Ltd, Quebec, Canada 2015 Internet:

### Learning Pack for Electrical Principles and Technologies Unit 4 (Science in Action 9)

Learning Pack for Electrical Principles and Technologies Unit 4 (Science in Action 9) 1 Learning Pack for Electrical Principles and Technologies Unit 4 (Science in Action 9) 2 Focus in Action UNIT LEARNING

### E&I MAINTENANCE ENTRY TEST ENABLING OBJECTIVES. DESCRIBE hazards and precautions taken to avoid injury in the workplace.

SAFETY Industrial DESCRIBE hazards and precautions taken to avoid injury in the workplace. Example #1: All of the following are common PPE used to perform maintenance activities EXCEPT: a. Safety Glasses

### 2 A bank account for electricity II: flows and taxes

PHYS 189 Lecture problems outline Feb 3, 2014 Resistors and Circuits Having introduced capacitors, we now expand our focus to another very important component of a circuit resistors. This entails more

### NATIONAL CERTIFICATE (VOCATIONAL)

NATIONAL CERTIFICATE (VOCATIONAL) SUBJECT GUIDELINES ELECTRICAL PRINCIPLES AND PRACTICE NQF Level 4 September 2007 ELECTRICAL PRINCIPLES AND PRACTICE LEVEL 4 CONTENTS INTRODUCTION 1 DURATION AND TUITION

### QUASAR ELECTRONICS KIT No. 1015 ELECTRONIC MOSQUITO REPELLER

QUASAR ELECTRONICS KIT No. 1015 ELECTRONIC MOSQUITO REPELLER General Description This simple circuit can prove itself worth many times its value (which is very reasonable anyway) in getting rid of mosquitoes

### rpsa FIRE PROTECTION ENGINEERS

R.P. SCHIFILITI ASSOCIATES, INC. P.O. Box 297 Reading, Massachusetts 01867-0497 USA 781.944.9300 Fax / Data 781.942.7500 Telephone Sample Fire Alarm System Calculations 1. A fire alarm manufacturer specifies

### CHAPTER 4 UTILITY SYSTEMS ELECTRICAL. Utility Systems Electrical. Main Panel

CHAPTER 4 UTILITY SYSTEMS ELECTRICAL Utility Systems Electrical The electrical supply to your home begins outside, where you will see either an overhead feed and piping down the side of your home or (if

### Get Connected With Ohm's Law

Get Connected With Ohm's Law Provided by TryEngineering - Lesson Focus Demonstrate Ohm's Law using digital multi-meters. Fun hands-on activities are presented that demonstrate Ohm's Law. Teachers use digital

### BASIC NEC CODE RULES AND DESIGN PRACTICE

BASIC NEC CODE RULES AND DESIGN PRACTICE Wire Ampacity and Size Circuit Breaker Size 1. Maximum loading for any branch circuit is 80% of rating of circuit for ampacity of wire for any load. NEC 220-2,

### Heating, Ventilation, Air Conditioning and Refrigeration (HVACR)

Heating, Ventilation, Air Conditioning and Refrigeration (HVACR) I. Demonstrate safety skills in typical HVACR work situations to NATE Core Installer Knowledge Areas for Technician Excellence for Safety

### The Electric Fruits. By Erika Lindstrom Ms. Godric p.2-3

The Electric Fruits By Erika Lindstrom Ms. Godric p.2-3 Table of Contents Pg. 1) Abstract Pg. 2) Introduction Pg. 3) Research Pg. 4) Experiments Pg. 5) Graphs Pg. 6) Conclusion Pg. 7) Sources Pg. 8) Sources,

### SERVICE MANUAL FOR 6700, 7000, 8000 & 9000 SERIES AIR CONDITIONERS (MECHANICAL CONTROLS ONLY)

SERVICE MANUAL FOR 6700, 7000, 8000 & 9000 SERIES AIR CONDITIONERS (MECHANICAL CONTROLS ONLY) FOR WALL MOUNT THERMOSTATS AND LOW VOLTAGE CONTROL CIRCUITS, REFER TO THEIR APPROPRIATE MANUALS FOR ELECTRICAL

### Three-phase AC circuits

Three-phase AC circuits This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/,

### Introduction. Basic Electricity. Frequency. Direct Current. Alternating Current DIRECT CURRENT DC

Generator Handbook Introduction One of the most basic necessities on a jobsite is the need for portable power. The demand for clean, reliable power has made Multiquip generators the most highly regarded

### Server Technology Inc.

Server Technology Inc. Phase Balancing: The Last Few Inches Of a High-Efficiency Power System White Paper STI-100-009 2010-June-25 Headquarters Server Technology, Inc. 1040 Sandhill Drive Reno, NV 89521

### ALUMINUM ELECTRICAL WIRING

ALUMINUM ELECTRICAL WIRING prepared by Fire Prevention and Investigation Division Denver Fire Department Department of Safety and Electrical Inspections Section Denver Building Inspection Division Community

### 802307 ELECTRICAL ENGINEERING FOR MECHANICAL ENGINEER. Tarek M. Abdolkader

802307 ELECTRICAL ENGINEERING FOR MECHANICAL ENGINEER Tarek M. Abdolkader KINGDOM OF SAUDI ARABIA Ministry of Higher Education Umm Al-Qura University College of Engineering and Islamic Architecture Electrical

### Edmund Li. Where is defined as the mutual inductance between and and has the SI units of Henries (H).

INDUCTANCE MUTUAL INDUCTANCE If we consider two neighbouring closed loops and with bounding surfaces respectively then a current through will create a magnetic field which will link with as the flux passes