Preface... xv Preface to the second edition... xvii Preface to the first edition... xix Acknowledgements... xxi Nomenclature...

Size: px
Start display at page:

Download "Preface... xv Preface to the second edition... xvii Preface to the first edition... xix Acknowledgements... xxi Nomenclature..."

Transcription

1

2 Contents Preface... xv Preface to the second edition... xvii Preface to the first edition... xix Acknowledgements... xxi Nomenclature... xxiii CHAPTER 1 Introduction Overview Flying and handling qualities General considerations Basic control-response relationships Mathematical models Stability and control Stability and control augmentation Aircraft equations of motion Aerodynamics Small perturbations Computers Analytical computers Flight control computers Computer software tools Summary References Sources CHAPTER 2 Systems of Axes and Notation Earth axes Aircraft body fixed axes Generalised body axes Aerodynamic, wind, or stability axes Perturbation variables Angular relationships in symmetric flight Choice of axes Euler angles and aircraft attitude Axes transformations Linear quantities transformation Angular velocities transformation v

3 vi Contents 2.5 Aircraft reference geometry Wing area Mean aerodynamic chord Standard mean chord Aspect ratio Location of centre of gravity Tail moment arm and tail volume ratio Fin moment arm and fin volume ratio Controls notation Aerodynamic controls Engine control Aerodynamic reference centres References Problems CHAPTER 3 Static Equilibrium and Trim Trim equilibrium Preliminary considerations Conditions for stability Degree of longitudinal stability Variation in stability The pitching moment equation Simple development of the pitching moment equation Elevator angle to trim Condition for longitudinal static stability Longitudinal static stability Controls-fixed stability Controls-free stability Summary of longitudinal static stability Lateral-directional static stability Lateral static stability Directional static stability Calculation of aircraft trim condition Defining the trim condition Elevator angle to trim Controls-fixed static stability AeroTrim : A Mathcad trim program References Sources Problems CHAPTER 4 The Equations of Motion The equations of motion for a rigid symmetric aircraft The components of inertial acceleration... 73

4 Contents vii The generalised force equations The generalised moment equations Perturbation forces and moments The linearised equations of motion Gravitational terms Aerodynamic terms Aerodynamic control terms Power terms The equations of motion for small perturbations The decoupled equations of motion The longitudinal equations of motion The lateral-directional equations of motion Alternative forms of the equations of motion The dimensionless equations of motion The equations of motion in state space form The equations of motion in American normalised form References Problems CHAPTER 5 The Solution of the Equations of Motion Methods of solution Cramer s rule Aircraft response transfer functions The longitudinal response transfer functions The lateral-directional response transfer functions Response to controls Acceleration response transfer functions The state-space method The transfer function matrix The longitudinal transfer function matrix The lateral-directional transfer function matrix Response in terms of state description State-space model augmentation Height response transfer function Incidence and sideslip response transfer functions Flight path angle response transfer function Addition of engine dynamics References Problems CHAPTER 6 Longitudinal Dynamics Response to controls The characteristic equation

5 viii Contents 6.2 The dynamic stability modes The short-period pitching oscillation The phugoid Reduced-order models The short-period mode approximation The phugoid mode approximation Frequency response The Bode diagram Interpretation of the Bode diagram Flying and handling qualities Mode excitation References Problems CHAPTER 7 Lateral-Directional Dynamics Response to controls The characteristic equation The dynamic stability modes The roll subsidence mode The spiral mode The dutch roll mode Reduced order models The roll mode approximation The spiral mode approximation The dutch roll mode approximation Frequency response Flying and handling qualities Mode excitation References Problems CHAPTER 8 Manoeuvrability Introduction Manoeuvring flight Stability Aircraft handling The steady symmetric manoeuvre The steady pull-up manoeuvre The pitching moment equation Longitudinal manoeuvre stability Controls-fixed stability Normal acceleration response to elevator Controls-free stability Elevator deflection and stick force

6 Contents ix 8.5 Aircraft dynamics and manoeuvrability Aircraft with stability augmentation Stick force Stick force per g References CHAPTER 9 Stability Introduction A definition of stability Non-linear systems Static and dynamic stability Control The characteristic equation The Routh-Hurwitz stability criterion Special cases The stability quartic Interpretation of conditional instability Interpretation of the coefficient E Graphical interpretation of stability Root mapping on the s-plane References Problems CHAPTER 10 Flying and Handling Qualities Introduction Stability Short term dynamic models Controlled motion and motion cues The longitudinal reduced order model The thumb print criterion Incidence lag Flying qualities requirements Aircraft role Aircraft classification Flight phase Levels of flying qualities Flight envelopes Pilot opinion rating Longitudinal flying qualities requirements Longitudinal static stability Longitudinal dynamic stability Longitudinal manoeuvrability Control anticipation parameter

7 x Contents 10.8 Lateral-directional flying qualities requirements Steady lateral-directional control Lateral-directional dynamic stability Lateral-directional manoeuvrability and response Flying qualities requirements on the s-plane Longitudinal modes Lateral-directional modes References Problems CHAPTER 11 Command and Stability Augmentation Introduction The control law Safety Stability augmentation system architecture Scope Augmentation system design Closed-loop system analysis The root locus plot Longitudinal stability augmentation Lateral-directional stability augmentation The pole placement method Command augmentation Command path filter design The frequency response of a phase compensation filter Introduction of a command path filter to the system state model References Problems CHAPTER 12 Aerodynamic Modelling Introduction Quasi-static derivatives Derivative estimation Calculation Wind tunnel measurement Flight test measurement The effects of compressibility Some useful definitions Aerodynamic models Subsonic lift, drag, and pitching moment Supersonic lift, drag, and pitching moment Summary Limitations of aerodynamic modelling References

8 Contents xi CHAPTER 13 Aerodynamic Stability and Control Derivatives Introduction Longitudinal aerodynamic stability derivatives Preliminary considerations Aerodynamic force and moment components Force derivatives due to velocity perturbations Moment derivatives due to velocity perturbations Derivatives due to a pitch velocity perturbation Derivatives due to acceleration perturbations Lateral-directional aerodynamic stability derivatives Preliminary considerations Derivatives due to sideslip Derivatives due to rate of roll Derivatives due to rate of yaw Aerodynamic control derivatives Derivatives due to elevator Derivatives due to aileron Derivatives due to rudder North American derivative coefficient notation The longitudinal aerodynamic derivative coefficients The lateral-directional aerodynamic derivative coefficients Comments References Problems CHAPTER 14 Flight in a Non-steady Atmosphere The influence of atmospheric disturbances on flying qualities Methods of evaluation Atmospheric disturbances Steady wind Wind shear Discrete gusts Continuous turbulence Extension of the linear aircraft equations of motion Disturbed body incidence and sideslip The longitudinal equations of motion The lateral-directional equations of motion The equations of motion for aircraft with stability augmentation Turbulence modelling The von Kármán model The Dryden model Comparison of the von Kármán and Dryden models Turbulence scale length Turbulence intensity

9 xii Contents 14.6 Discrete gusts The 1-cosine gust Determination of maximum gust velocity and horizontal length Aircraft response to gusts and turbulence Variance, power spectral density, and white noise Spatial and temporal equivalence Synthetic turbulence Aircraft response to gusts Aircraft response to turbulence References CHAPTER 15 Coursework Studies Introduction Working the assignments Reporting Assignment 1: Stability augmentation of the North American X-15 hypersonic research aeroplane The aircraft model The solution tasks Assignment 2: The stability and control characteristics of a civil transport aeroplane with relaxed longitudinal static stability The aircraft model The governing trim equations Basic aircraft stability and control analysis Relaxing the stability of the aircraft Relaxed stability aircraft stability and control analysis Evaluation of results Postscript Assignment 3: Lateral-directional handling qualities design for the Lockheed F-104 Starfighter aircraft The aircraft model Lateral-directional autostabiliser structure Basic aircraft stability and control analysis Augmenting the stability of the aircraft Inclusion of the washout filter in the model Designing the aileron-rudder interlink gain Assignment 4: Analysis of the effects of Mach number on the longitudinal stability and control characteristics of the LTV A7-A Corsair aircraft The aircraft model The assignment tasks

10 Contents xiii 15.6 Assignment 5: The design of a longitudinal primary flight control system for an advanced-technology UAV The aircraft model The design requirements The assignment tasks References Appendices 1 AeroTrim: A Symmetric Trim Calculator for Subsonic Flight Conditions Definitions of Aerodynamic Stability and Control Derivatives Aircraft Response Transfer Functions Referred to Aircraft Body Axes Units, Conversions, and Constants A Very Short Table of Laplace Transforms The Dynamics of a Linear Second Order System North American Aerodynamic Derivative Notation Approximate Expressions for the Dimensionless Aerodynamic Stability and Control Derivatives Transformation of Aerodynamic Stability Derivatives from a Body Axes Reference to a Wind Axes Reference Transformation of the Moments and Products of Inertia from a Body Axes Reference to a Wind Axes Reference The Root Locus Plot Index

Lab 8 Notes Basic Aircraft Design Rules 6 Apr 06

Lab 8 Notes Basic Aircraft Design Rules 6 Apr 06 Lab 8 Notes Basic Aircraft Design Rules 6 Apr 06 Nomenclature x, y longitudinal, spanwise positions S reference area (wing area) b wing span c average wing chord ( = S/b ) AR wing aspect ratio C L lift

More information

Lecture 8 : Dynamic Stability

Lecture 8 : Dynamic Stability Lecture 8 : Dynamic Stability Or what happens to small disturbances about a trim condition 1.0 : Dynamic Stability Static stability refers to the tendency of the aircraft to counter a disturbance. Dynamic

More information

Chapter 6 Lateral static stability and control - 3 Lecture 21 Topics

Chapter 6 Lateral static stability and control - 3 Lecture 21 Topics Chapter 6 Lateral static stability and control - 3 Lecture 21 Topics 6.11 General discussions on control surface 6.11.1 Aerodynamic balancing 6.11.2 Set back hinge or over hang balance 6.11.3 Horn balanace

More information

SIX DEGREE-OF-FREEDOM MODELING OF AN UNINHABITED AERIAL VEHICLE. A thesis presented to. the faculty of

SIX DEGREE-OF-FREEDOM MODELING OF AN UNINHABITED AERIAL VEHICLE. A thesis presented to. the faculty of SIX DEGREE-OF-FREEDOM MODELING OF AN UNINHABITED AERIAL VEHICLE A thesis presented to the faculty of the Russ College of Engineering and Technology of Ohio University In partial fulfillment of the requirement

More information

AE 430 - Stability and Control of Aerospace Vehicles

AE 430 - Stability and Control of Aerospace Vehicles AE 430 - Stability and Control of Aerospace Vehicles Atmospheric Flight Mechanics 1 Atmospheric Flight Mechanics Performance Performance characteristics (range, endurance, rate of climb, takeoff and landing

More information

APPENDIX 3-B Airplane Upset Recovery Briefing. Briefing. Figure 3-B.1

APPENDIX 3-B Airplane Upset Recovery Briefing. Briefing. Figure 3-B.1 APPENDIX 3-B Airplane Upset Recovery Briefing Industry Solutions for Large Swept-Wing Turbofan Airplanes Typically Seating More Than 100 Passengers Briefing Figure 3-B.1 Revision 1_August 2004 Airplane

More information

Fundamentals of Airplane Flight Mechanics

Fundamentals of Airplane Flight Mechanics Fundamentals of Airplane Flight Mechanics David G. Hull Fundamentals of Airplane Flight Mechanics With 125 Figures and 25 Tables 123 David G. Hull The University of Texas at Austin Aerospace Engineering

More information

Spacecraft Dynamics and Control. An Introduction

Spacecraft Dynamics and Control. An Introduction Brochure More information from http://www.researchandmarkets.com/reports/2328050/ Spacecraft Dynamics and Control. An Introduction Description: Provides the basics of spacecraft orbital dynamics plus attitude

More information

APPLICATION OF A SIX DEGREES OF FREEDOM ADAPTIVE CONTROLLER TO A GENERAL AVIATION AIRCRAFT. A Thesis by. Kimberly Ann Lemon

APPLICATION OF A SIX DEGREES OF FREEDOM ADAPTIVE CONTROLLER TO A GENERAL AVIATION AIRCRAFT. A Thesis by. Kimberly Ann Lemon APPLICATION OF A SIX DEGREES OF FREEDOM ADAPTIVE CONTROLLER TO A GENERAL AVIATION AIRCRAFT A Thesis by Kimberly Ann Lemon Bachelor of Science, Wichita State University, 2009 Submitted to the Department

More information

Introduction to Flight

Introduction to Flight Introduction to Flight Sixth Edition John D. Anderson, Jr. Curator for Aerodynamics, National Air and Space Museum Smithsonian Institution Professor Emeritus University of Maryland Boston Burr Ridge, IL

More information

Light Aircraft Design

Light Aircraft Design New: Sport Pilot (LSA) The Light Aircraft Design Computer Program Package - based on MS-Excelapplication was now extented with the new Sport Pilots (LSA) loads module, which includes compliance for the

More information

TOTAL ENERGY COMPENSATION IN PRACTICE

TOTAL ENERGY COMPENSATION IN PRACTICE TOTAL ENERGY COMPENSATION IN PRACTICE by Rudolph Brozel ILEC GmbH Bayreuth, Germany, September 1985 Edited by Thomas Knauff, & Dave Nadler April, 2002 This article is copyright protected ILEC GmbH, all

More information

Airplane/Glider Design Guidelines and Design Analysis Program

Airplane/Glider Design Guidelines and Design Analysis Program Airplane/Glider Design Guidelines and Design Analysis Program Ever have the urge to design your own plane but didn t feel secure enough with your usual TLAR (that looks about right) methods to invest all

More information

Pre-requisites 2012-2013

Pre-requisites 2012-2013 Pre-requisites 2012-2013 Engineering Computation The student should be familiar with basic tools in Mathematics and Physics as learned at the High School level and in the first year of Engineering Schools.

More information

Computational Aerodynamic Analysis on Store Separation from Aircraft using Pylon

Computational Aerodynamic Analysis on Store Separation from Aircraft using Pylon International Journal of Engineering Science Invention (IJESI) ISSN (Online): 2319 6734, ISSN (Print): 2319 6726 www.ijesi.org ǁ PP.27-31 Computational Aerodynamic Analysis on Store Separation from Aircraft

More information

CFD Based Reduced Order Models for T-tail flutter

CFD Based Reduced Order Models for T-tail flutter CFD Based Reduced Order Models for T-tail flutter A. Attorni, L. Cavagna, G. Quaranta Dipartimento di Ingegneria Aerospaziale Outline NAEMO-CFD software Test bench: Piaggio Avanti P180 T-Tail flutter problem

More information

Distinguished Professor George Washington University. Graw Hill

Distinguished Professor George Washington University. Graw Hill Mechanics of Fluids Fourth Edition Irving H. Shames Distinguished Professor George Washington University Graw Hill Boston Burr Ridge, IL Dubuque, IA Madison, Wl New York San Francisco St. Louis Bangkok

More information

Aerospace Engineering 3521: Flight Dynamics. Prof. Eric Feron Homework 6 due October 20, 2014

Aerospace Engineering 3521: Flight Dynamics. Prof. Eric Feron Homework 6 due October 20, 2014 Aerospace Engineering 3521: Flight Dynamics Prof. Eric Feron Homework 6 due October 20, 2014 1 Problem 1: Lateral-directional stability of Navion With the help of Chapter 2 of Nelson s textbook, we established

More information

Physics 9e/Cutnell. correlated to the. College Board AP Physics 1 Course Objectives

Physics 9e/Cutnell. correlated to the. College Board AP Physics 1 Course Objectives Physics 9e/Cutnell correlated to the College Board AP Physics 1 Course Objectives Big Idea 1: Objects and systems have properties such as mass and charge. Systems may have internal structure. Enduring

More information

Introduction to Aircraft Stability and Control Course Notes for M&AE 5070

Introduction to Aircraft Stability and Control Course Notes for M&AE 5070 Introduction to Aircraft Stability and Control Course Notes for M&AE 57 David A. Caughey Sibley School of Mechanical & Aerospace Engineering Cornell University Ithaca, New York 14853-751 211 2 Contents

More information

Sound. References: L.D. Landau & E.M. Lifshitz: Fluid Mechanics, Chapter VIII F. Shu: The Physics of Astrophysics, Vol. 2, Gas Dynamics, Chapter 8

Sound. References: L.D. Landau & E.M. Lifshitz: Fluid Mechanics, Chapter VIII F. Shu: The Physics of Astrophysics, Vol. 2, Gas Dynamics, Chapter 8 References: Sound L.D. Landau & E.M. Lifshitz: Fluid Mechanics, Chapter VIII F. Shu: The Physics of Astrophysics, Vol., Gas Dynamics, Chapter 8 1 Speed of sound The phenomenon of sound waves is one that

More information

CHAPTER 6 DESIGN OF SIX DEGREES OF FREEDOM AIRCRAFT MODEL AND LONGITUDINAL AUTOPILOT FOR AUTONOMOUS LANDING

CHAPTER 6 DESIGN OF SIX DEGREES OF FREEDOM AIRCRAFT MODEL AND LONGITUDINAL AUTOPILOT FOR AUTONOMOUS LANDING 148 CHAPTER 6 DESIGN OF SIX DEGREES OF FREEDOM AIRCRAFT MODEL AND LONGITUDINAL AUTOPILOT FOR AUTONOMOUS LANDING 6.1 INTRODUCTION This chapter deals with the development of six degrees of freedom (6-DOF)

More information

How To Design A Missile Control System

How To Design A Missile Control System Overview of Missile Flight Control Systems Paul B. Jackson he flight control system is a key element that allows the missile to meet its system performance requirements. The objective of the flight control

More information

Lecture L29-3D Rigid Body Dynamics

Lecture L29-3D Rigid Body Dynamics J. Peraire, S. Widnall 16.07 Dynamics Fall 2009 Version 2.0 Lecture L29-3D Rigid Body Dynamics 3D Rigid Body Dynamics: Euler Angles The difficulty of describing the positions of the body-fixed axis of

More information

Flightlab Ground School 5. Longitudinal Static Stability

Flightlab Ground School 5. Longitudinal Static Stability Flightlab Ground School 5. Longitudinal Static Stability Copyright Flight Emergency & Advanced Maneuvers Training, Inc. dba Flightlab, 2009. All rights reserved. For Training Purposes Only Longitudinal

More information

Requirements to servo-boosted control elements for sailplanes

Requirements to servo-boosted control elements for sailplanes Requirements to servo-boosted control elements for sailplanes Aerospace Research Programme 2004 A. Gäb J. Nowack W. Alles Chair of Flight Dynamics RWTH Aachen University 1 XXIX. OSTIV Congress Lüsse, 6-136

More information

INTRODUCTION TO FLUID MECHANICS

INTRODUCTION TO FLUID MECHANICS INTRODUCTION TO FLUID MECHANICS SIXTH EDITION ROBERT W. FOX Purdue University ALAN T. MCDONALD Purdue University PHILIP J. PRITCHARD Manhattan College JOHN WILEY & SONS, INC. CONTENTS CHAPTER 1 INTRODUCTION

More information

Flight Operations Briefing Notes

Flight Operations Briefing Notes Flight Operations Briefing Note I Introduction Operations in crosswind conditions require strict adherence to applicable crosswind limitations or maximum recommended crosswind values, operational recommendations

More information

NACA Nomenclature NACA 2421. NACA Airfoils. Definitions: Airfoil Geometry

NACA Nomenclature NACA 2421. NACA Airfoils. Definitions: Airfoil Geometry 0.40 m 0.21 m 0.02 m NACA Airfoils 6-Feb-08 AE 315 Lesson 10: Airfoil nomenclature and properties 1 Definitions: Airfoil Geometry z Mean camber line Chord line x Chord x=0 x=c Leading edge Trailing edge

More information

2. Dynamics, Control and Trajectory Following

2. Dynamics, Control and Trajectory Following 2. Dynamics, Control and Trajectory Following This module Flying vehicles: how do they work? Quick refresher on aircraft dynamics with reference to the magical flying space potato How I learned to stop

More information

ENGINEERING MECHANICS 2012 pp. 169 176 Svratka, Czech Republic, May 14 17, 2012 Paper #15

ENGINEERING MECHANICS 2012 pp. 169 176 Svratka, Czech Republic, May 14 17, 2012 Paper #15 . 18 m 2012 th International Conference ENGINEERING MECHANICS 2012 pp. 169 176 Svratka, Czech Republic, May 14 17, 2012 Paper #15 AEROELASTIC CERTIFICATION OF LIGHT SPORT AIRCRAFT ACCORDING "LTF" REGULATION

More information

Aeronautical Testing Service, Inc. 18820 59th DR NE Arlington, WA 98223 USA. CFD and Wind Tunnel Testing: Complimentary Methods for Aircraft Design

Aeronautical Testing Service, Inc. 18820 59th DR NE Arlington, WA 98223 USA. CFD and Wind Tunnel Testing: Complimentary Methods for Aircraft Design Aeronautical Testing Service, Inc. 18820 59th DR NE Arlington, WA 98223 USA CFD and Wind Tunnel Testing: Complimentary Methods for Aircraft Design Background Introduction ATS Company Background New and

More information

The aerodynamic center

The aerodynamic center The aerodynamic center In this chapter, we re going to focus on the aerodynamic center, and its effect on the moment coefficient C m. 1 Force and moment coefficients 1.1 Aerodynamic forces Let s investigate

More information

Dynamic Stability. Chapter 5. 5.1 Mathematical Background. 5.1.1 An Introductory Example

Dynamic Stability. Chapter 5. 5.1 Mathematical Background. 5.1.1 An Introductory Example Chapter 5 Dynamic Stability These notes provide a brief background for the response of linear systems, with application to the equations of motion for a flight vehicle. The description is meant to provide

More information

Certification Specifications for Large Rotorcraft CS-29

Certification Specifications for Large Rotorcraft CS-29 European Aviation Safety Agency Certification Specifications for Large Rotorcraft CS-29 11 December 2012 CS-29 CONTENTS (general layout) CS 29 LARGE ROTORCRAFT BOOK 1 CERTIFICATION SPECIFICATIONS SUBPART

More information

When the fluid velocity is zero, called the hydrostatic condition, the pressure variation is due only to the weight of the fluid.

When the fluid velocity is zero, called the hydrostatic condition, the pressure variation is due only to the weight of the fluid. Fluid Statics When the fluid velocity is zero, called the hydrostatic condition, the pressure variation is due only to the weight of the fluid. Consider a small wedge of fluid at rest of size Δx, Δz, Δs

More information

What did the Wright brothers invent?

What did the Wright brothers invent? What did the Wright brothers invent? The airplane, right? Well, not exactly. Page 1 of 15 The Wrights never claimed to have invented the airplane, or even the first airplane to fly. In their own words,

More information

CFD Analysis of Swept and Leaned Transonic Compressor Rotor

CFD Analysis of Swept and Leaned Transonic Compressor Rotor CFD Analysis of Swept and Leaned Transonic Compressor Nivin Francis #1, J. Bruce Ralphin Rose *2 #1 Student, Department of Aeronautical Engineering& Regional Centre of Anna University Tirunelveli India

More information

Design and Structural Analysis of the Ribs and Spars of Swept Back Wing

Design and Structural Analysis of the Ribs and Spars of Swept Back Wing Design and Structural Analysis of the Ribs and Spars of Swept Back Wing Mohamed Hamdan A 1, Nithiyakalyani S 2 1,2 Assistant Professor, Aeronautical Engineering & Srinivasan Engineering College, Perambalur,

More information

Quadcopters. Presented by: Andrew Depriest

Quadcopters. Presented by: Andrew Depriest Quadcopters Presented by: Andrew Depriest What is a quadcopter? Helicopter - uses rotors for lift and propulsion Quadcopter (aka quadrotor) - uses 4 rotors Parrot AR.Drone 2.0 History 1907 - Breguet-Richet

More information

Longitudinal and lateral dynamics

Longitudinal and lateral dynamics Longitudinal and lateral dynamics Lecturer dr. Arunas Tautkus Kaunas University of technology Powering the Future With Zero Emission and Human Powered Vehicles Terrassa 2011 1 Content of lecture Basic

More information

Engine Yaw Augmentation for Hybrid-Wing-Body Aircraft via Optimal Control Allocation Techniques

Engine Yaw Augmentation for Hybrid-Wing-Body Aircraft via Optimal Control Allocation Techniques AIAA Guidance, Navigation, and Control Conference 08-11 August 2011, Portland, Oregon AIAA 2011-6253 Engine Yaw Augmentation for Hybrid-Wing-Body Aircraft via Optimal Control Allocation Techniques Brian

More information

Certification Specifications for Very Light Aeroplanes CS-VLA

Certification Specifications for Very Light Aeroplanes CS-VLA European Aviation Safety Agency Certification Specifications for Very Light Aeroplanes CS-VLA Amendment 1 5 March 2009 1-0-1 CONTENTS (Layout) CS VLA VERY LIGHT AEROPLANES BOOK 1 AIRWORTHINESS CODE SUBPART

More information

Mechanics lecture 7 Moment of a force, torque, equilibrium of a body

Mechanics lecture 7 Moment of a force, torque, equilibrium of a body G.1 EE1.el3 (EEE1023): Electronics III Mechanics lecture 7 Moment of a force, torque, equilibrium of a body Dr Philip Jackson http://www.ee.surrey.ac.uk/teaching/courses/ee1.el3/ G.2 Moments, torque and

More information

Mechanics. Determining the gravitational constant with the gravitation torsion balance after Cavendish. LD Physics Leaflets P1.1.3.1.

Mechanics. Determining the gravitational constant with the gravitation torsion balance after Cavendish. LD Physics Leaflets P1.1.3.1. Mechanics Measuring methods Determining the gravitational constant LD Physics Leaflets P1.1.3.1 Determining the gravitational constant with the gravitation torsion balance after Cavendish Measuring the

More information

Fluid Mechanics Prof. S. K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur

Fluid Mechanics Prof. S. K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Fluid Mechanics Prof. S. K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Lecture - 20 Conservation Equations in Fluid Flow Part VIII Good morning. I welcome you all

More information

Precise Modelling of a Gantry Crane System Including Friction, 3D Angular Swing and Hoisting Cable Flexibility

Precise Modelling of a Gantry Crane System Including Friction, 3D Angular Swing and Hoisting Cable Flexibility Precise Modelling of a Gantry Crane System Including Friction, 3D Angular Swing and Hoisting Cable Flexibility Renuka V. S. & Abraham T Mathew Electrical Engineering Department, NIT Calicut E-mail : renuka_mee@nitc.ac.in,

More information

Behavioral Animation Simulation of Flocking Birds

Behavioral Animation Simulation of Flocking Birds Behavioral Animation Simulation of Flocking Birds Autonomous characters determine their actions Simulating the paths of individuals in: flocks of birds, schools of fish, herds of animals crowd scenes 1.

More information

Günter Seeber. Satellite Geodesy 2nd completely revised and extended edition

Günter Seeber. Satellite Geodesy 2nd completely revised and extended edition Günter Seeber Satellite Geodesy 2nd completely revised and extended edition Walter de Gruyter Berlin New York 2003 Contents Preface Abbreviations vii xvii 1 Introduction 1 1.1 Subject of Satellite Geodesy...

More information

Worksheet to Review Vector and Scalar Properties

Worksheet to Review Vector and Scalar Properties Worksheet to Review Vector and Scalar Properties 1. Differentiate between vectors and scalar quantities 2. Know what is being requested when the question asks for the magnitude of a quantity 3. Define

More information

A MONTE CARLO DISPERSION ANALYSIS OF A ROCKET FLIGHT SIMULATION SOFTWARE

A MONTE CARLO DISPERSION ANALYSIS OF A ROCKET FLIGHT SIMULATION SOFTWARE A MONTE CARLO DISPERSION ANALYSIS OF A ROCKET FLIGHT SIMULATION SOFTWARE F. SAGHAFI, M. KHALILIDELSHAD Department of Aerospace Engineering Sharif University of Technology E-mail: saghafi@sharif.edu Tel/Fax:

More information

Vehicle-Bridge Interaction Dynamics

Vehicle-Bridge Interaction Dynamics Vehicle-Bridge Interaction Dynamics With Applications to High-Speed Railways Y. B. Yang National Taiwan University, Taiwan J. D. Yau Tamkang University, Taiwan Y. S. Wu Sinotech Engineering Consultants,

More information

Lecture L2 - Degrees of Freedom and Constraints, Rectilinear Motion

Lecture L2 - Degrees of Freedom and Constraints, Rectilinear Motion S. Widnall 6.07 Dynamics Fall 009 Version.0 Lecture L - Degrees of Freedom and Constraints, Rectilinear Motion Degrees of Freedom Degrees of freedom refers to the number of independent spatial coordinates

More information

UCCS PES/ENSC 2500: Renewable Energy Spring 2014 Test 3 name:

UCCS PES/ENSC 2500: Renewable Energy Spring 2014 Test 3 name: UCCS PES/ENSC 2500: Renewable Energy Spring 2014 Test 3 name: 1. When a wind turbine is positioned between radio, television or microwave transmitter and receiver it can sometime reflect some of the in

More information

O.F.Wind Wind Site Assessment Simulation in complex terrain based on OpenFOAM. Darmstadt, 27.06.2012

O.F.Wind Wind Site Assessment Simulation in complex terrain based on OpenFOAM. Darmstadt, 27.06.2012 O.F.Wind Wind Site Assessment Simulation in complex terrain based on OpenFOAM Darmstadt, 27.06.2012 Michael Ehlen IB Fischer CFD+engineering GmbH Lipowskystr. 12 81373 München Tel. 089/74118743 Fax 089/74118749

More information

VARIABLE STABILITY FLIGHT OPERATIONS MANUAL

VARIABLE STABILITY FLIGHT OPERATIONS MANUAL SPACE INSTITUTE VARIABLE STABILITY FLIGHT OPERATIONS MANUAL Prepared by the Aviation Systems and Flight Research Department September 2004 Index 1.1 General Description...1 1.2 Variable Stability System...5

More information

GOVERNMENT OF INDIA OFFICE OF DIRECTORGENERAL OF CIVIL AVIATION OPPOSITE SAFDERJUNG AIRPORT NEW DELHI-110 003

GOVERNMENT OF INDIA OFFICE OF DIRECTORGENERAL OF CIVIL AVIATION OPPOSITE SAFDERJUNG AIRPORT NEW DELHI-110 003 GOVERNMENT OF INDIA OFFICE OF DIRECTORGENERAL OF CIVIL AVIATION OPPOSITE SAFDERJUNG AIRPORT NEW DELHI-110 003 AIRCRAFT ENGINEERING ADVISORY CIRCULAR No. 01 of 2016 DATED: April, 2016 Subject: Issue of

More information

Aerodynamic Design Optimization Discussion Group Case 4: Single- and multi-point optimization problems based on the CRM wing

Aerodynamic Design Optimization Discussion Group Case 4: Single- and multi-point optimization problems based on the CRM wing Aerodynamic Design Optimization Discussion Group Case 4: Single- and multi-point optimization problems based on the CRM wing Lana Osusky, Howard Buckley, and David W. Zingg University of Toronto Institute

More information

Aviation Supplies & Academics, Inc. 7005 132nd Place SE Newcastle, Washington 98059-3153 www.asa2fly.com

Aviation Supplies & Academics, Inc. 7005 132nd Place SE Newcastle, Washington 98059-3153 www.asa2fly.com The Pilot s Manual 1: Flight School Aviation Supplies & Academics, Inc. 7005 132nd Place SE Newcastle, Washington 98059-3153 www.asa2fly.com Originally published by Aviation Theory Centre 1990 1993. Fourth

More information

Flight Testing in Aircraft Design Teaching: Implementation and Impact on Student Experience Dr Oliver Lewis 1, Dr Jonny Potts 1 and Dr Jim Gautrey 2

Flight Testing in Aircraft Design Teaching: Implementation and Impact on Student Experience Dr Oliver Lewis 1, Dr Jonny Potts 1 and Dr Jim Gautrey 2 in Aircraft Design Teaching: Implementation and Impact on Student Experience Dr Oliver Lewis 1, Dr Jonny Potts 1 and Dr Jim Gautrey 2 1: Sheffield Hallam University, City Campus, Sheffield S1 1WB 2: Cranfield

More information

Amendment List Date Amended by Incorporated No Date 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 i

Amendment List Date Amended by Incorporated No Date 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 i No Amendment List Date Amended by Date Incorporated 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 i ACP 33 FLIGHT CONTENTS Volume 1... History of Flight Volume 2... Principles of Flight Volume 3... Propulsion

More information

APPLIED MATHEMATICS ADVANCED LEVEL

APPLIED MATHEMATICS ADVANCED LEVEL APPLIED MATHEMATICS ADVANCED LEVEL INTRODUCTION This syllabus serves to examine candidates knowledge and skills in introductory mathematical and statistical methods, and their applications. For applications

More information

Onboard electronics of UAVs

Onboard electronics of UAVs AARMS Vol. 5, No. 2 (2006) 237 243 TECHNOLOGY Onboard electronics of UAVs ANTAL TURÓCZI, IMRE MAKKAY Department of Electronic Warfare, Miklós Zrínyi National Defence University, Budapest, Hungary Recent

More information

NACA airfoil geometrical construction

NACA airfoil geometrical construction The NACA airfoil series The early NACA airfoil series, the 4-digit, 5-digit, and modified 4-/5-digit, were generated using analytical equations that describe the camber (curvature) of the mean-line (geometric

More information

CAMRAD II COMPREHENSIVE ANALYTICAL MODEL OF ROTORCRAFT AERODYNAMICS AND DYNAMICS

CAMRAD II COMPREHENSIVE ANALYTICAL MODEL OF ROTORCRAFT AERODYNAMICS AND DYNAMICS CAMRAD II COMPREHENSIVE ANALYTICAL MODEL OF ROTORCRAFT AERODYNAMICS AND DYNAMICS 1 CAMRAD II IS AN AEROMECHANICAL ANALYSIS OF HELICOPTERS AND ROTORCRAFT INCORPORATING ADVANCED TECHNOLOGY multibody dynamics

More information

FLIGHT CONTROLS 1. GENERAL 2. MAIN COMPONENTS AND SUBSYSTEMS ROLL CONTROL. Smartcockpit.com BOEING 737 SYSTEMS REVIEW Page 1

FLIGHT CONTROLS 1. GENERAL 2. MAIN COMPONENTS AND SUBSYSTEMS ROLL CONTROL. Smartcockpit.com BOEING 737 SYSTEMS REVIEW Page 1 Smartcockpit.com BOEING 737 SYSTEMS REVIEW Page 1 FLIGHT CONTROLS 1. GENERAL The primary flight controls, ailerons, elevators and rudders, are hydraulically powered. Hydraulic power is provided from hydraulic

More information

Gravity Field and Dynamics of the Earth

Gravity Field and Dynamics of the Earth Milan Bursa Karel Pec Gravity Field and Dynamics of the Earth With 89 Figures Springer-Verlag Berlin Heidelberg New York London Paris Tokyo HongKong Barcelona Budapest Preface v Introduction 1 1 Fundamentals

More information

Physics 2A, Sec B00: Mechanics -- Winter 2011 Instructor: B. Grinstein Final Exam

Physics 2A, Sec B00: Mechanics -- Winter 2011 Instructor: B. Grinstein Final Exam Physics 2A, Sec B00: Mechanics -- Winter 2011 Instructor: B. Grinstein Final Exam INSTRUCTIONS: Use a pencil #2 to fill your scantron. Write your code number and bubble it in under "EXAM NUMBER;" an entry

More information

Lecture L6 - Intrinsic Coordinates

Lecture L6 - Intrinsic Coordinates S. Widnall, J. Peraire 16.07 Dynamics Fall 2009 Version 2.0 Lecture L6 - Intrinsic Coordinates In lecture L4, we introduced the position, velocity and acceleration vectors and referred them to a fixed

More information

Basic Principles of Inertial Navigation. Seminar on inertial navigation systems Tampere University of Technology

Basic Principles of Inertial Navigation. Seminar on inertial navigation systems Tampere University of Technology Basic Principles of Inertial Navigation Seminar on inertial navigation systems Tampere University of Technology 1 The five basic forms of navigation Pilotage, which essentially relies on recognizing landmarks

More information

High School Aerospace Engineering Curriculum Essentials Document

High School Aerospace Engineering Curriculum Essentials Document High School Aerospace Engineering Curriculum Essentials Document Boulder Valley School District Department of CTEC January 2014 Introduction Aerospace Engineering Course This document is intended to be

More information

Parameter identification of a linear single track vehicle model

Parameter identification of a linear single track vehicle model Parameter identification of a linear single track vehicle model Edouard Davin D&C 2011.004 Traineeship report Coach: dr. Ir. I.J.M. Besselink Supervisors: prof. dr. H. Nijmeijer Eindhoven University of

More information

QUANTITATIVE METHODS. for Decision Makers. Mik Wisniewski. Fifth Edition. FT Prentice Hall

QUANTITATIVE METHODS. for Decision Makers. Mik Wisniewski. Fifth Edition. FT Prentice Hall Fifth Edition QUANTITATIVE METHODS for Decision Makers Mik Wisniewski Senior Research Fellow, Department of Management Science, University of Strathclyde Business School FT Prentice Hall FINANCIAL TIMES

More information

Rotation: Moment of Inertia and Torque

Rotation: Moment of Inertia and Torque Rotation: Moment of Inertia and Torque Every time we push a door open or tighten a bolt using a wrench, we apply a force that results in a rotational motion about a fixed axis. Through experience we learn

More information

LOCKHEED GEORGIA LOWSPEED WIND TUNNEL HONDA CIVIC HATCHBACK AIRTAB(R) MODIFICATION RESULTS

LOCKHEED GEORGIA LOWSPEED WIND TUNNEL HONDA CIVIC HATCHBACK AIRTAB(R) MODIFICATION RESULTS LOCKHEED GEORGIA LOWSPEED WIND TUNNEL HONDA CIVIC HATCHBACK AIRTAB(R) MODIFICATION RESULTS Executive Summary: This report shows conclusively that the Airtab product reduced aerodynamic drag forces at the

More information

Universal Law of Gravitation

Universal Law of Gravitation Universal Law of Gravitation Law: Every body exerts a force of attraction on every other body. This force called, gravity, is relatively weak and decreases rapidly with the distance separating the bodies

More information

General aviation & Business System Level Applications and Requirements Electrical Technologies for the Aviation of the Future Europe-Japan Symposium

General aviation & Business System Level Applications and Requirements Electrical Technologies for the Aviation of the Future Europe-Japan Symposium General aviation & Business System Level Applications and Requirements Electrical Technologies for the Aviation of the Future Europe-Japan Symposium 26 March 2015 2015 MITSUBISHI HEAVY INDUSTRIES, LTD.

More information

Development of Knowledge-Based Software for UAV Autopilot Design

Development of Knowledge-Based Software for UAV Autopilot Design Development of Knowledge-Based Software for UAV Autopilot Design George Tarrant Director CLOSED LOOP SYSTEMS Health Warning Autopilot design is a technical subject. In this paper, I have tried to translate

More information

European Aviation Safety Agency

European Aviation Safety Agency European Aviation Safety Agency ED Decision 2003/2/RM Final 17/10/2003 The Executive Director DECISION NO. 2003/2/RM OF THE EXECUTIVE DIRECTOR OF THE AGENCY of 17 October 2003 on certification specifications,

More information

5.10. CLASS F3M LARGE RADIO CONTROLLED AEROBATIC POWER MODEL AIRCRAFT 5.10.1. Definition of a Large Radio Controlled Aerobatic Power Model Aircraft

5.10. CLASS F3M LARGE RADIO CONTROLLED AEROBATIC POWER MODEL AIRCRAFT 5.10.1. Definition of a Large Radio Controlled Aerobatic Power Model Aircraft 5.10. CLASS F3M LARGE RADIO CONTROLLED AEROBATIC POWER MODEL AIRCRAFT 5.10.1. Definition of a Large Radio Controlled Aerobatic Power Model Aircraft Model aircraft, but not a helicopter, which is aerodynamically

More information

Unit - 6 Vibrations of Two Degree of Freedom Systems

Unit - 6 Vibrations of Two Degree of Freedom Systems Unit - 6 Vibrations of Two Degree of Freedom Systems Dr. T. Jagadish. Professor for Post Graduation, Department of Mechanical Engineering, Bangalore Institute of Technology, Bangalore Introduction A two

More information

Control of a quadrotor UAV (slides prepared by M. Cognetti)

Control of a quadrotor UAV (slides prepared by M. Cognetti) Sapienza Università di Roma Corso di Laurea in Ingegneria Elettronica Corso di Fondamenti di Automatica Control of a quadrotor UAV (slides prepared by M. Cognetti) Unmanned Aerial Vehicles (UAVs) autonomous/semi-autonomous

More information

Lecture L5 - Other Coordinate Systems

Lecture L5 - Other Coordinate Systems S. Widnall, J. Peraire 16.07 Dynamics Fall 008 Version.0 Lecture L5 - Other Coordinate Systems In this lecture, we will look at some other common systems of coordinates. We will present polar coordinates

More information

To provide insight into the physics of arrow flight and show how archers adapt their equipment to maximize effectiveness.

To provide insight into the physics of arrow flight and show how archers adapt their equipment to maximize effectiveness. The Science of Archery Godai Katsunaga Purpose To provide insight into the physics of arrow flight and show how archers adapt their equipment to maximize effectiveness. Archery Archery is one of the events

More information

Schneps, Leila; Colmez, Coralie. Math on Trial : How Numbers Get Used and Abused in the Courtroom. New York, NY, USA: Basic Books, 2013. p i.

Schneps, Leila; Colmez, Coralie. Math on Trial : How Numbers Get Used and Abused in the Courtroom. New York, NY, USA: Basic Books, 2013. p i. New York, NY, USA: Basic Books, 2013. p i. http://site.ebrary.com/lib/mcgill/doc?id=10665296&ppg=2 New York, NY, USA: Basic Books, 2013. p ii. http://site.ebrary.com/lib/mcgill/doc?id=10665296&ppg=3 New

More information

AOE 3104 Aircraft Performance Problem Sheet 2 (ans) Find the Pressure ratio in a constant temperature atmosphere:

AOE 3104 Aircraft Performance Problem Sheet 2 (ans) Find the Pressure ratio in a constant temperature atmosphere: AOE 3104 Aircraft Performance Problem Sheet 2 (ans) 6. The atmosphere of Jupiter is essentially made up of hydrogen, H 2. For Hydrogen, the specific gas constant is 4157 Joules/(kg)(K). The acceleration

More information

Flight Test Results for the F-16XL With a Digital Flight Control System

Flight Test Results for the F-16XL With a Digital Flight Control System NASA/TP-24-21246 Flight Test Results for the F-16XL With a Digital Flight Control System Susan J. Stachowiak and John T. Bosworth NASA Dryden Flight Research Center Edwards, California March 24 The NASA

More information

CE 6303 MECHANICS OF FLUIDS L T P C QUESTION BANK PART - A

CE 6303 MECHANICS OF FLUIDS L T P C QUESTION BANK PART - A CE 6303 MECHANICS OF FLUIDS L T P C QUESTION BANK 3 0 0 3 UNIT I FLUID PROPERTIES AND FLUID STATICS PART - A 1. Define fluid and fluid mechanics. 2. Define real and ideal fluids. 3. Define mass density

More information

Aircraft Dynamics Example

Aircraft Dynamics Example UNIVERSITY OF CALIFORNIA, SANTA CRUZ BOARD OF STUDIES IN COMPUTER ENGINEERING CMPE 4: INTRODUCTION TO LINEAR DYNAMICAL SYSTEMS Gabriel Hugh Elkaim Fall 5 longitudinal aircraft dynamics wind gust & control

More information

High-Lift Systems. High Lift Systems -- Introduction. Flap Geometry. Outline of this Chapter

High-Lift Systems. High Lift Systems -- Introduction. Flap Geometry. Outline of this Chapter High-Lift Systems Outline of this Chapter The chapter is divided into four sections. The introduction describes the motivation for high lift systems, and the basic concepts underlying flap and slat systems.

More information

AP1 Oscillations. 1. Which of the following statements about a spring-block oscillator in simple harmonic motion about its equilibrium point is false?

AP1 Oscillations. 1. Which of the following statements about a spring-block oscillator in simple harmonic motion about its equilibrium point is false? 1. Which of the following statements about a spring-block oscillator in simple harmonic motion about its equilibrium point is false? (A) The displacement is directly related to the acceleration. (B) The

More information

Fundamentals of THERMAL-FLUID SCIENCES

Fundamentals of THERMAL-FLUID SCIENCES Fundamentals of THERMAL-FLUID SCIENCES THIRD EDITION YUNUS A. CENGEL ROBERT H. TURNER Department of Mechanical JOHN M. CIMBALA Me Graw Hill Higher Education Boston Burr Ridge, IL Dubuque, IA Madison, Wl

More information

APPLICATIONS OF TENSOR ANALYSIS

APPLICATIONS OF TENSOR ANALYSIS APPLICATIONS OF TENSOR ANALYSIS (formerly titled: Applications of the Absolute Differential Calculus) by A J McCONNELL Dover Publications, Inc, Neiv York CONTENTS PART I ALGEBRAIC PRELIMINARIES/ CHAPTER

More information

A. Hyll and V. Horák * Department of Mechanical Engineering, Faculty of Military Technology, University of Defence, Brno, Czech Republic

A. Hyll and V. Horák * Department of Mechanical Engineering, Faculty of Military Technology, University of Defence, Brno, Czech Republic AiMT Advances in Military Technology Vol. 8, No. 1, June 2013 Aerodynamic Characteristics of Multi-Element Iced Airfoil CFD Simulation A. Hyll and V. Horák * Department of Mechanical Engineering, Faculty

More information

Lift and Drag on an Airfoil ME 123: Mechanical Engineering Laboratory II: Fluids

Lift and Drag on an Airfoil ME 123: Mechanical Engineering Laboratory II: Fluids Lift and Drag on an Airfoil ME 123: Mechanical Engineering Laboratory II: Fluids Dr. J. M. Meyers Dr. D. G. Fletcher Dr. Y. Dubief 1. Introduction In this lab the characteristics of airfoil lift, drag,

More information

Section 4: The Basics of Satellite Orbits

Section 4: The Basics of Satellite Orbits Section 4: The Basics of Satellite Orbits MOTION IN SPACE VS. MOTION IN THE ATMOSPHERE The motion of objects in the atmosphere differs in three important ways from the motion of objects in space. First,

More information

Design Considerations for Water-Bottle Rockets. The next few pages are provided to help in the design of your water-bottle rocket.

Design Considerations for Water-Bottle Rockets. The next few pages are provided to help in the design of your water-bottle rocket. Acceleration= Force OVER Mass Design Considerations for Water-Bottle Rockets The next few pages are provided to help in the design of your water-bottle rocket. Newton s First Law: Objects at rest will

More information

Salem Community College Course Syllabus. Course Title: Physics I. Course Code: PHY 101. Lecture Hours: 2 Laboratory Hours: 4 Credits: 4

Salem Community College Course Syllabus. Course Title: Physics I. Course Code: PHY 101. Lecture Hours: 2 Laboratory Hours: 4 Credits: 4 Salem Community College Course Syllabus Course Title: Physics I Course Code: PHY 101 Lecture Hours: 2 Laboratory Hours: 4 Credits: 4 Course Description: The basic principles of classical physics are explored

More information

Dimensional analysis is a method for reducing the number and complexity of experimental variables that affect a given physical phenomena.

Dimensional analysis is a method for reducing the number and complexity of experimental variables that affect a given physical phenomena. Dimensional Analysis and Similarity Dimensional analysis is very useful for planning, presentation, and interpretation of experimental data. As discussed previously, most practical fluid mechanics problems

More information