Lab Report #1: Basic Hydraulic Technology. Organization and presentation of report /20. Grammar and spelling /20

Size: px
Start display at page:

Download "Lab Report #1: Basic Hydraulic Technology. Organization and presentation of report /20. Grammar and spelling /20"

Transcription

1 Lab Report #1: Basic Hydraulic Technology Organization and presentation of report /20 Grammar and spelling /20 Technical presentation, content, analysis /60 Total /100 Monday, August 20, 2012 ME/ECE 4710 Motion and Control Instructor: Dr. James Kamman Mechanical and Aeronautical Engineering Western Michigan University Kalamazoo, MI 49008

2 Abstract A hydraulic test bench is used to study the relationship between pressure and flow rate of fluid through various hydraulic circuits. Three simple circuits are used in total. The first measures the flow rate of the pump at various system pressures. The second measures the flow rate and pressure difference through a restriction in order to calculate the constant of proportionality, and the third uses LabView software with pressure sensors to export pressure data to text files. These experiments are used to understand the relationship between the volume flow rate and the pressure of the fluid. Other concepts that were learned include building fluid circuits on the test bench, safe start-up and shut-down procedures, and using the LabView interface for recording measurements. The experiments found that the test bench is flow-limited to 2.75 GPM, and the flow over the relief valve must be considered to understand the dynamic behavior of the system. iii

3 Contents Abstract... iii Introduction... 1 Procedure... 2 Part 1:... 2 Part 2:... 3 Part 3:... 4 Results:... 5 Analysis and Conclusions... 7 iv

4 Introduction Hydraulic systems are used to transmit power through fluid to plants such as actuators. The hydraulic systems used for these experiments are made up of a tank, a pumping device, and a circuit including a flow meter, pressure gages, and a variable restriction valve. The pumping device is a fixed displacement pump that has a theoretical maximum flow rate of 3 GPM. The tank has a filtered return line that returns the fluid at atmospheric pressure, and the gages are used to measure the pressure and flow rate of the fluid at various points in the circuit. The experiments are divided into three parts. The first part records the flow rate of the pump at various system pressures resulting in the maximum flow rate of the pump. The second part uses pressure readings at the inlet and outlet of a restriction to find the coefficient of proportionality (k) of the restriction, and the third part uses electronic sensors in conjunction with LabView to export spreadsheets of data to text files. The experiments are designed to help the participant understand the behavior of basic hydraulic components while deriving the maximum pump flow rate, coefficients of proportionality, and the power lost over a restriction. Complete instructions for the laboratory procedure are found on the class website under Lab #1: Basic Hydraulic Technology. 1

5 Procedure Part 1: The first exercise is used to measure the flow rate of the pump. A simple circuit is constructed using a hydraulic test bench. The pump is connected to a parallel configuration of a flow meter and a pressure relief valve with a dead-headed pressure gage as shown in figure 1. The circuit is assembled using hoses fixed with quick connects attached to permanently fixed valves and gages on the test bench. The pressure relief valve is initially set to 250 psi and decreased in random steps until the pressure relief valve is fully open. System pressure and flow rate are recorded for each change in the set pressure of the relief valve. Figure 1: Experimental Setup 1 2

6 Part 2: In part two, the hydraulic system is connected to a variable flow control valve. The variable flow control valve restricts the flow of the system as it is closed; resulting in a higher pressure. The pump is connected to a pressure gage as well as to the inlet of the variable flow control valve. The outlet of the valve is then connected to a flow meter and another pressure gage. This all is finally connected back to the tank through a filter (see Figure 2). The pressure relief valve is initially set to 250 psi. After assembling the system, the system pressure is recorded as the flow control valve is slowly closed from 100-0% in 10% increments. After varying the flow valve, the next step in the experiment is to set the flow valve and vary the relief valve to see at what pressure the flow begins to decrease in the circuit. Begin with the variable flow valve set to 60% open, and record system pressure as the relief valve set pressure is decreased in steps of psi. Figure 2: Experimental Setup 2 3

7 Part 3: For part three, a hydraulic circuit is fixed with sensors that are connected to LabView software as shown in figure 3. Two pressure sensors are attached to the inlet and outlet ports of a variable restriction valve. The valve is in series with a flow meter. Set the pressure relief valve to 250 psi and the variable flow valve to 50% open. Record the inlet and outlet pressures and the system flow rate as the relief valve is opened similar to the procedure for part 2. Figure 3: Experimental Setup 3 4

8 Results: The pressure and flow rate values are recorded by visually inspecting coarse lines on the flow meter and radial tick marks on the pressure gage. The course scale of the flow meter may result in some human error, and the pressure gage does not have tick mark indications below 30 psi resulting in estimated readings for that range. The values are satisfactory for finding relationships between the variables but are not satisfactory for detailed system modeling. Part three initiates the use of electronic pressure sensors that are both more accurate and precise than previous readings of the pressure gages, however the electronic pressure sensors sample at 1000Hz. The recorded measurements display all of the fluid pulsations resulting from the pump and the geometry of the system. The sensors are also susceptible to noise from other electronic devices. Consequently, test data appears as a noisy oscillating function when graphed. By averaging the data over a certain range and combining it, a more filtered pressure can be used for analysis and modeling. The pressures and flow rates recorded from LabView are much more accurate than the data collected visually in earlier exercises. By taking away the human error of visually reading the gages and relying on the accuracy range of the electronic sensors, the values become much more precise. The test data in part three is, therefore, more reliable and can be used for modeling purposes. In part one of the experiment, pressure and flow rate were recorded in table 1. The fluid pressure in the circuit is limited to the set pressure of the relief valve. Table 1: Pressure Vs. Flow as relief valve is opened Pressure (psi) Relief Valve Open Flow Rate (GPM) Part two of the experiment results in four sets of data. The first set is from the configuration with the relief valve set to 250psi and the flow valve closed incrementally. The data was recorded in table 2. The second, third, and fourth data sets have the relief valve set to 250 psi and the flow valve 5

9 set to 60% open, 50% open, and 40% open respectively. The data results from gradually opening the relief valve in 20 psi increments and is recorded in tables 3-5. Table 2: Pressure relief valve set to 250psi, flow valve closed incrementally Valve % Open Pin (psi) Pout (psi) Flow (GPM) Table 3: Flow valve at 60% open, relief valve opened incrementally Pin Pout Flow Table 4: Flow valve at 50% open, relief valve opened incrementally Pin Pout Flow Table 5: Flow valve at 40% open, relief valve opened incrementally Pin Pout Flow Table 6 shows the data collected from part three. For part three, the flow valve is set to 50% open. The relief valve is set to 250 psi and closed in 20 psi increments, and LabView is run after each adjustment. LabView records the voltage output of the sensors and writes that information with respect to time in a text file. The table shows the difference between the values visually recorded from the gage and the values electronically recorded in LabView. The values from LabView are averaged over a steady state pressure period for each change in the setting of the relief valve. 6

10 Table 6: Flow Valve 50% relief opened, LabView analysis Pin gage Pin LabVIEW Pout Flow Analysis and Conclusions The fluid pressure in the circuit is limited to the set pressure of the relief valve. As the relief valve pressure increases, less fluid will flow over the relief valve and more fluid will flow through the circuit. From the data collected in part one, fluid power at the flow meter can be calculated using the following equation. The results are shown in table 7. It is clear that as the relief valve of the system is opened, the fluid power of the system decreases due to the alternate path the fluid is allowed to take. HP Power in HP P Pressure in psi Q Volumetric Flow Rate in GPM 1714 Conversion factor for HP Table 7: Calculated fluid power (part 1) Pressure (psi) Flow Rate (GPM) Fluid Power (HP) In part two, the flow rate decreases and the change in pressure across the variable flow valve increases as the flow valve is closed. The power loss through the restriction at each setting can be calculated using the equation at the end of this paragraph. The results are shown in table 8. As the flow is restricted, power increases with increasing pressure differences until the inlet pressure approaches the set pressure of the relief valve. At this point, flow is reduced across the flow valve as fluid begins to 7

11 flow over the pressure relief valve. This shows that the relief valve doesn t open fully when the crack pressure is reached. It opens gradually based on the spring constant inside the valve. HP Q Pin Pout Power Loss Flow Rate Inlet Pressure of the flow valve Outlet pressure of the flow valve Table 8: Horse power with decreasing valve position Flow Valve Position (% open) HP In steps (e) and (f) of part 2 (see lab instructions) experiments were done with constant flow valve position and varying relief pressure. An important value that can be calculated from the data collected is the constant relating the root of the pressure difference to the flow rate as shown in the equation below. The values are stored in tables Q k Pin Pout Flow Rate Constant of Proportionality Inlet Pressure of the flow valve Outlet pressure of the flow valve Table 9: Flow valve 60 % open Q ΔP k Table 10: Flow valve 50 % open Q ΔP k Table 11: Flow valve 40 % open Q ΔP k

12 Q (GPM) From the data in tables 9-11, it is clear that k increases slightly with decreasing set pressure of the relief valve. This trend is due to the fact that the difference in pressure across the flow valve is quickly decreasing; while the flow rate is decreasing at a much slower rate which results in a slight increase in the k value. Based on the trends in the data, k for these valve positions can also be found using a best fit line. The data is plotted in excel and a least squares best fit curve is used to find the k value for each flow valve position. The k value is shown on the graph as the slope of the line. Table 12 compares the average computed k values with the best fit k values. Best fit curve approximation of k y = x y = x y = x y = x Sqrt(Pin-Pout) Part 3 k Valve 60% open k Valve 50% open k Valve 40% open k Linear (Part 3 k) Linear (Valve 60% open k) Linear (Valve 50% open k) Linear (Valve 40% open k) Figure 4: Best fit approximation of k Table 12: % error of average and best fit k values LabView 60% open 50% open 40% open Average k best fit k % error (%)

13 In part three, the system is connected to LabView data acquisition. The sampling rate for the pressure sensors is 1000 Hz. This allows the sensors to read all of the fluid pulsations resulting from the pump and the geometry of the system. The sensors are also susceptible to noise from other electronic devices. The resulting test data appears as a noisy oscillating function when graphed. By averaging the data over a certain range and combining it, a more filtered pressure can be found. The pressures and flow rates recorded from LabView are much more accurate than the data collected visually in earlier exercises. By taking away the human error of visually reading the gages and relying on the accuracy range of the electronic sensors, the values become much more precise. The test data is, therefore, much more reliable and can be used for modeling purposes. The flow rates were also recorded visually throughout this process and used to calculate the flow over the relief valve using the following equation. The values are stored in table 13. Volumetric flow rate over the relief valve Maximum volumetric flow rate = 2.75 GPM Volumetric flow rate through the circuit Table 13: Flow rate of the relief valve (GPM) (GPM)

22.302 Experiment 5. Strain Gage Measurements

22.302 Experiment 5. Strain Gage Measurements 22.302 Experiment 5 Strain Gage Measurements Introduction The design of components for many engineering systems is based on the application of theoretical models. The accuracy of these models can be verified

More information

COUNTERBALANCE VALVES

COUNTERBALANCE VALVES COUNTERBALANCE VALVES Introduction They are modulating valves which allow free flow into the actuator and then block the reverse flow until they feel a pilot pressure inversely proportional to the load

More information

MONO BLOCK DIRECTIONAL CONTROL VALVE TS

MONO BLOCK DIRECTIONAL CONTROL VALVE TS SHIPPING: 2332 S 25TH STREET (ZIP 6815) MAILING: P.O. BOX #669 OMAHA, NE 6816 PHONE: (42) 344-4434 FAX: (42) 341-5419 HTTP://WWW.BRAND-HYD.COM MONO BLOCK DIRECTIONAL CONTROL VALVE TS TS312TSDTSTKJB TS2

More information

Pressure in Fluids. Introduction

Pressure in Fluids. Introduction Pressure in Fluids Introduction In this laboratory we begin to study another important physical quantity associated with fluids: pressure. For the time being we will concentrate on static pressure: pressure

More information

Unit 24: Applications of Pneumatics and Hydraulics

Unit 24: Applications of Pneumatics and Hydraulics Unit 24: Applications of Pneumatics and Hydraulics Unit code: J/601/1496 QCF level: 4 Credit value: 15 OUTCOME 2 TUTORIAL 3 HYDRAULIC AND PNEUMATIC MOTORS The material needed for outcome 2 is very extensive

More information

Sample lab procedure and report. The Simple Pendulum

Sample lab procedure and report. The Simple Pendulum Sample lab procedure and report The Simple Pendulum In this laboratory, you will investigate the effects of a few different physical variables on the period of a simple pendulum. The variables we consider

More information

MONO BLOCK DIRECTIONAL CONTROL VALVE TS1120TSLB

MONO BLOCK DIRECTIONAL CONTROL VALVE TS1120TSLB MONO BLOCK DIRECTIONAL CONTROL VALVE TS112TSLB TS TS212TSTSJB P T TS312TSDTSTKJ TS112TSJB FEATURES: O RG PORTS to eliminate leakage. POWER BEYOND CAPABILITY to fit your multi valve circuits. BUILT ANTI-DROP

More information

Unit 24: Applications of Pneumatics and Hydraulics

Unit 24: Applications of Pneumatics and Hydraulics Unit 24: Applications of Pneumatics and Hydraulics Unit code: J/601/1496 QCF level: 4 Credit value: 15 OUTCOME 2 TUTORIAL 1 HYDRAULIC PUMPS The material needed for outcome 2 is very extensive so there

More information

WATER MEASUREMENT USING TWO INCH (50 mm) DRAIN TESTS

WATER MEASUREMENT USING TWO INCH (50 mm) DRAIN TESTS GAP.14.1.2.2 A Publication of Global Asset Protection Services LLC WATER MEASUREMENT USING TWO INCH (50 mm) DRAIN TESTS INTRODUCTION A hydrant or other large-volume flow test is necessary for proper water

More information

ME 315 - Heat Transfer Laboratory. Experiment No. 7 ANALYSIS OF ENHANCED CONCENTRIC TUBE AND SHELL AND TUBE HEAT EXCHANGERS

ME 315 - Heat Transfer Laboratory. Experiment No. 7 ANALYSIS OF ENHANCED CONCENTRIC TUBE AND SHELL AND TUBE HEAT EXCHANGERS ME 315 - Heat Transfer Laboratory Nomenclature Experiment No. 7 ANALYSIS OF ENHANCED CONCENTRIC TUBE AND SHELL AND TUBE HEAT EXCHANGERS A heat exchange area, m 2 C max maximum specific heat rate, J/(s

More information

FIXED DISPLACEMENT HYDRAULIC VANE PUMPS BQ SERIES

FIXED DISPLACEMENT HYDRAULIC VANE PUMPS BQ SERIES BQ FIXED DISPLACEMENT HYDRAULIC VANE PUMPS BQ SERIES Versatility, power, compactness and low running costs are the main characteristics of B&C vane pumps. All the components subject to wear are contained

More information

Pump Ratio and Performance Charts

Pump Ratio and Performance Charts Pump Ratio and Performance Charts Concept and Theory Training Table of Contents Introduction... 1 Overview... 1 How to use this Module... 2 Learning Objectives...2 Text...2 Charts, Illustrations...2 Progress

More information

Chapter 11 SERVO VALVES. Fluid Power Circuits and Controls, John S.Cundiff, 2001

Chapter 11 SERVO VALVES. Fluid Power Circuits and Controls, John S.Cundiff, 2001 Chapter 11 SERVO VALVES Fluid Power Circuits and Controls, John S.Cundiff, 2001 Servo valves were developed to facilitate the adjustment of fluid flow based on the changes in the load motion. 1 Typical

More information

Centrifugal Fans and Pumps are sized to meet the maximum

Centrifugal Fans and Pumps are sized to meet the maximum Fans and Pumps are sized to meet the maximum flow rate required by the system. System conditions frequently require reducing the flow rate. Throttling and bypass devices dampers and valves are installed

More information

C. starting positive displacement pumps with the discharge valve closed.

C. starting positive displacement pumps with the discharge valve closed. KNOWLEDGE: K1.04 [3.4/3.6] P78 The possibility of water hammer in a liquid system is minimized by... A. maintaining temperature above the saturation temperature. B. starting centrifugal pumps with the

More information

Manufacturing Equipment Modeling

Manufacturing Equipment Modeling QUESTION 1 For a linear axis actuated by an electric motor complete the following: a. Derive a differential equation for the linear axis velocity assuming viscous friction acts on the DC motor shaft, leadscrew,

More information

FIXED DISPLACEMENT HYDRAULIC VANE PUMPS BQ SERIES

FIXED DISPLACEMENT HYDRAULIC VANE PUMPS BQ SERIES BQ FIXED DISPLACEMENT HYDRAULIC VANE PUMPS BQ SERIES Versatility, power, compactness and low running costs are the main characteristics of B&C vane pumps. All the components subject to wear are contained

More information

FIXED DISPLACEMENT HYDRAULIC VANE PUMPS BQ SERIES

FIXED DISPLACEMENT HYDRAULIC VANE PUMPS BQ SERIES BQ FIXED DISPLACEMENT HYDRAULIC VANE PUMPS BQ SERIES Versatility, power, compactness and low running costs are the main characteristics of B&C vane pumps. All the components subject to wear are contained

More information

Flow Over Weirs. By John Fuller. Fluid Mechanics Lab. Wednesday(1-345pm) Group member: Abdur Rahaman

Flow Over Weirs. By John Fuller. Fluid Mechanics Lab. Wednesday(1-345pm) Group member: Abdur Rahaman Flow Over Weirs By John Fuller Fluid Mechanics Lab Wednesday(1-345pm) Group member: Abdur Rahaman Abstract The objective of this lab is to determine the characteristics of open-channel flow over, firstly,

More information

Experiment # 3: Pipe Flow

Experiment # 3: Pipe Flow ME 05 Mechanical Engineering Lab Page ME 05 Mechanical Engineering Laboratory Spring Quarter 00 Experiment # 3: Pipe Flow Objectives: a) Calibrate a pressure transducer and two different flowmeters (paddlewheel

More information

Lab 1: DC Circuits. Student 1, student1@ufl.edu Partner : Student 2, student2@ufl.edu

Lab 1: DC Circuits. Student 1, student1@ufl.edu Partner : Student 2, student2@ufl.edu Lab Date Lab 1: DC Circuits Student 1, student1@ufl.edu Partner : Student 2, student2@ufl.edu I. Introduction The purpose of this lab is to allow the students to become comfortable with the use of lab

More information

Experiment 3 Pipe Friction

Experiment 3 Pipe Friction EML 316L Experiment 3 Pipe Friction Laboratory Manual Mechanical and Materials Engineering Department College of Engineering FLORIDA INTERNATIONAL UNIVERSITY Nomenclature Symbol Description Unit A cross-sectional

More information

Daniel. Liquid Control Valves Technical Guide. Technical Guide DAN-LIQ-TG-44-rev0813. DAN-LIQ-TG-44-rev0208. February 2008.

Daniel. Liquid Control Valves Technical Guide. Technical Guide DAN-LIQ-TG-44-rev0813. DAN-LIQ-TG-44-rev0208. February 2008. DAN-LIQ-TG-44-rev0208 February 2008 Daniel Liquid Control Valves Technical Guide www.daniel.com Daniel Measurement and Control Theory, Principle of Operation and Applications This brochure has been prepared

More information

Hydraulic Pump/Motor Division Hydraulic Pump/Motor Division

Hydraulic Pump/Motor Division Hydraulic Pump/Motor Division Parker Piston Pumps Otsego Core Competency... Piston Pumps PAVC Series : 4 displacements from 33-100 cc/r, 207 Bar, 3000 RPM PVP Series : 9 displacements from 16-140 cc/r, 250 Bar, 3000 RPM PV Plus : 12

More information

GENERAL SCIENCE LABORATORY 1110L Lab Experiment 6: Ohm s Law

GENERAL SCIENCE LABORATORY 1110L Lab Experiment 6: Ohm s Law GENERAL SCIENCE LABORATORY 1110L Lab Experiment 6: Ohm s Law OBJECTIVES: To verify Ohm s law, the mathematical relationship among current, voltage or potential difference, and resistance, in a simple circuit.

More information

UNIVERSITY OF MINNESOTA DULUTH DEPARTMENT OF CHEMICAL ENGINEERING ChE 3211-4211 DOUBLE PIPE HEAT EXCHANGER

UNIVERSITY OF MINNESOTA DULUTH DEPARTMENT OF CHEMICAL ENGINEERING ChE 3211-4211 DOUBLE PIPE HEAT EXCHANGER UNIVERSITY OF MINNESOTA DULUTH DEPARTMENT OF CHEMICAL ENGINEERING ChE 3211-4211 DOUBLE PIPE HEAT EXCHANGER OBJECTIVE Determine the Reynolds number for each flow. Determine the individual heat transfer

More information

The Secret of Hydraulic Schematics. BTPHydraulics www.iranfluidpower.com

The Secret of Hydraulic Schematics. BTPHydraulics www.iranfluidpower.com The Secret of Hydraulic Schematics BTPHydraulics www.iranfluidpower.com www.iranfluidpower.com Table of Contents The Secret to Reading and Interpreting Hydraulic Schematics... 1 Hydraulic System Schematics...

More information

FREE FALL. Introduction. Reference Young and Freedman, University Physics, 12 th Edition: Chapter 2, section 2.5

FREE FALL. Introduction. Reference Young and Freedman, University Physics, 12 th Edition: Chapter 2, section 2.5 Physics 161 FREE FALL Introduction This experiment is designed to study the motion of an object that is accelerated by the force of gravity. It also serves as an introduction to the data analysis capabilities

More information

Objectives. Experimentally determine the yield strength, tensile strength, and modules of elasticity and ductility of given materials.

Objectives. Experimentally determine the yield strength, tensile strength, and modules of elasticity and ductility of given materials. Lab 3 Tension Test Objectives Concepts Background Experimental Procedure Report Requirements Discussion Objectives Experimentally determine the yield strength, tensile strength, and modules of elasticity

More information

Dynamic Process Modeling. Process Dynamics and Control

Dynamic Process Modeling. Process Dynamics and Control Dynamic Process Modeling Process Dynamics and Control 1 Description of process dynamics Classes of models What do we need for control? Modeling for control Mechanical Systems Modeling Electrical circuits

More information

Delta Power Company 4484 Boeing Drive - Rockford, IL 61109

Delta Power Company 4484 Boeing Drive - Rockford, IL 61109 INDEX Description Page Delta Power Rotary Flow Divider, Positive Displacement (Application Data) 36 P Series, Equal Flow Two Sections 39 P Series, Equal Flow Multi-Sections 40 PM Series, Equal Flow Multi-Sections

More information

1. Learn about the 555 timer integrated circuit and applications 2. Apply the 555 timer to build an infrared (IR) transmitter and receiver

1. Learn about the 555 timer integrated circuit and applications 2. Apply the 555 timer to build an infrared (IR) transmitter and receiver Electronics Exercise 2: The 555 Timer and its Applications Mechatronics Instructional Laboratory Woodruff School of Mechanical Engineering Georgia Institute of Technology Lab Director: I. Charles Ume,

More information

Physics 41, Winter 1998 Lab 1 - The Current Balance. Theory

Physics 41, Winter 1998 Lab 1 - The Current Balance. Theory Physics 41, Winter 1998 Lab 1 - The Current Balance Theory Consider a point at a perpendicular distance d from a long straight wire carrying a current I as shown in figure 1. If the wire is very long compared

More information

Simple Harmonic Motion

Simple Harmonic Motion Simple Harmonic Motion 1 Object To determine the period of motion of objects that are executing simple harmonic motion and to check the theoretical prediction of such periods. 2 Apparatus Assorted weights

More information

RC Circuits and The Oscilloscope Physics Lab X

RC Circuits and The Oscilloscope Physics Lab X Objective RC Circuits and The Oscilloscope Physics Lab X In this series of experiments, the time constant of an RC circuit will be measured experimentally and compared with the theoretical expression for

More information

Series PVP Variable Volume Piston Pumps

Series PVP Variable Volume Piston Pumps Series PVP Variable Volume Piston Pumps Catalog HY28-2662-CD/US Revised June, 212 hpm12-1.p65, lw, jk 1 Notes Series PVP hpm12-1.p65, lw, jk 2 Introduction Series PVP Series Sizes 6-14 Phased Out For Reference

More information

Experiment #4 Sugar in Soft Drinks and Fruit Juices. Laboratory Overview CHEM 1361. August 2010

Experiment #4 Sugar in Soft Drinks and Fruit Juices. Laboratory Overview CHEM 1361. August 2010 Experiment #4 Sugar in Soft Drinks and Fruit Juices Laboratory Overview CHEM 1361 August 2010 Gary S. Buckley, Ph.D. Department of Physical Sciences Cameron University Learning Objectives Relate density

More information

Example. Fluid Power. Circuits

Example. Fluid Power. Circuits Example Fluid Power Circuits To Enhance Symbol Reading Skills To Work On Circuit Reading Skills With Answers HI LO Pump Circuit 18 A1 B1 17 16 15 13 Set 14 2,000 PSI PG2 Set 500 PSI 12 11 7 8 10 PG1 9

More information

ECE 495 Project 3: Shocker Actuator Subsystem and Website Design. Group 1: One Awesome Engineering

ECE 495 Project 3: Shocker Actuator Subsystem and Website Design. Group 1: One Awesome Engineering ECE 495 Project 3: Shocker Actuator Subsystem and Website Design Group 1: One Awesome Engineering Luquita Edwards Evan Whetsell Sunny Verma Thomas Ryan Willis Long I. Executive Summary The main goal behind

More information

Signature and ISX CM870 Fuel System

Signature and ISX CM870 Fuel System Signature and ISX CM870 Fuel System Cummins Ontario Training Center HPI-TP Fuel System Heavy Duty High Pressure Injection - Time Pressure Fuel System The fuel system developed for the Signature and ISX

More information

Inspection and Testing of Water-Based Systems

Inspection and Testing of Water-Based Systems Inspection and Testing of Water-Based Systems Standard Model/Computer-Based Testing Level III Content Outline The candidate for NICET certification at Level III in the Inspection and Testing of Water-Based

More information

Experiment 3: Magnetic Fields of a Bar Magnet and Helmholtz Coil

Experiment 3: Magnetic Fields of a Bar Magnet and Helmholtz Coil MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8.02 Spring 2009 Experiment 3: Magnetic Fields of a Bar Magnet and Helmholtz Coil OBJECTIVES 1. To learn how to visualize magnetic field lines

More information

Controller Design using the Maple Professional Math Toolbox for LabVIEW

Controller Design using the Maple Professional Math Toolbox for LabVIEW Controller Design using the Maple Professional Math Toolbox for LabVIEW This application demonstrates how you can use the Maple Professional Math Toolbox for LabVIEW to design and tune a Proportional-Integral-Derivative

More information

WHAT YOU DON T KNOW ABOUT ACCUMULATORS CAN KILL YOU!

WHAT YOU DON T KNOW ABOUT ACCUMULATORS CAN KILL YOU! WHAT YOU DON T KNOW ABOUT ACCUMULATORS CAN KILL YOU! Atlanta (Monroe) GA 770-267-3787 gpm@gpmhydraulic.com www.gpmhydraulic.com What You Don t Know About Hydraulic Accumulators Can Kill You TABLE OF CONTENTS

More information

ACCUMULATOR INSTALLATION

ACCUMULATOR INSTALLATION 7001-7 ACCUMULATOR INSTALLATION BRAKE ACCUMULATORS I 308L93 Rae 7-59710 Issued 6-93 Printed in U.S.A 7001-8 Removal ACCUMULATOR VALVE 1. Park the machine on a level surface and lower the. loader bucket

More information

Extremely compact in size to allow direct flange-mounting on vehicle engine or gearbox PTOs.

Extremely compact in size to allow direct flange-mounting on vehicle engine or gearbox PTOs. TXV - Presentation pumps with Load Sensing control variable displacement piston pumps ADVANTAGES pumps are variable displacement with pressure-flow control called Load Sensing. They self-regulate to give

More information

Michael Montgomery Marketing Product Manager Rosemount Inc. Russ Evans Manager of Engineering and Design Rosemount Inc.

Michael Montgomery Marketing Product Manager Rosemount Inc. Russ Evans Manager of Engineering and Design Rosemount Inc. ASGMT / Averaging Pitot Tube Flow Measurement Michael Montgomery Marketing Product Manager Rosemount Inc. Russ Evans Manager of Engineering and Design Rosemount Inc. Averaging Pitot Tube Meters Introduction

More information

Schematic Symbols Chart (Design Hydraulic and Pneumatic circits)

Schematic Symbols Chart (Design Hydraulic and Pneumatic circits) Page 1 of 6 (Home) Symbols / Visit us on: Fluid Power, Automation and Motion Control for all Industries About Us Products Services Catalogs Place an Order Training & Information Contact Us Employee Access

More information

Computer Controlled Vortex Tube Refrigerator Unit, with SCADA TPVC

Computer Controlled Vortex Tube Refrigerator Unit, with SCADA TPVC Technical Teaching Equipment Computer Controlled Vortex Tube Refrigerator Unit, with SCADA TPVC Teaching Technique used EDIBON SCADA System 2 Control Interface Box 5 Cables and Accessories 6 Manuals 3

More information

Fall 2004 Ali Shakouri

Fall 2004 Ali Shakouri University of California at Santa Cruz Jack Baskin School of Engineering Electrical Engineering Department EE-145L: Properties of Materials Laboratory Lab 5b: Temperature Dependence of Semiconductor Conductivity

More information

Heat. Investigating the function of the expansion valve of the heat pump. LD Physics Leaflets P2.6.3.2. Thermodynamic cycle Heat pump

Heat. Investigating the function of the expansion valve of the heat pump. LD Physics Leaflets P2.6.3.2. Thermodynamic cycle Heat pump Heat Thermodynamic cycle Heat pump LD Physics Leaflets P2.6.3.2 Investigating the function of the expansion valve of the heat pump Objects of the experiment g To study the operational components of the

More information

System Modeling and Control for Mechanical Engineers

System Modeling and Control for Mechanical Engineers Session 1655 System Modeling and Control for Mechanical Engineers Hugh Jack, Associate Professor Padnos School of Engineering Grand Valley State University Grand Rapids, MI email: jackh@gvsu.edu Abstract

More information

KNC Model 3666 Automatic Pressure Calibration System

KNC Model 3666 Automatic Pressure Calibration System KNC Model 3666 Automatic Pressure Calibration System Product Description The Model 3666 Automatic Pressure Calibration (APC) System by King Nutronics Corporation is a portable secondary standards laboratory

More information

Unit 24: Applications of Pneumatics and Hydraulics

Unit 24: Applications of Pneumatics and Hydraulics Unit 24: Applications of Pneumatics and Hydraulics Unit code: J/601/1496 QCF level: 4 Credit value: 15 OUTCOME 2 TUTORIAL 2 HYDRAULIC AND PNEUMATIC CYLINDERS The material needed for outcome 2 is very extensive

More information

Hydraulic Trouble Shooting

Hydraulic Trouble Shooting Hydraulic Trouble Shooting Hydraulic systems can be very simple, such as a hand pump pumping up a small hydraulic jack, or very complex, with several pumps, complex valving, accumulators, and many cylinders

More information

Unit 24: Applications of Pneumatics and Hydraulics

Unit 24: Applications of Pneumatics and Hydraulics Unit 24: Applications of Pneumatics and Hydraulics Unit code: J/601/1496 QCF level: 4 Credit value: 15 OUTCOME 2 TUTORIAL 4 DIRECTIONAL CONTROL VALVES The material needed for outcome 2 is very extensive

More information

Evaluation copy. Blood Pressure. Project PROJECT DESIGN REQUIREMENTS

Evaluation copy. Blood Pressure. Project PROJECT DESIGN REQUIREMENTS Blood Pressure Project 9 Blood pressure is a measure of the fluid pressure within the circulatory system. This pressure is required to ensure the delivery of oxygen and nutrients to, and the removal of

More information

APPENDIX A CONTROL VALVE TESTING PROCEDURES AND EQUATIONS FOR LIQUID FLOWS

APPENDIX A CONTROL VALVE TESTING PROCEDURES AND EQUATIONS FOR LIQUID FLOWS APPENDIX A CONTROL VALVE TESTING PROCEDURES AND EQUATIONS FOR LIQUID FLOWS Section A.1. Flow Coefficients Definition The flow coefficient or pressure loss coefficient is used to relate the pressure loss

More information

Simple Harmonic Motion Experiment. 1 f

Simple Harmonic Motion Experiment. 1 f Simple Harmonic Motion Experiment In this experiment, a motion sensor is used to measure the position of an oscillating mass as a function of time. The frequency of oscillations will be obtained by measuring

More information

Basic Symbols. Lines. Circular. Square. Diamond. Miscellaneous Symbols. -continuous line - flow line. -dashed line - pilot, drain

Basic Symbols. Lines. Circular. Square. Diamond. Miscellaneous Symbols. -continuous line - flow line. -dashed line - pilot, drain Airline Hydraulic's Main Page Basic Symbols Lines continuous line flow line dashed line pilot, drain envelope long and short dashes around two or more component symbols. Circular Square Diamond large circle

More information

*Rated to 207 Bar/3000 PSI with Aluminum Body. Catalog HY15-3501/US SERIES CAVITY DESCRIPTION FLOW PRESSURE PAGE NO.

*Rated to 207 Bar/3000 PSI with Aluminum Body. Catalog HY15-3501/US SERIES CAVITY DESCRIPTION FLOW PRESSURE PAGE NO. Bodies & Contents SERIES CAVITY DESCRIPTION FLOW PRESSURE PAGE NO. /GPM BAR/PSI STANDARD CHECKS D1A6... 2U... Valve Insert, Ball Type...145/38... 42/6... 5 D1B125... 2C... Valve Insert, Ball Type... 5/132...

More information

High Precision Measurement of the Target Mass of the Daya Bay Neutrino Detectors

High Precision Measurement of the Target Mass of the Daya Bay Neutrino Detectors High Precision Measurement of the Target Mass of the Daya Bay Neutrino Detectors Tom Wise on behalf of Daya Bay collaboration Day Bay is a reactor based experiment dedicated to measurement of the last

More information

MIME 3330 Mechanics Laboratory LAB 5: ROTATING BENDING FATIGUE

MIME 3330 Mechanics Laboratory LAB 5: ROTATING BENDING FATIGUE MIME 3330 Mechanics Laboratory LAB 5: ROTATING BENDING FATIGUE Introduction In this experiment, the finite life fatigue behavior of a smooth cylindrical specimen as shown in Figure 1 will be studied in

More information

How To Install A Mazzei Injector

How To Install A Mazzei Injector TECHNICAL BULLETIN No. 4 USE OF MAZZEI INJECTORS IN WATER-WELL / PRESSURE TANK APPLICATIONS The selection, installation and use of Mazzei Injectors in water-well/pressure tank systems is quite straightforward.

More information

Experiment 3: Magnetic Fields of a Bar Magnet and Helmholtz Coil

Experiment 3: Magnetic Fields of a Bar Magnet and Helmholtz Coil MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8.02 Spring 2006 Experiment 3: Magnetic Fields of a Bar Magnet and Helmholtz Coil OBJECTIVES 1. To learn how to visualize magnetic field lines

More information

Introduction to Pneumatics and Pneumatic Circuit Problems for FPEF Trainer

Introduction to Pneumatics and Pneumatic Circuit Problems for FPEF Trainer and Pneumatic Circuit Problems for FPEF Trainer John R. Groot President FPEF John Nagohosian FPEF Educational Coordinator John Prisciandaro Birmingham Covington School Birmingham, Michigan Dan Butchko

More information

CENTRIFUGAL PUMP SELECTION, SIZING, AND INTERPRETATION OF PERFORMANCE CURVES

CENTRIFUGAL PUMP SELECTION, SIZING, AND INTERPRETATION OF PERFORMANCE CURVES CENTRIFUGAL PUMP SELECTION, SIZING, AND INTERPRETATION OF PERFORMANCE CURVES 4.0 PUMP CLASSES Pumps may be classified in two general types, dynamic and positive displacement. Positive displacement pumps

More information

Module 9: Basics of Pumps and Hydraulics Instructor Guide

Module 9: Basics of Pumps and Hydraulics Instructor Guide Module 9: Basics of Pumps and Hydraulics Instructor Guide Activities for Unit 1 Basic Hydraulics Activity 1.1: Convert 45 psi to feet of head. 45 psis x 1 ft. = 103.8 ft 0.433 psi Activity 1.2: Determine

More information

TRAINING AND EQUIPMENT MANUAL HOSE PRACTICES EFFECTIVE: OCTOBER 2007

TRAINING AND EQUIPMENT MANUAL HOSE PRACTICES EFFECTIVE: OCTOBER 2007 TRAINING AND EQUIPMENT MANUAL HOSE PRACTICES 301.010 ANNUAL SERVICE TEST FOR FIRE HOSE EFFECTIVE: OCTOBER 2007 The Department will test all fire hose annually. The testing of fire hose determines its serviceability.

More information

CENTRIFUGAL PUMP OVERVIEW Presented by Matt Prosoli Of Pumps Plus Inc.

CENTRIFUGAL PUMP OVERVIEW Presented by Matt Prosoli Of Pumps Plus Inc. CENTRIFUGAL PUMP OVERVIEW Presented by Matt Prosoli Of Pumps Plus Inc. 1 Centrifugal Pump- Definition Centrifugal Pump can be defined as a mechanical device used to transfer liquid of various types. As

More information

DIGITAL DISPLACEMENT RISING STEP LOAD LRA/RSL TEST EQUIPMENT

DIGITAL DISPLACEMENT RISING STEP LOAD LRA/RSL TEST EQUIPMENT DIGITAL DISPLACEMENT RISING STEP LOAD LRA/RSL TEST EQUIPMENT BACKGROUND AND PRODUCT DESCRIPTIONS Fracture Diagnostics provides state-of-the-art test equipment, utilizing the Rising Step Load testing technique.

More information

Pressure Relief and Regulating Valves

Pressure Relief and Regulating Valves Pressure Relief and Regulating Valves With blocked center directional valves and variable displacement pumps, or open center directional valves and fixed displacement pumps where fast response, low leakage

More information

IRIZAR TANK JACKING SYSTEM LOAD TEST ON LIFTING JACK MODEL HLJ 12

IRIZAR TANK JACKING SYSTEM LOAD TEST ON LIFTING JACK MODEL HLJ 12 IRIZAR TANK JACKING SYSTEM LOAD TEST ON LIFTING JACK MODEL HLJ 12 PERFORMED BY: C FER TECHNOLOGIES INC STATE OF ART CANADIAN LABORATORY ADDRESS: 200 Karl Clark Road Edmonton AB T6N 1H2, Canada C-FER FILE:

More information

INTERFERENCE OF SOUND WAVES

INTERFERENCE OF SOUND WAVES 2011 Interference - 1 INTERFERENCE OF SOUND WAVES The objectives of this experiment are: To measure the wavelength, frequency, and propagation speed of ultrasonic sound waves. To observe interference phenomena

More information

Experiment 8 : Pulse Width Modulation

Experiment 8 : Pulse Width Modulation Name/NetID: Teammate/NetID: Experiment 8 : Pulse Width Modulation Laboratory Outline In experiment 5 we learned how to control the speed of a DC motor using a variable resistor. This week, we will learn

More information

VAL-MATIC VALVE AND MANUFACTURING CORP. 905 RIVERSIDE DRIVE, ELMHURST, IL 60126 TEL. (630) 941-7600 FAX.

VAL-MATIC VALVE AND MANUFACTURING CORP. 905 RIVERSIDE DRIVE, ELMHURST, IL 60126 TEL. (630) 941-7600 FAX. Cavitation in Valves VAL-MATIC VALVE AND MANUFACTURING CORP. 905 RIVERSIDE DRIVE, ELMHURST, IL 60126 TEL. (630) 941-7600 FAX. (630) 941-8042 www.valmatic.com CAVITATION IN VALVES INTRODUCTION Cavitation

More information

Pumps: Convert mechanical energy (often developed from electrical source) into hydraulic energy (position, pressure and kinetic energy).

Pumps: Convert mechanical energy (often developed from electrical source) into hydraulic energy (position, pressure and kinetic energy). HYDRAULIC MACHINES Used to convert between hydraulic and mechanical energies. Pumps: Convert mechanical energy (often developed from electrical source) into hydraulic energy (position, pressure and kinetic

More information

FILLING AND PURGING THE SYSTEM

FILLING AND PURGING THE SYSTEM FILLING INSTRUCTIONS FOR WATER HEATER OR CONDENSING BOILER (City Water) Safety tip: Before beginning, turn off power to boiler and circulator. FILLING AND PURGING Step 1: Close Return Manifold Isolation

More information

INTERFERENCE OF SOUND WAVES

INTERFERENCE OF SOUND WAVES 1/2016 Sound 1/8 INTERFERENCE OF SOUND WAVES PURPOSE: To measure the wavelength, frequency, and propagation speed of ultrasonic sound waves and to observe interference phenomena with ultrasonic sound waves.

More information

Cane Creek Double Barrel Instructions

Cane Creek Double Barrel Instructions Cane Creek Double Barrel Instructions Congratulations on your purchase of the Cane Creek Double Barrel (CCDB) rear shock. Developed in partnership with Öhlins Racing, the Double Barrel brings revolutionary

More information

CDS TROUBLESHOOTING SECTION I. VACUUM. 1.0. Weak vacuum at wand. Gauge reads normal (10hg to 14hg)

CDS TROUBLESHOOTING SECTION I. VACUUM. 1.0. Weak vacuum at wand. Gauge reads normal (10hg to 14hg) CDS TROUBLESHOOTING SECTION I. VACUUM 1.0. Weak vacuum at wand. Gauge reads normal (10hg to 14hg) 1.1. Clogged hoses or wand tube. Disconnect hoses and carefully check for an obstruction. 1.2. Excessive

More information

Effects of Temperature, Pressure and Water Vapor on Gas Phase Infrared Absorption by CO 2

Effects of Temperature, Pressure and Water Vapor on Gas Phase Infrared Absorption by CO 2 Effects of Temperature, Pressure and Water Vapor on Gas Phase Infrared Absorption by CO 2 D. K. McDermitt, J. M. Welles, and R. D. Eckles - LI-COR, inc. Lincoln, NE 68504 USA Introduction Infrared analysis

More information

Experiment #1, Analyze Data using Excel, Calculator and Graphs.

Experiment #1, Analyze Data using Excel, Calculator and Graphs. Physics 182 - Fall 2014 - Experiment #1 1 Experiment #1, Analyze Data using Excel, Calculator and Graphs. 1 Purpose (5 Points, Including Title. Points apply to your lab report.) Before we start measuring

More information

METHOD OF TEST FOR DETERMINATION OF PERMEABILITY OF GRANULAR SOILS

METHOD OF TEST FOR DETERMINATION OF PERMEABILITY OF GRANULAR SOILS Laboratory Testing Manual Date: 99 06 21 Page 1 of 7 METHOD OF TEST FOR DETERMINATION OF PERMEABILITY OF GRANULAR SOILS 1. SCOPE 1.1 This method covers the determination of the coefficient of permeability

More information

3-Way heavy duty flow control, with pressure compensated and solenoid controlled priority flow

3-Way heavy duty flow control, with pressure compensated and solenoid controlled priority flow 1/6 RE 18309-3/06.10 Replaces: RE 18309-3/04.10 3-Way heavy duty flow control, with pressure compensated and solenoid controlled priority flow A-VRFC3C-VEI-VS 0M.43.20.80 - Y - Z Description The flow control

More information

FLUID FLOW Introduction General Description

FLUID FLOW Introduction General Description FLUID FLOW Introduction Fluid flow is an important part of many processes, including transporting materials from one point to another, mixing of materials, and chemical reactions. In this experiment, you

More information

Experiment #11: LRC Circuit (Power Amplifier, Voltage Sensor)

Experiment #11: LRC Circuit (Power Amplifier, Voltage Sensor) Experiment #11: LRC Circuit (Power Amplifier, Voltage Sensor) Concept: circuits Time: 30 m SW Interface: 750 Windows file: RLC.SWS EQUIPMENT NEEDED Science Workshop Interface Power Amplifier (2) Voltage

More information

Reflection and Refraction

Reflection and Refraction Equipment Reflection and Refraction Acrylic block set, plane-concave-convex universal mirror, cork board, cork board stand, pins, flashlight, protractor, ruler, mirror worksheet, rectangular block worksheet,

More information

Unsteady Pressure Measurements

Unsteady Pressure Measurements Quite often the measurements of pressures has to be conducted in unsteady conditions. Typical cases are those of -the measurement of time-varying pressure (with periodic oscillations or step changes) -the

More information

Material taken from Fluid Power Circuits and Controls, John S. Cundiff, 2001

Material taken from Fluid Power Circuits and Controls, John S. Cundiff, 2001 Pressure Control Chapter 3 Material taken from Fluid Power Circuits and Controls, John S. Cundiff, 2001 Introduction Pressure control is a key element in the design of any circuit. Used correctly, it can

More information

POWER AND VOLTAGE RATING

POWER AND VOLTAGE RATING POWER AND VOLTAGE RATING SCOPE: The purpose of this document is to take the confusion out of power and voltage ratings in specifications and in product information publications. This will be accomplished

More information

LINDGREN-PITMAN, INC. Super Spool III Installation Instructions

LINDGREN-PITMAN, INC. Super Spool III Installation Instructions LINDGREN-PITMAN, INC. Super Spool III Installation Instructions LINDGREN-PITMAN, INC. 2615 N.E. 5th Avenue * Pompano Beach, Florida 33064 * U.S.A. (954)943-4243 * (954)943-7877 Fax E-mail: longline@gate.net

More information

Prelab Exercises: Hooke's Law and the Behavior of Springs

Prelab Exercises: Hooke's Law and the Behavior of Springs 59 Prelab Exercises: Hooke's Law and the Behavior of Springs Study the description of the experiment that follows and answer the following questions.. (3 marks) Explain why a mass suspended vertically

More information

AP Physics 1 and 2 Lab Investigations

AP Physics 1 and 2 Lab Investigations AP Physics 1 and 2 Lab Investigations Student Guide to Data Analysis New York, NY. College Board, Advanced Placement, Advanced Placement Program, AP, AP Central, and the acorn logo are registered trademarks

More information

Radial piston pumps type R and RG

Radial piston pumps type R and RG Radial piston pumps type R and RG Operating pressure p max = 700 bar Delivery flow Q max = 91.2 lpm (at 1450 rpm) Geometric displacement V g max = 64.2 cm 3 /rev. 1. General Motor pumps and hydraulic power

More information

The Time Constant of an RC Circuit

The Time Constant of an RC Circuit The Time Constant of an RC Circuit 1 Objectives 1. To determine the time constant of an RC Circuit, and 2. To determine the capacitance of an unknown capacitor. 2 Introduction What the heck is a capacitor?

More information

Table of Contents. M Series Variable Displacement Piston Pumps

Table of Contents. M Series Variable Displacement Piston Pumps Table of Contents M Series Variable Displacement Piston Pumps Introduction.... 3 Hydraulic System Design Calculations.... 4 Model Code Selection.... 5 Model Code Options.... 6 Specifications and Performance...

More information

LAB VIII. BIPOLAR JUNCTION TRANSISTOR CHARACTERISTICS

LAB VIII. BIPOLAR JUNCTION TRANSISTOR CHARACTERISTICS LAB VIII. BIPOLAR JUNCTION TRANSISTOR CHARACTERISTICS 1. OBJECTIVE In this lab, you will study the DC characteristics of a Bipolar Junction Transistor (BJT). 2. OVERVIEW In this lab, you will inspect the

More information

Designed for multi-injector endurance testing, the

Designed for multi-injector endurance testing, the Designed for multi-injector endurance testing, the ETB Test Bench can optionally provide shot-to-shot mass measurement. The injectors are precisely subject to variable controls and hydraulic pressures

More information

Sound Pressure Measurement

Sound Pressure Measurement Objectives: Sound Pressure Measurement 1. Become familiar with hardware and techniques to measure sound pressure 2. Measure the sound level of various sizes of fan modules 3. Calculate the signal-to-noise

More information