Introduction to Constrained Control

Size: px
Start display at page:

Download "Introduction to Constrained Control"

Transcription

1 Introduction to Constrained Control Graham C. Goodwin September 2004

2 1.1 Background Most of the literature on Control Theory deals with Linear Unconstrained Systems. However to get the most out of a system, we usually need to deal with nonlinearities. The most common nonlinearity met in practice are Actuator Limits.

3 To get the most out of a system you need to push up against limits.

4 Other examples? Playing sport at international level Excelling in business or academia Aerospace, chemical process control,... Control is a key enabling technology in many (all?) areas Getting the most out of control means pushing against boundaries

5 1.2 Approaches to Constrained Control Cautious (back off performance demands so constraints are not met) Serendipitous (allow occasional constraint violation) Evolutionary (begin with a linear design and add embellishments, for example, antiwindup) Tactical (include constraints from the beginning, for example, MPC)

6 1.3 Example: Rudder Roll Stabilisation of Ships (See lecture 3.5) It has been observed that unless appropriate actions are taken to deal with constraints, then the performance of rudder roll stabilisation systems can be worse than if nothing is done due to the effect of actuator amplitude and slew rate constraints.

7 1.4 Model Predictive Control Model Predictive Control (MPC) is a prime example of tactical method. Long history in petrochemical industry. Many thousands of applications. Several commercial products. Industrial credibility.

8 Background A survey by Mayne et al. (2000) divides the literature on MPC in three categories: Theoretical foundations: the optimal control literature. Dynamic Programming (Bellman 1957), the Maximum Principle (for example, Lee & Markus 1967). Process control literature, responsible for MPC s adoption by industry. Evolving generations of MPC technology. An example of practice leading theory. Modern literature, dealing with theoretical advances such as stability and robustness.

9 General Description MPC is a control strategy which, for a model of the system, optimises performance (measured through a cost function) subject to constraints on the inputs, outputs and/or internal states. Due to the presence of constraints it is difficult, in general, to obtain closed formulae that solve the above control problem. Hence, MPC has traditionally solved the optimisation problem on line over a finite horizon using the receding horizon technique. This has also restricted the applicability of MPC to processes with slow time constants that allow the optimisation to be solved on line. Recent results allow faster systems to be handled.

10 An Illustrative Example We will base our design on linear quadratic regulator [LQR] theory. Thus, consider an objective function of the form: V N ({x k }, {u k }) 1 2 xt N Px N N 1 ( ) x T k Qx k + u T k Ru k, (1) where {u k } denotes the control sequence {u 0, u 1,..., u N 1 }, and {x k } denotes the corresponding state sequence {x 0, x 1,..., x N }. In (1), {u k } and {x k } are related by the linear state equation: k=0 x k+1 = Ax k + Bu k, k = 0, 1,..., N 1, where x 0, the initial state, is assumed to be known.

11 The following parameters allow one to influence performance: the optimisation horizon N the state weighting matrix Q the control weighting matrix R the terminal state weighting matrix P For example, reducing R gives less weight on control effort, hence faster response. R 0 is called cheap control.

12 Details of Example Consider the specific linear system: x k+1 = Ax k + Bu k, (2) y k = Cx k, with A = [ ] 1 1, B = 0 1 [ ] 0.5, C = [ ] 1 0, 1 which is the zero-order hold discretisation with sampling period 1 of the double integrator d 2 y(t) dt 2 = u(t).

13 Example placements controller u k sat linear system x k Figure: Feedback control loop for Example 1 if u > 1, sat(u) u if u 1, 1 if u < 1. (3)

14 (i) Cautious Design (N =, P = 0) and weighting matrices Q = C T C = R = 20 gives the linear state feedback law: u k = Kx k = [ ] x k. [ ] 1 0 and 0 0

15 Cautious Design uk g replacements y k Figure: u k and y k for the cautious design u k = Kx k with weights Q = C T C and R = 20. k k

16 (ii) Serendipitous Design Using the same Q = C T C in the infinite horizon objective function we try to obtain a faster response by reducing the control weight to R = 2. We expect that this will lead to a control law having higher gain.

17 Serendipitous Design 3 2 uk k g replacements y k Figure: u k and y k for the unconstrained LQR design u k = Kx k (dashed line), and for the serendipitous strategy u k = sat(kx k ) (circle-solid line), with weights Q = C T C and R = 2. k

18 Encouraged by the above result, we might be tempted to push our luck even further and aim for an even faster response by further reducing the weighting on the input signal. Accordingly, we decrease the control weighting in the LQR design even further, for example, to R = 0.1.

19 6 4 2 uk k 4 g replacements y k Figure: u k and y k for the unconstrained LQR design u k = Kx k (dashed line), and for the serendipitous strategy u k = sat(kx k ) (circle-solid line), with weights Q = C T C and R = 0.1. k

20 The control law u = sat(kx) partitions the state space into three regions in accordance with the definition of the saturation function (3). Hence, the serendipitous strategy can be characterised as a switched control strategy in the following way: Kx if x R 0, u = K(x) = 1 if x R 1, 1 if x R 2. Notice that this is simply an alternative way of describing the serendipitous strategy since for x R 0 the input actually lies between the saturation limits. The partition is shown in following figure. (4)

21 Figure x 2 k g replacements 0 1 R R 1 R Figure: State space trajectory and space partition for the serendipitous strategy u k = sat(kx k ), with weights Q = C T C and R = 0.1. x 1 k

22 Examination of figure 8 suggests a heuristic argument as to why the serendipitous control law may not be performing well in this case. We can think, in this example, of x 2 as velocity and x 1 as position. Now, in our attempt to change the position rapidly (from 6 to 0), the velocity has been allowed to grow to a relatively high level (+3). This would be fine if the braking action were unconstrained. However, our input (including braking) is limited to the range [ 1, 1]. Hence, the available braking is inadequate to pull the system up, and overshoot occurs.

23 (iii) Tactical Design Perhaps the above heuristic argument gives us some insight into how we could remedy the problem. A sensible idea would seem to be to try to look ahead and take account of future input constraints (that is, the limited braking authority available). To test this idea, we take the objective function (1) as a starting point.

24 Tactical Design We use a prediction horizon N = 2 and minimise, at each sampling instant i and for the current state x i, the two-step objective function: V 2 ({x k }, {u k }) = 1 2 xt i+2 Px i i+1 ( ) x T k Qx k + u T k Ru k, (5) k=i subject to the equality and inequality constraints: x k+1 = Ax k + Bu k, u k 1, (6) for k = i and k = i + 1.

25 Tactical Design In the objective function (5), we set, as before, Q = C T C, R = 0.1. The terminal state weighting matrix P is taken to be the solution of the Riccati equation P = A T PA + Q K T (R + B T PB)K, where K = (R + B T PB) 1 B T PA is the corresponding gain.

26 Tactical Design As a result of minimising (5) subject to (6), we obtain an optimal fixed-horizon control sequence {u i, u i+1 }. We then apply the resulting value of u i to the system. The state evolves to x i+1. We now shift the time instant from i to i + 1 and repeat this procedure. This is called receding horizon control [RHC] or model predictive control.

27 Receding Horizon Technique (1) At time i and for the current state x i solve an open-loop (OL) optimal control problem over a prediction horizon using a model of the system to predict future states and taking into account the present and future constraints; k (2) Apply the first step of the resulting optimal OL control sequence; k (3) Move the horizon, that is, repeat the procedure at time i + 1 for the current state x i k

28 6 4 2 uk k 4 g replacements y k Figure: u k and y k for the unconstrained LQR design u k = Kx k (dashed line), and for the receding horizon design (circle-solid line), with weights Q = C T C and R = 0.1. k

29 We will see later that the receding horizon strategy described above also leads to a partition of the state space into different regions in which affine control laws hold. The result is shown (for interest) in figure 9. The region R 2 corresponds to the region R 2 in figure 8 and represents the area of state space where u = 1 is applied. Comparing figure 8 and figure 9 we see that the region R 2 has been bent over in the figure 8 so that u = 1 occurs at lower values of x 2 (velocity) than was the case in figure 8. This is in accordance with our heuristic argument about needing to brake earlier.

30 Figure R 3 2 R 2 replacements x 2 k 1 0 R R 1 R Figure: State space plot for the receding horizon tactical design. x 1 k

31 Figure 5 and Figure PSfrag replacements 3 R R 2 nts 1 1 R 0 x 2 k 0 x 2 k 0 1 R R 1 R 0 R 4 3 R x 1 k x 1 k Figure: State space trajectory and space partition for the serendipitous strategy u k = sat(kx k ), with weights Q = C T C and R = 0.1. Figure: State space plot for the receding horizon tactical design.

32 Summary Can often avoid constraints by lowering performance demands However, this is at a cost If we increase demands - constraints are met Small violations not too significant Soon get poor performance Rethink the problem - add constraints into the design Leads to idea of Receding Horizon Control

C21 Model Predictive Control

C21 Model Predictive Control C21 Model Predictive Control Mark Cannon 4 lectures Hilary Term 216-1 Lecture 1 Introduction 1-2 Organisation 4 lectures: week 3 week 4 { Monday 1-11 am LR5 Thursday 1-11 am LR5 { Monday 1-11 am LR5 Thursday

More information

19 LINEAR QUADRATIC REGULATOR

19 LINEAR QUADRATIC REGULATOR 19 LINEAR QUADRATIC REGULATOR 19.1 Introduction The simple form of loopshaping in scalar systems does not extend directly to multivariable (MIMO) plants, which are characterized by transfer matrices instead

More information

Nonlinear Systems and Control Lecture # 15 Positive Real Transfer Functions & Connection with Lyapunov Stability. p. 1/?

Nonlinear Systems and Control Lecture # 15 Positive Real Transfer Functions & Connection with Lyapunov Stability. p. 1/? Nonlinear Systems and Control Lecture # 15 Positive Real Transfer Functions & Connection with Lyapunov Stability p. 1/? p. 2/? Definition: A p p proper rational transfer function matrix G(s) is positive

More information

Figure 1. The Ball and Beam System.

Figure 1. The Ball and Beam System. BALL AND BEAM : Basics Peter Wellstead: control systems principles.co.uk ABSTRACT: This is one of a series of white papers on systems modelling, analysis and control, prepared by Control Systems Principles.co.uk

More information

Lecture 13 Linear quadratic Lyapunov theory

Lecture 13 Linear quadratic Lyapunov theory EE363 Winter 28-9 Lecture 13 Linear quadratic Lyapunov theory the Lyapunov equation Lyapunov stability conditions the Lyapunov operator and integral evaluating quadratic integrals analysis of ARE discrete-time

More information

CONTROL SYSTEMS, ROBOTICS AND AUTOMATION Vol. XVI - Fault Accomodation Using Model Predictive Methods - Jovan D. Bošković and Raman K.

CONTROL SYSTEMS, ROBOTICS AND AUTOMATION Vol. XVI - Fault Accomodation Using Model Predictive Methods - Jovan D. Bošković and Raman K. FAULT ACCOMMODATION USING MODEL PREDICTIVE METHODS Scientific Systems Company, Inc., Woburn, Massachusetts, USA. Keywords: Fault accommodation, Model Predictive Control (MPC), Failure Detection, Identification

More information

8.2. Solution by Inverse Matrix Method. Introduction. Prerequisites. Learning Outcomes

8.2. Solution by Inverse Matrix Method. Introduction. Prerequisites. Learning Outcomes Solution by Inverse Matrix Method 8.2 Introduction The power of matrix algebra is seen in the representation of a system of simultaneous linear equations as a matrix equation. Matrix algebra allows us

More information

Lecture 7: Finding Lyapunov Functions 1

Lecture 7: Finding Lyapunov Functions 1 Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.243j (Fall 2003): DYNAMICS OF NONLINEAR SYSTEMS by A. Megretski Lecture 7: Finding Lyapunov Functions 1

More information

Solving simultaneous equations using the inverse matrix

Solving simultaneous equations using the inverse matrix Solving simultaneous equations using the inverse matrix 8.2 Introduction The power of matrix algebra is seen in the representation of a system of simultaneous linear equations as a matrix equation. Matrix

More information

Using MATLAB in a Graduate Electrical Engineering Optimal Control Course

Using MATLAB in a Graduate Electrical Engineering Optimal Control Course Using MATLAB in a Graduate Electrical Engineering Optimal Control Course Asad Azemi Department of Electrical Engineering Penn State University Great Valley Campus Malvern, PA 19355-1443 Abstract - Control

More information

Introduction to the Finite Element Method (FEM)

Introduction to the Finite Element Method (FEM) Introduction to the Finite Element Method (FEM) ecture First and Second Order One Dimensional Shape Functions Dr. J. Dean Discretisation Consider the temperature distribution along the one-dimensional

More information

TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: AAAAA

TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: AAAAA 2015 School of Information Technology and Electrical Engineering at the University of Queensland TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: AAAAA Schedule Week Date

More information

Increasing for all. Convex for all. ( ) Increasing for all (remember that the log function is only defined for ). ( ) Concave for all.

Increasing for all. Convex for all. ( ) Increasing for all (remember that the log function is only defined for ). ( ) Concave for all. 1. Differentiation The first derivative of a function measures by how much changes in reaction to an infinitesimal shift in its argument. The largest the derivative (in absolute value), the faster is evolving.

More information

Nonlinear Programming Methods.S2 Quadratic Programming

Nonlinear Programming Methods.S2 Quadratic Programming Nonlinear Programming Methods.S2 Quadratic Programming Operations Research Models and Methods Paul A. Jensen and Jonathan F. Bard A linearly constrained optimization problem with a quadratic objective

More information

Optimization of warehousing and transportation costs, in a multiproduct multi-level supply chain system, under a stochastic demand

Optimization of warehousing and transportation costs, in a multiproduct multi-level supply chain system, under a stochastic demand Int. J. Simul. Multidisci. Des. Optim. 4, 1-5 (2010) c ASMDO 2010 DOI: 10.1051/ijsmdo / 2010001 Available online at: http://www.ijsmdo.org Optimization of warehousing and transportation costs, in a multiproduct

More information

Interactive applications to explore the parametric space of multivariable controllers

Interactive applications to explore the parametric space of multivariable controllers Milano (Italy) August 28 - September 2, 211 Interactive applications to explore the parametric space of multivariable controllers Yves Piguet Roland Longchamp Calerga Sàrl, Av. de la Chablière 35, 14 Lausanne,

More information

On the D-Stability of Linear and Nonlinear Positive Switched Systems

On the D-Stability of Linear and Nonlinear Positive Switched Systems On the D-Stability of Linear and Nonlinear Positive Switched Systems V. S. Bokharaie, O. Mason and F. Wirth Abstract We present a number of results on D-stability of positive switched systems. Different

More information

Using the Theory of Reals in. Analyzing Continuous and Hybrid Systems

Using the Theory of Reals in. Analyzing Continuous and Hybrid Systems Using the Theory of Reals in Analyzing Continuous and Hybrid Systems Ashish Tiwari Computer Science Laboratory (CSL) SRI International (SRI) Menlo Park, CA 94025 Email: ashish.tiwari@sri.com Ashish Tiwari

More information

Predictive Control Algorithms: Stability despite Shortened Optimization Horizons

Predictive Control Algorithms: Stability despite Shortened Optimization Horizons Predictive Control Algorithms: Stability despite Shortened Optimization Horizons Philipp Braun Jürgen Pannek Karl Worthmann University of Bayreuth, 9544 Bayreuth, Germany University of the Federal Armed

More information

1.7. Partial Fractions. 1.7.1. Rational Functions and Partial Fractions. A rational function is a quotient of two polynomials: R(x) = P (x) Q(x).

1.7. Partial Fractions. 1.7.1. Rational Functions and Partial Fractions. A rational function is a quotient of two polynomials: R(x) = P (x) Q(x). .7. PRTIL FRCTIONS 3.7. Partial Fractions.7.. Rational Functions and Partial Fractions. rational function is a quotient of two polynomials: R(x) = P (x) Q(x). Here we discuss how to integrate rational

More information

Nonlinear Model Predictive Control: From Theory to Application

Nonlinear Model Predictive Control: From Theory to Application J. Chin. Inst. Chem. Engrs., Vol. 35, No. 3, 299-315, 2004 Nonlinear Model Predictive Control: From Theory to Application Frank Allgöwer [1], Rolf Findeisen, and Zoltan K. Nagy Institute for Systems Theory

More information

More Quadratic Equations

More Quadratic Equations More Quadratic Equations Math 99 N1 Chapter 8 1 Quadratic Equations We won t discuss quadratic inequalities. Quadratic equations are equations where the unknown appears raised to second power, and, possibly

More information

Linear-Quadratic Optimal Controller 10.3 Optimal Linear Control Systems

Linear-Quadratic Optimal Controller 10.3 Optimal Linear Control Systems Linear-Quadratic Optimal Controller 10.3 Optimal Linear Control Systems In Chapters 8 and 9 of this book we have designed dynamic controllers such that the closed-loop systems display the desired transient

More information

JUST THE MATHS UNIT NUMBER 1.8. ALGEBRA 8 (Polynomials) A.J.Hobson

JUST THE MATHS UNIT NUMBER 1.8. ALGEBRA 8 (Polynomials) A.J.Hobson JUST THE MATHS UNIT NUMBER 1.8 ALGEBRA 8 (Polynomials) by A.J.Hobson 1.8.1 The factor theorem 1.8.2 Application to quadratic and cubic expressions 1.8.3 Cubic equations 1.8.4 Long division of polynomials

More information

Sampled-Data Model Predictive Control for Constrained Continuous Time Systems

Sampled-Data Model Predictive Control for Constrained Continuous Time Systems Sampled-Data Model Predictive Control for Constrained Continuous Time Systems Rolf Findeisen, Tobias Raff, and Frank Allgöwer Institute for Systems Theory and Automatic Control, University of Stuttgart,

More information

OPTIMAL CONTROL OF A COMMERCIAL LOAN REPAYMENT PLAN. E.V. Grigorieva. E.N. Khailov

OPTIMAL CONTROL OF A COMMERCIAL LOAN REPAYMENT PLAN. E.V. Grigorieva. E.N. Khailov DISCRETE AND CONTINUOUS Website: http://aimsciences.org DYNAMICAL SYSTEMS Supplement Volume 2005 pp. 345 354 OPTIMAL CONTROL OF A COMMERCIAL LOAN REPAYMENT PLAN E.V. Grigorieva Department of Mathematics

More information

PID Control. Chapter 10

PID Control. Chapter 10 Chapter PID Control Based on a survey of over eleven thousand controllers in the refining, chemicals and pulp and paper industries, 97% of regulatory controllers utilize PID feedback. Desborough Honeywell,

More information

The Heat Equation. Lectures INF2320 p. 1/88

The Heat Equation. Lectures INF2320 p. 1/88 The Heat Equation Lectures INF232 p. 1/88 Lectures INF232 p. 2/88 The Heat Equation We study the heat equation: u t = u xx for x (,1), t >, (1) u(,t) = u(1,t) = for t >, (2) u(x,) = f(x) for x (,1), (3)

More information

Formulations of Model Predictive Control. Dipartimento di Elettronica e Informazione

Formulations of Model Predictive Control. Dipartimento di Elettronica e Informazione Formulations of Model Predictive Control Riccardo Scattolini Riccardo Scattolini Dipartimento di Elettronica e Informazione Impulse and step response models 2 At the beginning of the 80, the early formulations

More information

PUTNAM TRAINING POLYNOMIALS. Exercises 1. Find a polynomial with integral coefficients whose zeros include 2 + 5.

PUTNAM TRAINING POLYNOMIALS. Exercises 1. Find a polynomial with integral coefficients whose zeros include 2 + 5. PUTNAM TRAINING POLYNOMIALS (Last updated: November 17, 2015) Remark. This is a list of exercises on polynomials. Miguel A. Lerma Exercises 1. Find a polynomial with integral coefficients whose zeros include

More information

EQUATIONS and INEQUALITIES

EQUATIONS and INEQUALITIES EQUATIONS and INEQUALITIES Linear Equations and Slope 1. Slope a. Calculate the slope of a line given two points b. Calculate the slope of a line parallel to a given line. c. Calculate the slope of a line

More information

Homework #2 Solutions

Homework #2 Solutions MAT Spring Problems Section.:, 8,, 4, 8 Section.5:,,, 4,, 6 Extra Problem # Homework # Solutions... Sketch likely solution curves through the given slope field for dy dx = x + y...8. Sketch likely solution

More information

Solutions to Math 51 First Exam January 29, 2015

Solutions to Math 51 First Exam January 29, 2015 Solutions to Math 5 First Exam January 29, 25. ( points) (a) Complete the following sentence: A set of vectors {v,..., v k } is defined to be linearly dependent if (2 points) there exist c,... c k R, not

More information

Probability and Random Variables. Generation of random variables (r.v.)

Probability and Random Variables. Generation of random variables (r.v.) Probability and Random Variables Method for generating random variables with a specified probability distribution function. Gaussian And Markov Processes Characterization of Stationary Random Process Linearly

More information

Reliability Guarantees in Automata Based Scheduling for Embedded Control Software

Reliability Guarantees in Automata Based Scheduling for Embedded Control Software 1 Reliability Guarantees in Automata Based Scheduling for Embedded Control Software Santhosh Prabhu, Aritra Hazra, Pallab Dasgupta Department of CSE, IIT Kharagpur West Bengal, India - 721302. Email: {santhosh.prabhu,

More information

Optimization Modeling for Mining Engineers

Optimization Modeling for Mining Engineers Optimization Modeling for Mining Engineers Alexandra M. Newman Division of Economics and Business Slide 1 Colorado School of Mines Seminar Outline Linear Programming Integer Linear Programming Slide 2

More information

Modeling and Simulation of a Three Degree of Freedom Longitudinal Aero plane System. Figure 1: Boeing 777 and example of a two engine business jet

Modeling and Simulation of a Three Degree of Freedom Longitudinal Aero plane System. Figure 1: Boeing 777 and example of a two engine business jet Modeling and Simulation of a Three Degree of Freedom Longitudinal Aero plane System Figure 1: Boeing 777 and example of a two engine business jet Nonlinear dynamic equations of motion for the longitudinal

More information

3.2. Solving quadratic equations. Introduction. Prerequisites. Learning Outcomes. Learning Style

3.2. Solving quadratic equations. Introduction. Prerequisites. Learning Outcomes. Learning Style Solving quadratic equations 3.2 Introduction A quadratic equation is one which can be written in the form ax 2 + bx + c = 0 where a, b and c are numbers and x is the unknown whose value(s) we wish to find.

More information

Equations, Inequalities & Partial Fractions

Equations, Inequalities & Partial Fractions Contents Equations, Inequalities & Partial Fractions.1 Solving Linear Equations 2.2 Solving Quadratic Equations 1. Solving Polynomial Equations 1.4 Solving Simultaneous Linear Equations 42.5 Solving Inequalities

More information

Algebra Unpacked Content For the new Common Core standards that will be effective in all North Carolina schools in the 2012-13 school year.

Algebra Unpacked Content For the new Common Core standards that will be effective in all North Carolina schools in the 2012-13 school year. This document is designed to help North Carolina educators teach the Common Core (Standard Course of Study). NCDPI staff are continually updating and improving these tools to better serve teachers. Algebra

More information

General Framework for an Iterative Solution of Ax b. Jacobi s Method

General Framework for an Iterative Solution of Ax b. Jacobi s Method 2.6 Iterative Solutions of Linear Systems 143 2.6 Iterative Solutions of Linear Systems Consistent linear systems in real life are solved in one of two ways: by direct calculation (using a matrix factorization,

More information

Introduction. Appendix D Mathematical Induction D1

Introduction. Appendix D Mathematical Induction D1 Appendix D Mathematical Induction D D Mathematical Induction Use mathematical induction to prove a formula. Find a sum of powers of integers. Find a formula for a finite sum. Use finite differences to

More information

LINEAR EQUATIONS IN TWO VARIABLES

LINEAR EQUATIONS IN TWO VARIABLES 66 MATHEMATICS CHAPTER 4 LINEAR EQUATIONS IN TWO VARIABLES The principal use of the Analytic Art is to bring Mathematical Problems to Equations and to exhibit those Equations in the most simple terms that

More information

Mathematical Induction. Mary Barnes Sue Gordon

Mathematical Induction. Mary Barnes Sue Gordon Mathematics Learning Centre Mathematical Induction Mary Barnes Sue Gordon c 1987 University of Sydney Contents 1 Mathematical Induction 1 1.1 Why do we need proof by induction?.... 1 1. What is proof by

More information

8. Linear least-squares

8. Linear least-squares 8. Linear least-squares EE13 (Fall 211-12) definition examples and applications solution of a least-squares problem, normal equations 8-1 Definition overdetermined linear equations if b range(a), cannot

More information

Continued Fractions and the Euclidean Algorithm

Continued Fractions and the Euclidean Algorithm Continued Fractions and the Euclidean Algorithm Lecture notes prepared for MATH 326, Spring 997 Department of Mathematics and Statistics University at Albany William F Hammond Table of Contents Introduction

More information

YAW RATE AND VELOCITY TRACKING CONTROL OF A HANDS-FREE BICYCLE

YAW RATE AND VELOCITY TRACKING CONTROL OF A HANDS-FREE BICYCLE Proceedings of IMECE28 28 ASME International Mechanical Engineering Congress and Exposition November 2-6, 28, Boston, Massachusetts, USA IMECE28-68948 YAW RATE AND VELOCITY TRACKING CONTROL OF A HANDS-FREE

More information

TI-83/84 Plus Graphing Calculator Worksheet #2

TI-83/84 Plus Graphing Calculator Worksheet #2 TI-83/8 Plus Graphing Calculator Worksheet #2 The graphing calculator is set in the following, MODE, and Y, settings. Resetting your calculator brings it back to these original settings. MODE Y Note that

More information

Nonlinear Model Predictive Control of Hammerstein and Wiener Models Using Genetic Algorithms

Nonlinear Model Predictive Control of Hammerstein and Wiener Models Using Genetic Algorithms Nonlinear Model Predictive Control of Hammerstein and Wiener Models Using Genetic Algorithms Al-Duwaish H. and Naeem, Wasif Electrical Engineering Department/King Fahd University of Petroleum and Minerals

More information

UNCORRECTED PAGE PROOFS

UNCORRECTED PAGE PROOFS number and and algebra TopIC 17 Polynomials 17.1 Overview Why learn this? Just as number is learned in stages, so too are graphs. You have been building your knowledge of graphs and functions over time.

More information

THREE DIMENSIONAL REPRESENTATION OF AMINO ACID CHARAC- TERISTICS

THREE DIMENSIONAL REPRESENTATION OF AMINO ACID CHARAC- TERISTICS THREE DIMENSIONAL REPRESENTATION OF AMINO ACID CHARAC- TERISTICS O.U. Sezerman 1, R. Islamaj 2, E. Alpaydin 2 1 Laborotory of Computational Biology, Sabancı University, Istanbul, Turkey. 2 Computer Engineering

More information

Eigenvalues, Eigenvectors, and Differential Equations

Eigenvalues, Eigenvectors, and Differential Equations Eigenvalues, Eigenvectors, and Differential Equations William Cherry April 009 (with a typo correction in November 05) The concepts of eigenvalue and eigenvector occur throughout advanced mathematics They

More information

Duality in General Programs. Ryan Tibshirani Convex Optimization 10-725/36-725

Duality in General Programs. Ryan Tibshirani Convex Optimization 10-725/36-725 Duality in General Programs Ryan Tibshirani Convex Optimization 10-725/36-725 1 Last time: duality in linear programs Given c R n, A R m n, b R m, G R r n, h R r : min x R n c T x max u R m, v R r b T

More information

MATH 304 Linear Algebra Lecture 9: Subspaces of vector spaces (continued). Span. Spanning set.

MATH 304 Linear Algebra Lecture 9: Subspaces of vector spaces (continued). Span. Spanning set. MATH 304 Linear Algebra Lecture 9: Subspaces of vector spaces (continued). Span. Spanning set. Vector space A vector space is a set V equipped with two operations, addition V V (x,y) x + y V and scalar

More information

POTENTIAL OF STATE-FEEDBACK CONTROL FOR MACHINE TOOLS DRIVES

POTENTIAL OF STATE-FEEDBACK CONTROL FOR MACHINE TOOLS DRIVES POTENTIAL OF STATE-FEEDBACK CONTROL FOR MACHINE TOOLS DRIVES L. Novotny 1, P. Strakos 1, J. Vesely 1, A. Dietmair 2 1 Research Center of Manufacturing Technology, CTU in Prague, Czech Republic 2 SW, Universität

More information

Linear Programming Notes V Problem Transformations

Linear Programming Notes V Problem Transformations Linear Programming Notes V Problem Transformations 1 Introduction Any linear programming problem can be rewritten in either of two standard forms. In the first form, the objective is to maximize, the material

More information

What is Linear Programming?

What is Linear Programming? Chapter 1 What is Linear Programming? An optimization problem usually has three essential ingredients: a variable vector x consisting of a set of unknowns to be determined, an objective function of x to

More information

CONTROLLABILITY. Chapter 2. 2.1 Reachable Set and Controllability. Suppose we have a linear system described by the state equation

CONTROLLABILITY. Chapter 2. 2.1 Reachable Set and Controllability. Suppose we have a linear system described by the state equation Chapter 2 CONTROLLABILITY 2 Reachable Set and Controllability Suppose we have a linear system described by the state equation ẋ Ax + Bu (2) x() x Consider the following problem For a given vector x in

More information

1 Error in Euler s Method

1 Error in Euler s Method 1 Error in Euler s Method Experience with Euler s 1 method raises some interesting questions about numerical approximations for the solutions of differential equations. 1. What determines the amount of

More information

Lies My Calculator and Computer Told Me

Lies My Calculator and Computer Told Me Lies My Calculator and Computer Told Me 2 LIES MY CALCULATOR AND COMPUTER TOLD ME Lies My Calculator and Computer Told Me See Section.4 for a discussion of graphing calculators and computers with graphing

More information

Chapter 1. Vector autoregressions. 1.1 VARs and the identi cation problem

Chapter 1. Vector autoregressions. 1.1 VARs and the identi cation problem Chapter Vector autoregressions We begin by taking a look at the data of macroeconomics. A way to summarize the dynamics of macroeconomic data is to make use of vector autoregressions. VAR models have become

More information

1 Review of Least Squares Solutions to Overdetermined Systems

1 Review of Least Squares Solutions to Overdetermined Systems cs4: introduction to numerical analysis /9/0 Lecture 7: Rectangular Systems and Numerical Integration Instructor: Professor Amos Ron Scribes: Mark Cowlishaw, Nathanael Fillmore Review of Least Squares

More information

Chapter 12: The Operational Amplifier

Chapter 12: The Operational Amplifier Chapter 12: The Operational Amplifier 12.1: Introduction to Operational Amplifier (Op-Amp) Operational amplifiers (op-amps) are very high gain dc coupled amplifiers with differential inputs; they are used

More information

3.1. Solving linear equations. Introduction. Prerequisites. Learning Outcomes. Learning Style

3.1. Solving linear equations. Introduction. Prerequisites. Learning Outcomes. Learning Style Solving linear equations 3.1 Introduction Many problems in engineering reduce to the solution of an equation or a set of equations. An equation is a type of mathematical expression which contains one or

More information

Stability. Chapter 4. Topics : 1. Basic Concepts. 2. Algebraic Criteria for Linear Systems. 3. Lyapunov Theory with Applications to Linear Systems

Stability. Chapter 4. Topics : 1. Basic Concepts. 2. Algebraic Criteria for Linear Systems. 3. Lyapunov Theory with Applications to Linear Systems Chapter 4 Stability Topics : 1. Basic Concepts 2. Algebraic Criteria for Linear Systems 3. Lyapunov Theory with Applications to Linear Systems 4. Stability and Control Copyright c Claudiu C. Remsing, 2006.

More information

Lecture 2. Marginal Functions, Average Functions, Elasticity, the Marginal Principle, and Constrained Optimization

Lecture 2. Marginal Functions, Average Functions, Elasticity, the Marginal Principle, and Constrained Optimization Lecture 2. Marginal Functions, Average Functions, Elasticity, the Marginal Principle, and Constrained Optimization 2.1. Introduction Suppose that an economic relationship can be described by a real-valued

More information

Study Guide 2 Solutions MATH 111

Study Guide 2 Solutions MATH 111 Study Guide 2 Solutions MATH 111 Having read through the sample test, I wanted to warn everyone, that I might consider asking questions involving inequalities, the absolute value function (as in the suggested

More information

Number Who Chose This Maximum Amount

Number Who Chose This Maximum Amount 1 TASK 3.3.1: MAXIMIZING REVENUE AND PROFIT Solutions Your school is trying to oost interest in its athletic program. It has decided to sell a pass that will allow the holder to attend all athletic events

More information

System of First Order Differential Equations

System of First Order Differential Equations CHAPTER System of First Order Differential Equations In this chapter, we will discuss system of first order differential equations. There are many applications that involving find several unknown functions

More information

Optimal linear-quadratic control

Optimal linear-quadratic control Optimal linear-quadratic control Martin Ellison 1 Motivation The lectures so far have described a general method - value function iterations - for solving dynamic programming problems. However, one problem

More information

Lecture 11. 3.3.2 Cost functional

Lecture 11. 3.3.2 Cost functional Lecture 11 3.3.2 Cost functional Consider functions L(t, x, u) and K(t, x). Here L : R R n R m R, K : R R n R sufficiently regular. (To be consistent with calculus of variations we would have to take L(t,

More information

Transistor amplifiers: Biasing and Small Signal Model

Transistor amplifiers: Biasing and Small Signal Model Transistor amplifiers: iasing and Small Signal Model Transistor amplifiers utilizing JT or FT are similar in design and analysis. Accordingly we will discuss JT amplifiers thoroughly. Then, similar FT

More information

Math 120 Final Exam Practice Problems, Form: A

Math 120 Final Exam Practice Problems, Form: A Math 120 Final Exam Practice Problems, Form: A Name: While every attempt was made to be complete in the types of problems given below, we make no guarantees about the completeness of the problems. Specifically,

More information

3. Reaction Diffusion Equations Consider the following ODE model for population growth

3. Reaction Diffusion Equations Consider the following ODE model for population growth 3. Reaction Diffusion Equations Consider the following ODE model for population growth u t a u t u t, u 0 u 0 where u t denotes the population size at time t, and a u plays the role of the population dependent

More information

1 Norms and Vector Spaces

1 Norms and Vector Spaces 008.10.07.01 1 Norms and Vector Spaces Suppose we have a complex vector space V. A norm is a function f : V R which satisfies (i) f(x) 0 for all x V (ii) f(x + y) f(x) + f(y) for all x,y V (iii) f(λx)

More information

Neuro-Dynamic Programming An Overview

Neuro-Dynamic Programming An Overview 1 Neuro-Dynamic Programming An Overview Dimitri Bertsekas Dept. of Electrical Engineering and Computer Science M.I.T. September 2006 2 BELLMAN AND THE DUAL CURSES Dynamic Programming (DP) is very broadly

More information

Operation Count; Numerical Linear Algebra

Operation Count; Numerical Linear Algebra 10 Operation Count; Numerical Linear Algebra 10.1 Introduction Many computations are limited simply by the sheer number of required additions, multiplications, or function evaluations. If floating-point

More information

3.2 Sources, Sinks, Saddles, and Spirals

3.2 Sources, Sinks, Saddles, and Spirals 3.2. Sources, Sinks, Saddles, and Spirals 6 3.2 Sources, Sinks, Saddles, and Spirals The pictures in this section show solutions to Ay 00 C By 0 C Cy D 0. These are linear equations with constant coefficients

More information

Lecture L6 - Intrinsic Coordinates

Lecture L6 - Intrinsic Coordinates S. Widnall, J. Peraire 16.07 Dynamics Fall 2009 Version 2.0 Lecture L6 - Intrinsic Coordinates In lecture L4, we introduced the position, velocity and acceleration vectors and referred them to a fixed

More information

PID, LQR and LQR-PID on a Quadcopter Platform

PID, LQR and LQR-PID on a Quadcopter Platform PID, LQR and LQR-PID on a Quadcopter Platform Lucas M. Argentim unielargentim@fei.edu.br Willian C. Rezende uniewrezende@fei.edu.br Paulo E. Santos psantos@fei.edu.br Renato A. Aguiar preaguiar@fei.edu.br

More information

MOBILE ROBOT TRACKING OF PRE-PLANNED PATHS. Department of Computer Science, York University, Heslington, York, Y010 5DD, UK (email:nep@cs.york.ac.

MOBILE ROBOT TRACKING OF PRE-PLANNED PATHS. Department of Computer Science, York University, Heslington, York, Y010 5DD, UK (email:nep@cs.york.ac. MOBILE ROBOT TRACKING OF PRE-PLANNED PATHS N. E. Pears Department of Computer Science, York University, Heslington, York, Y010 5DD, UK (email:nep@cs.york.ac.uk) 1 Abstract A method of mobile robot steering

More information

The Method of Least Squares. Lectures INF2320 p. 1/80

The Method of Least Squares. Lectures INF2320 p. 1/80 The Method of Least Squares Lectures INF2320 p. 1/80 Lectures INF2320 p. 2/80 The method of least squares We study the following problem: Given n points (t i,y i ) for i = 1,...,n in the (t,y)-plane. How

More information

Lecture 5 Principal Minors and the Hessian

Lecture 5 Principal Minors and the Hessian Lecture 5 Principal Minors and the Hessian Eivind Eriksen BI Norwegian School of Management Department of Economics October 01, 2010 Eivind Eriksen (BI Dept of Economics) Lecture 5 Principal Minors and

More information

T ( a i x i ) = a i T (x i ).

T ( a i x i ) = a i T (x i ). Chapter 2 Defn 1. (p. 65) Let V and W be vector spaces (over F ). We call a function T : V W a linear transformation form V to W if, for all x, y V and c F, we have (a) T (x + y) = T (x) + T (y) and (b)

More information

Physics 2048 Test 1 Solution (solutions to problems 2-5 are from student papers) Problem 1 (Short Answer: 20 points)

Physics 2048 Test 1 Solution (solutions to problems 2-5 are from student papers) Problem 1 (Short Answer: 20 points) Physics 248 Test 1 Solution (solutions to problems 25 are from student papers) Problem 1 (Short Answer: 2 points) An object's motion is restricted to one dimension along the distance axis. Answer each

More information

Section 13.5 Equations of Lines and Planes

Section 13.5 Equations of Lines and Planes Section 13.5 Equations of Lines and Planes Generalizing Linear Equations One of the main aspects of single variable calculus was approximating graphs of functions by lines - specifically, tangent lines.

More information

1 Solving LPs: The Simplex Algorithm of George Dantzig

1 Solving LPs: The Simplex Algorithm of George Dantzig Solving LPs: The Simplex Algorithm of George Dantzig. Simplex Pivoting: Dictionary Format We illustrate a general solution procedure, called the simplex algorithm, by implementing it on a very simple example.

More information

Towards Dual MPC. Tor Aksel N. Heirung B. Erik Ydstie Bjarne Foss

Towards Dual MPC. Tor Aksel N. Heirung B. Erik Ydstie Bjarne Foss 4th IFAC Nonlinear Model Predictive Control Conference International Federation of Automatic Control Towards Dual MPC Tor Aksel N. Heirung B. Erik Ydstie Bjarne Foss Department of Engineering Cybernetics,

More information

This unit will lay the groundwork for later units where the students will extend this knowledge to quadratic and exponential functions.

This unit will lay the groundwork for later units where the students will extend this knowledge to quadratic and exponential functions. Algebra I Overview View unit yearlong overview here Many of the concepts presented in Algebra I are progressions of concepts that were introduced in grades 6 through 8. The content presented in this course

More information

Real-Time Systems Versus Cyber-Physical Systems: Where is the Difference?

Real-Time Systems Versus Cyber-Physical Systems: Where is the Difference? Real-Time Systems Versus Cyber-Physical Systems: Where is the Difference? Samarjit Chakraborty www.rcs.ei.tum.de TU Munich, Germany Joint work with Dip Goswami*, Reinhard Schneider #, Alejandro Masrur

More information

Discrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 2

Discrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 2 CS 70 Discrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 2 Proofs Intuitively, the concept of proof should already be familiar We all like to assert things, and few of us

More information

Impulse Response Functions

Impulse Response Functions Impulse Response Functions Wouter J. Den Haan University of Amsterdam April 28, 2011 General definition IRFs The IRF gives the j th -period response when the system is shocked by a one-standard-deviation

More information

OPTIMAl PREMIUM CONTROl IN A NON-liFE INSURANCE BUSINESS

OPTIMAl PREMIUM CONTROl IN A NON-liFE INSURANCE BUSINESS ONDERZOEKSRAPPORT NR 8904 OPTIMAl PREMIUM CONTROl IN A NON-liFE INSURANCE BUSINESS BY M. VANDEBROEK & J. DHAENE D/1989/2376/5 1 IN A OPTIMAl PREMIUM CONTROl NON-liFE INSURANCE BUSINESS By Martina Vandebroek

More information

SECOND DERIVATIVE TEST FOR CONSTRAINED EXTREMA

SECOND DERIVATIVE TEST FOR CONSTRAINED EXTREMA SECOND DERIVATIVE TEST FOR CONSTRAINED EXTREMA This handout presents the second derivative test for a local extrema of a Lagrange multiplier problem. The Section 1 presents a geometric motivation for the

More information

At Automated Logic, we ve been doing data for more than 30 years.

At Automated Logic, we ve been doing data for more than 30 years. At Automated Logic, we ve been doing data for more than 30 years. No company knows better than us how to design and develop analytical tools you and your personnel can use to run your facility even more

More information

3.3. Solving Polynomial Equations. Introduction. Prerequisites. Learning Outcomes

3.3. Solving Polynomial Equations. Introduction. Prerequisites. Learning Outcomes Solving Polynomial Equations 3.3 Introduction Linear and quadratic equations, dealt within Sections 3.1 and 3.2, are members of a class of equations, called polynomial equations. These have the general

More information

CHAPTER 9. Integer Programming

CHAPTER 9. Integer Programming CHAPTER 9 Integer Programming An integer linear program (ILP) is, by definition, a linear program with the additional constraint that all variables take integer values: (9.1) max c T x s t Ax b and x integral

More information

Systems of Linear Equations

Systems of Linear Equations Systems of Linear Equations Beifang Chen Systems of linear equations Linear systems A linear equation in variables x, x,, x n is an equation of the form a x + a x + + a n x n = b, where a, a,, a n and

More information

EECE 460 : Control System Design

EECE 460 : Control System Design EECE 460 : Control System Design PID Controller Design and Tuning Guy A. Dumont UBC EECE January 2012 Guy A. Dumont (UBC EECE) EECE 460 PID Tuning January 2012 1 / 37 Contents 1 Introduction 2 Control

More information

Solving Quadratic Equations

Solving Quadratic Equations 9.3 Solving Quadratic Equations by Using the Quadratic Formula 9.3 OBJECTIVES 1. Solve a quadratic equation by using the quadratic formula 2. Determine the nature of the solutions of a quadratic equation

More information