# College of Computer & Information Science Fall 2007 Northeastern University 9 October 2007

Save this PDF as:

Size: px
Start display at page:

Download "College of Computer & Information Science Fall 2007 Northeastern University 9 October 2007"

## Transcription

1 College of Computer & Information Science Fall 2007 Northeastern University 9 October 2007 CS G399: Algorithmic Power Tools I Scribe: Laura Poplawski Lecture Outline: Network Design Steiner Forest (primal-dual algorithm) Generalized Steiner Network (iterated rounding algorithm) - postponed to next lecture 1 Steiner Forest Problem 1. Given: graph G = (V, E), edge cost function C : E Q, collection of sets {S 1, S 2,..., S k } V. Goal: Determine subgraph H of G with least cost such that i, S i is connected in H. 2 Relationship to MST and Steiner Tree We note that Minimum spanning tree (MST) is a special case of Steiner Forest in which k = 1 and S 1 = V (we want to connect all the nodes using a min-cost subset of the edges). Minimum Steiner tree is a special case in k = 1 and S 1 is an arbitrary subset of V. Since Steiner Tree is NP-hard, Steiner forest is also NP-Hard. There is a simple 2-approximation for Steiner Tree. Create a new graph consisting of all the nodes of the set S that we want to connect, plus an edge connecting each pair of nodes with length = the shortest path length from the original graph. Solve MST on this new graph and use this MST to create a Steiner tree on the original graph (by removing unnecessary edges). To verify that this is a 2-approximation: consider the minimum Steiner tree on the original graph, and consider a tour of all nodes in S that visits each edge of the Steiner tree at most twice. If we visit the nodes in the same order in our new graph, we will get a spanning tree that is at least as expensive as the MST, with cost at most the cost of the tour on the original graph, which is at most twice the cost of the min Steiner tree. The best known (poly-time) approximation factor is 1.55 (see [2]). Since we have good approximations to Steiner Tree, it is tempting to solve Steiner Forest by merging together Steiner trees for each S i. However, the following example shows that this could lead to an approximation ratio as high as k, the number of sets in the given instance.

2 3 Linear Program for Steiner Forest There are two linear program approaches to solve this problem. One uses flows, the second uses cuts. To use flows, we would define a variable representing the flow across each edge. There would be a constraint for each pair (u, v) S i (for all i) saying that the flow between u and v must be at least 1. The capacity of the flow across each edge would be another variable, representing whether or not that edge is included in the solution. This LP has a polynomial number of constraints and a polynomial number of variables. However, it is not clear how to use a primal-dual approach with the flow-based LPs. Therefore, we will concentrate on the cut-based LP. We define variables x e {0, 1}, for all edges e. x e = 1 if e is part of the forest, 0 otherwise. Notation: c e = the cost of edge e. δ(s) = the set of all edges that are cut by cut (S, S). f(s) is a function defined on the set of all cuts of G. f(s) = 1 if there exists a pair (u, v) such that (u, v) S i for some i, u S, v S. minimize e E x e c e S, x e f(s) e δ(s) e, x e 0 Note that this LP has an exponential number of constraints, and therefore cannot immediately be solved as-is in polynomial time. For the primal-dual approach we do not need to solve the LP, so we defer the solvability of the LP. When we consider the more general Steiner Network problem, we will in fact show that the LP is solvable in polynomial time. Claim 1. An integer solution to the above LP is exactly Steiner Forest. Proof. Given Steiner Forest H, construct solution X for the LP as follows. { 1 e H x e = 0 e / H Consider any cut S such that f(s) = 1. Then (u, v) such that u S, v S, (u, v) S i for some i. u and v must have some path between them in H, since H is a valid Steiner forest. So there must 2

3 be some edge e crossing cut S, x e = 1, satisfying the constraint for S. So X is a valid solution to the LP. Clearly, the cost of H = the value of X. Now take integer solution X to the LP. The first constraint of the LP combined with the fact that the objective is minimization implies that no x e will have a value greater than 1. Therefore, each (integer) x e value is 0 or 1. Construct a Steiner forest H by adding each edge that has x e = 1. Suppose H does not connect some S i. Then, there exist (u, v) S i such that there is no path in H connecting u and v. Let set S = the set of all nodes connected to u in H (and notice that v / S). Take cut (S, S). f(s) = 1 by definition of S. Since X is a valid solution to the LP, there must be some edge e crossing S such that x e = 1. However, this contradicts our definition of S. So H must connect all S i, and therefore be a valid Steiner forest. Again, clearly the cost of H = the value of X. Claim 2. The above LP has an integrality gap 2 1/n. Proof. Consider a cycle of length n, all edges have cost 1, S 1 = V (MST on a cycle). The minimum Steiner forest has cost n 1. However, the LP can be solved by setting x e =.5 for all e, giving a value n 2. 4 Dual to the LP maximize S f(s)y S e, S:e δ(s) S, y S 0 y S c e 5 Geomans and Williamson primal-dual algorithm ([1]) Intuition: We will grow a tree starting at each u S i for each i. We will stop as soon as the primal solution is feasible. In each step, we increase the y S values for cuts that make the primal infeasible until the dual constraint for some edge e becomes tight. We will set x e = 1 for one such e, satisfying at least one more primal constraint, and remove any edges that might create a cycle. When the primal solution is feasible, we will go back and delete any unnecessary edges. However the above approach, stated as is, turns out to be similar as solving separate Steiner tree problems at the same time, which we know will not give a good approximation ratio. To fix this, we will carefully pick which y S to grow at each step. In the algorithm below, an active set is a minimal set whose primal constraint has not yet been satisfied. The primal-dual algorithm follows: 1: F 0; 2: y S = 0, S; 3: initially, active sets = {{u} : u i S i } 3

4 4: while active set S for which primal constraint is not satisfied do 5: raise y S uniformly for all active sets S until some edge e has S:e δ(s) y S = c e. (notice: this may raise the y S values by 0 if an edge is already tight). 6: add e to F (if multiple e became tight, pick only one of them) 7: remove all tight edges that haven t been added yet that would form a cycle in F 8: set F = F - {e : removing e does not violate any connecting constraint}. 9: return F. Observation: active sets are connected components in F. Lemma 1. F is primal feasible and y is dual feasible. Proof. By design, F is a forest which satisfies all constaints. Let e be an edge removed from F at step 8. Then there are no pairs on opposite sides of e that want to be connected. So F is primal feasible. Now show that Y is dual feasible. Consider edge e. If e never becomes tight, then the constraint for e must be obeyed. If e does become tight at some point, then after this point, there is no active set S such that e crosses S. To see this, we note that for an active set S (a) if e crosses S and we included e in the solution, then the cut S constraint is satisfied by e; (b) if e crosses S and we removed e from the solution in step 7, then including e would close a cycle; either all nodes in the cycle are part of S, all nodes are not part of S, or some chosen edge in the cycle crosses S. Since we increase y S only for active sets, S:e δ(s) y S will remain = c e. Lemma 2. cost(f ) 2 cost(y). That is, e F c e 2 S:f(S)=1 y S Proof. e F c e = = y S (since we only picked tight edges e) e F e δ(s) y S 1 S:f(S)=1 e F δ(s) If we could say that degree F (S) 2, we would be done (since we can just use the relaxed complementary slackness conditions. But this isn t necessarily true. Instead, our goal is to prove that y S degree F (S) 2 y S S S We will show this using induction on the iterations of the algorithm. Initially, all y S values are 0, so it s true. At any iteration, we start with F = the collection of connected components. Some are active sets, others are not. There are no other active sets. (An active set cannot be smaller than 4

5 a connected component, because the cut constraint is satisfied for sets smaller than a connected component. An active set cannot be larger than a connected component because our active sets are the minimal sets that don t satisfy their constraints.) Suppose in an iteration, we increase y S for all active S by. The right hand side of the above equation increases by 2 times number of active sets. To evaluate the left hand side, we must consider the final forest F. Imagine F with each current connected component collapsed into a single node. In this revised F, none of the inactive connected components will be leaves, because we would have removed edges connecting these components to the rest of the forest during step 8. Therefore, the average degree of all active connected components is the average degree of a subset of the nodes in a tree, including all of the leaves. So the average degree is at most 2. So the left hand side of the above equation also increases by at most 2 times the number of active sets, thus completing the proof of the lemma. References [1] M.X. Goemans and D.P. Williamson. A general approximation technique for constrained forest problems. SIAM Journal of Computing, 24(2): , [2] G. Robins and A. Zelikovsky. Tighter Bounds for Graph Steiner Tree Approximation. SIAM Journal on Discrete Mathematics, 19: ,

### ! Solve problem to optimality. ! Solve problem in poly-time. ! Solve arbitrary instances of the problem. #-approximation algorithm.

Approximation Algorithms 11 Approximation Algorithms Q Suppose I need to solve an NP-hard problem What should I do? A Theory says you're unlikely to find a poly-time algorithm Must sacrifice one of three

### ! Solve problem to optimality. ! Solve problem in poly-time. ! Solve arbitrary instances of the problem. !-approximation algorithm.

Approximation Algorithms Chapter Approximation Algorithms Q Suppose I need to solve an NP-hard problem What should I do? A Theory says you're unlikely to find a poly-time algorithm Must sacrifice one of

Approximation Algorithms Chapter Approximation Algorithms Q. Suppose I need to solve an NP-hard problem. What should I do? A. Theory says you're unlikely to find a poly-time algorithm. Must sacrifice one

### 8.1 Min Degree Spanning Tree

CS880: Approximations Algorithms Scribe: Siddharth Barman Lecturer: Shuchi Chawla Topic: Min Degree Spanning Tree Date: 02/15/07 In this lecture we give a local search based algorithm for the Min Degree

### Near Optimal Solutions

Near Optimal Solutions Many important optimization problems are lacking efficient solutions. NP-Complete problems unlikely to have polynomial time solutions. Good heuristics important for such problems.

### Outline. NP-completeness. When is a problem easy? When is a problem hard? Today. Euler Circuits

Outline NP-completeness Examples of Easy vs. Hard problems Euler circuit vs. Hamiltonian circuit Shortest Path vs. Longest Path 2-pairs sum vs. general Subset Sum Reducing one problem to another Clique

### Scheduling Home Health Care with Separating Benders Cuts in Decision Diagrams

Scheduling Home Health Care with Separating Benders Cuts in Decision Diagrams André Ciré University of Toronto John Hooker Carnegie Mellon University INFORMS 2014 Home Health Care Home health care delivery

### Approximation Algorithms

Approximation Algorithms or: How I Learned to Stop Worrying and Deal with NP-Completeness Ong Jit Sheng, Jonathan (A0073924B) March, 2012 Overview Key Results (I) General techniques: Greedy algorithms

### The Goldberg Rao Algorithm for the Maximum Flow Problem

The Goldberg Rao Algorithm for the Maximum Flow Problem COS 528 class notes October 18, 2006 Scribe: Dávid Papp Main idea: use of the blocking flow paradigm to achieve essentially O(min{m 2/3, n 1/2 }

### Algorithm Design and Analysis

Algorithm Design and Analysis LECTURE 27 Approximation Algorithms Load Balancing Weighted Vertex Cover Reminder: Fill out SRTEs online Don t forget to click submit Sofya Raskhodnikova 12/6/2011 S. Raskhodnikova;

### A Branch and Bound Algorithm for Solving the Binary Bi-level Linear Programming Problem

A Branch and Bound Algorithm for Solving the Binary Bi-level Linear Programming Problem John Karlof and Peter Hocking Mathematics and Statistics Department University of North Carolina Wilmington Wilmington,

### Applied Algorithm Design Lecture 5

Applied Algorithm Design Lecture 5 Pietro Michiardi Eurecom Pietro Michiardi (Eurecom) Applied Algorithm Design Lecture 5 1 / 86 Approximation Algorithms Pietro Michiardi (Eurecom) Applied Algorithm Design

### Proximal mapping via network optimization

L. Vandenberghe EE236C (Spring 23-4) Proximal mapping via network optimization minimum cut and maximum flow problems parametric minimum cut problem application to proximal mapping Introduction this lecture:

### Bicolored Shortest Paths in Graphs with Applications to Network Overlay Design

Bicolored Shortest Paths in Graphs with Applications to Network Overlay Design Hongsik Choi and Hyeong-Ah Choi Department of Electrical Engineering and Computer Science George Washington University Washington,

### Lecture 2: August 29. Linear Programming (part I)

10-725: Convex Optimization Fall 2013 Lecture 2: August 29 Lecturer: Barnabás Póczos Scribes: Samrachana Adhikari, Mattia Ciollaro, Fabrizio Lecci Note: LaTeX template courtesy of UC Berkeley EECS dept.

### On the effect of forwarding table size on SDN network utilization

IBM Haifa Research Lab On the effect of forwarding table size on SDN network utilization Rami Cohen IBM Haifa Research Lab Liane Lewin Eytan Yahoo Research, Haifa Seffi Naor CS Technion, Israel Danny Raz

### Approximating Minimum Bounded Degree Spanning Trees to within One of Optimal

Approximating Minimum Bounded Degree Spanning Trees to within One of Optimal ABSTACT Mohit Singh Tepper School of Business Carnegie Mellon University Pittsburgh, PA USA mohits@andrew.cmu.edu In the MINIMUM

### Energy-efficient communication in multi-interface wireless networks

Energy-efficient communication in multi-interface wireless networks Stavros Athanassopoulos, Ioannis Caragiannis, Christos Kaklamanis, and Evi Papaioannou Research Academic Computer Technology Institute

### Dynamic programming. Doctoral course Optimization on graphs - Lecture 4.1. Giovanni Righini. January 17 th, 2013

Dynamic programming Doctoral course Optimization on graphs - Lecture.1 Giovanni Righini January 1 th, 201 Implicit enumeration Combinatorial optimization problems are in general NP-hard and we usually

### 9th Max-Planck Advanced Course on the Foundations of Computer Science (ADFOCS) Primal-Dual Algorithms for Online Optimization: Lecture 1

9th Max-Planck Advanced Course on the Foundations of Computer Science (ADFOCS) Primal-Dual Algorithms for Online Optimization: Lecture 1 Seffi Naor Computer Science Dept. Technion Haifa, Israel Introduction

### Permutation Betting Markets: Singleton Betting with Extra Information

Permutation Betting Markets: Singleton Betting with Extra Information Mohammad Ghodsi Sharif University of Technology ghodsi@sharif.edu Hamid Mahini Sharif University of Technology mahini@ce.sharif.edu

### 136 CHAPTER 4. INDUCTION, GRAPHS AND TREES

136 TER 4. INDUCTION, GRHS ND TREES 4.3 Graphs In this chapter we introduce a fundamental structural idea of discrete mathematics, that of a graph. Many situations in the applications of discrete mathematics

### The Line Connectivity Problem

Konrad-Zuse-Zentrum für Informationstechnik Berlin Takustraße 7 D-14195 Berlin-Dahlem Germany RALF BORNDÖRFER MARIKA NEUMANN MARC E. PFETSCH The Line Connectivity Problem Supported by the DFG Research

### 3. Linear Programming and Polyhedral Combinatorics

Massachusetts Institute of Technology Handout 6 18.433: Combinatorial Optimization February 20th, 2009 Michel X. Goemans 3. Linear Programming and Polyhedral Combinatorics Summary of what was seen in the

### Solutions for Practice problems on proofs

Solutions for Practice problems on proofs Definition: (even) An integer n Z is even if and only if n = 2m for some number m Z. Definition: (odd) An integer n Z is odd if and only if n = 2m + 1 for some

### On the k-path cover problem for cacti

On the k-path cover problem for cacti Zemin Jin and Xueliang Li Center for Combinatorics and LPMC Nankai University Tianjin 300071, P.R. China zeminjin@eyou.com, x.li@eyou.com Abstract In this paper we

### Lecture 15 An Arithmetic Circuit Lowerbound and Flows in Graphs

CSE599s: Extremal Combinatorics November 21, 2011 Lecture 15 An Arithmetic Circuit Lowerbound and Flows in Graphs Lecturer: Anup Rao 1 An Arithmetic Circuit Lower Bound An arithmetic circuit is just like

### Fairness in Routing and Load Balancing

Fairness in Routing and Load Balancing Jon Kleinberg Yuval Rabani Éva Tardos Abstract We consider the issue of network routing subject to explicit fairness conditions. The optimization of fairness criteria

### Modeling and Solving the Capacitated Vehicle Routing Problem on Trees

in The Vehicle Routing Problem: Latest Advances and New Challenges Modeling and Solving the Capacitated Vehicle Routing Problem on Trees Bala Chandran 1 and S. Raghavan 2 1 Department of Industrial Engineering

### Approximated Distributed Minimum Vertex Cover Algorithms for Bounded Degree Graphs

Approximated Distributed Minimum Vertex Cover Algorithms for Bounded Degree Graphs Yong Zhang 1.2, Francis Y.L. Chin 2, and Hing-Fung Ting 2 1 College of Mathematics and Computer Science, Hebei University,

### 2.3 Convex Constrained Optimization Problems

42 CHAPTER 2. FUNDAMENTAL CONCEPTS IN CONVEX OPTIMIZATION Theorem 15 Let f : R n R and h : R R. Consider g(x) = h(f(x)) for all x R n. The function g is convex if either of the following two conditions

### Topology-based network security

Topology-based network security Tiit Pikma Supervised by Vitaly Skachek Research Seminar in Cryptography University of Tartu, Spring 2013 1 Introduction In both wired and wireless networks, there is the

### Linear Programming I

Linear Programming I November 30, 2003 1 Introduction In the VCR/guns/nuclear bombs/napkins/star wars/professors/butter/mice problem, the benevolent dictator, Bigus Piguinus, of south Antarctica penguins

### An Approximation Algorithm for Bounded Degree Deletion

An Approximation Algorithm for Bounded Degree Deletion Tomáš Ebenlendr Petr Kolman Jiří Sgall Abstract Bounded Degree Deletion is the following generalization of Vertex Cover. Given an undirected graph

### Classification - Examples

Lecture 2 Scheduling 1 Classification - Examples 1 r j C max given: n jobs with processing times p 1,...,p n and release dates r 1,...,r n jobs have to be scheduled without preemption on one machine taking

### Nan Kong, Andrew J. Schaefer. Department of Industrial Engineering, Univeristy of Pittsburgh, PA 15261, USA

A Factor 1 2 Approximation Algorithm for Two-Stage Stochastic Matching Problems Nan Kong, Andrew J. Schaefer Department of Industrial Engineering, Univeristy of Pittsburgh, PA 15261, USA Abstract We introduce

### Scheduling to Minimize Power Consumption using Submodular Functions

Scheduling to Minimize Power Consumption using Submodular Functions Erik D. Demaine MIT edemaine@mit.edu Morteza Zadimoghaddam MIT morteza@mit.edu ABSTRACT We develop logarithmic approximation algorithms

### Integrating Benders decomposition within Constraint Programming

Integrating Benders decomposition within Constraint Programming Hadrien Cambazard, Narendra Jussien email: {hcambaza,jussien}@emn.fr École des Mines de Nantes, LINA CNRS FRE 2729 4 rue Alfred Kastler BP

### Single machine parallel batch scheduling with unbounded capacity

Workshop on Combinatorics and Graph Theory 21th, April, 2006 Nankai University Single machine parallel batch scheduling with unbounded capacity Yuan Jinjiang Department of mathematics, Zhengzhou University

### Social Media Mining. Graph Essentials

Graph Essentials Graph Basics Measures Graph and Essentials Metrics 2 2 Nodes and Edges A network is a graph nodes, actors, or vertices (plural of vertex) Connections, edges or ties Edge Node Measures

CS787: Advanced Algorithms Topic: Online Learning Presenters: David He, Chris Hopman 17.3.1 Follow the Perturbed Leader 17.3.1.1 Prediction Problem Recall the prediction problem that we discussed in class.

### 11. APPROXIMATION ALGORITHMS

11. APPROXIMATION ALGORITHMS load balancing center selection pricing method: vertex cover LP rounding: vertex cover generalized load balancing knapsack problem Lecture slides by Kevin Wayne Copyright 2005

### IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 19, NO. 3, JUNE 2011 709

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL 19, NO 3, JUNE 2011 709 Improved Bounds on the Throughput Efficiency of Greedy Maximal Scheduling in Wireless Networks Mathieu Leconte, Jian Ni, Member, IEEE, R

### arxiv:1203.1525v1 [math.co] 7 Mar 2012

Constructing subset partition graphs with strong adjacency and end-point count properties Nicolai Hähnle haehnle@math.tu-berlin.de arxiv:1203.1525v1 [math.co] 7 Mar 2012 March 8, 2012 Abstract Kim defined

### Topic: Greedy Approximations: Set Cover and Min Makespan Date: 1/30/06

CS880: Approximations Algorithms Scribe: Matt Elder Lecturer: Shuchi Chawla Topic: Greedy Approximations: Set Cover and Min Makespan Date: 1/30/06 3.1 Set Cover The Set Cover problem is: Given a set of

### Basic Components of an LP:

1 Linear Programming Optimization is an important and fascinating area of management science and operations research. It helps to do less work, but gain more. Linear programming (LP) is a central topic

### Measuring Rationality with the Minimum Cost of Revealed Preference Violations. Mark Dean and Daniel Martin. Online Appendices - Not for Publication

Measuring Rationality with the Minimum Cost of Revealed Preference Violations Mark Dean and Daniel Martin Online Appendices - Not for Publication 1 1 Algorithm for Solving the MASP In this online appendix

### OPRE 6201 : 2. Simplex Method

OPRE 6201 : 2. Simplex Method 1 The Graphical Method: An Example Consider the following linear program: Max 4x 1 +3x 2 Subject to: 2x 1 +3x 2 6 (1) 3x 1 +2x 2 3 (2) 2x 2 5 (3) 2x 1 +x 2 4 (4) x 1, x 2

### Exponential time algorithms for graph coloring

Exponential time algorithms for graph coloring Uriel Feige Lecture notes, March 14, 2011 1 Introduction Let [n] denote the set {1,..., k}. A k-labeling of vertices of a graph G(V, E) is a function V [k].

### Analysis of Approximation Algorithms for k-set Cover using Factor-Revealing Linear Programs

Analysis of Approximation Algorithms for k-set Cover using Factor-Revealing Linear Programs Stavros Athanassopoulos, Ioannis Caragiannis, and Christos Kaklamanis Research Academic Computer Technology Institute

### Branch and Cut for TSP

Branch and Cut for TSP jla,jc@imm.dtu.dk Informatics and Mathematical Modelling Technical University of Denmark 1 Branch-and-Cut for TSP Branch-and-Cut is a general technique applicable e.g. to solve symmetric

### Computer Algorithms. NP-Complete Problems. CISC 4080 Yanjun Li

Computer Algorithms NP-Complete Problems NP-completeness The quest for efficient algorithms is about finding clever ways to bypass the process of exhaustive search, using clues from the input in order

### On the Multiple Unicast Network Coding Conjecture

On the Multiple Unicast Networ Coding Conjecture Michael Langberg Computer Science Division Open University of Israel Raanana 43107, Israel miel@openu.ac.il Muriel Médard Research Laboratory of Electronics

### Lecture 5 - CPA security, Pseudorandom functions

Lecture 5 - CPA security, Pseudorandom functions Boaz Barak October 2, 2007 Reading Pages 82 93 and 221 225 of KL (sections 3.5, 3.6.1, 3.6.2 and 6.5). See also Goldreich (Vol I) for proof of PRF construction.

### 6.852: Distributed Algorithms Fall, 2009. Class 2

.8: Distributed Algorithms Fall, 009 Class Today s plan Leader election in a synchronous ring: Lower bound for comparison-based algorithms. Basic computation in general synchronous networks: Leader election

### An Expressive Auction Design for Online Display Advertising. AUTHORS: Sébastien Lahaie, David C. Parkes, David M. Pennock

An Expressive Auction Design for Online Display Advertising AUTHORS: Sébastien Lahaie, David C. Parkes, David M. Pennock Li PU & Tong ZHANG Motivation Online advertisement allow advertisers to specify

### Energy Efficient Monitoring in Sensor Networks

Energy Efficient Monitoring in Sensor Networks Amol Deshpande, Samir Khuller, Azarakhsh Malekian, Mohammed Toossi Computer Science Department, University of Maryland, A.V. Williams Building, College Park,

### Single-Link Failure Detection in All-Optical Networks Using Monitoring Cycles and Paths

Single-Link Failure Detection in All-Optical Networks Using Monitoring Cycles and Paths Satyajeet S. Ahuja, Srinivasan Ramasubramanian, and Marwan Krunz Department of ECE, University of Arizona, Tucson,

### Chapter 13: Binary and Mixed-Integer Programming

Chapter 3: Binary and Mixed-Integer Programming The general branch and bound approach described in the previous chapter can be customized for special situations. This chapter addresses two special situations:

### Generalized Induced Factor Problems

Egerváry Research Group on Combinatorial Optimization Technical reports TR-2002-07. Published by the Egrerváry Research Group, Pázmány P. sétány 1/C, H 1117, Budapest, Hungary. Web site: www.cs.elte.hu/egres.

### What s next? Reductions other than kernelization

What s next? Reductions other than kernelization Dániel Marx Humboldt-Universität zu Berlin (with help from Fedor Fomin, Daniel Lokshtanov and Saket Saurabh) WorKer 2010: Workshop on Kernelization Nov

### Online Node-weighted Steiner Forest and Extensions via Disk Paintings

Online Node-weighted Steiner Forest and Extensions via Disk Paintings MohammadTaghi Hajiaghayi Computer Science Dept. Univ of Maryland College Park, MD, USA Email: hajiagha@cs.umd.edu Vahid Liaghat Computer

### Why? A central concept in Computer Science. Algorithms are ubiquitous.

Analysis of Algorithms: A Brief Introduction Why? A central concept in Computer Science. Algorithms are ubiquitous. Using the Internet (sending email, transferring files, use of search engines, online

### ARTICLE IN PRESS. European Journal of Operational Research xxx (2004) xxx xxx. Discrete Optimization. Nan Kong, Andrew J.

A factor 1 European Journal of Operational Research xxx (00) xxx xxx Discrete Optimization approximation algorithm for two-stage stochastic matching problems Nan Kong, Andrew J. Schaefer * Department of

### Convex Programming Tools for Disjunctive Programs

Convex Programming Tools for Disjunctive Programs João Soares, Departamento de Matemática, Universidade de Coimbra, Portugal Abstract A Disjunctive Program (DP) is a mathematical program whose feasible

### 24. The Branch and Bound Method

24. The Branch and Bound Method It has serious practical consequences if it is known that a combinatorial problem is NP-complete. Then one can conclude according to the present state of science that no

### Analysis of Micro-Macro Transformations of Railway Networks

Konrad-Zuse-Zentrum für Informationstechnik Berlin Takustraße 7 D-14195 Berlin-Dahlem Germany MARCO BLANCO THOMAS SCHLECHTE Analysis of Micro-Macro Transformations of Railway Networks Zuse Institute Berlin

### Nonlinear Optimization: Algorithms 3: Interior-point methods

Nonlinear Optimization: Algorithms 3: Interior-point methods INSEAD, Spring 2006 Jean-Philippe Vert Ecole des Mines de Paris Jean-Philippe.Vert@mines.org Nonlinear optimization c 2006 Jean-Philippe Vert,

### Permutation Betting Markets: Singleton Betting with Extra Information

Permutation Betting Markets: Singleton Betting with Extra Information Mohammad Ghodsi Sharif University of Technology ghodsi@sharif.edu Hamid Mahini Sharif University of Technology mahini@ce.sharif.edu

### Every tree contains a large induced subgraph with all degrees odd

Every tree contains a large induced subgraph with all degrees odd A.J. Radcliffe Carnegie Mellon University, Pittsburgh, PA A.D. Scott Department of Pure Mathematics and Mathematical Statistics University

### Equilibrium computation: Part 1

Equilibrium computation: Part 1 Nicola Gatti 1 Troels Bjerre Sorensen 2 1 Politecnico di Milano, Italy 2 Duke University, USA Nicola Gatti and Troels Bjerre Sørensen ( Politecnico di Milano, Italy, Equilibrium

### Multi-layer MPLS Network Design: the Impact of Statistical Multiplexing

Multi-layer MPLS Network Design: the Impact of Statistical Multiplexing Pietro Belotti, Antonio Capone, Giuliana Carello, Federico Malucelli Tepper School of Business, Carnegie Mellon University, Pittsburgh

### arxiv:1507.04820v1 [cs.cc] 17 Jul 2015

The Complexity of Switching and FACTS Maximum-Potential-Flow Problems Karsten Lehmann 2,1, Alban Grastien 2,1, and Pascal Van Hentenryck 1,2 arxiv:1507.04820v1 [cs.cc] 17 Jul 2015 1 Artificial Intelligence

### Max Flow, Min Cut, and Matchings (Solution)

Max Flow, Min Cut, and Matchings (Solution) 1. The figure below shows a flow network on which an s-t flow is shown. The capacity of each edge appears as a label next to the edge, and the numbers in boxes

### The Conference Call Search Problem in Wireless Networks

The Conference Call Search Problem in Wireless Networks Leah Epstein 1, and Asaf Levin 2 1 Department of Mathematics, University of Haifa, 31905 Haifa, Israel. lea@math.haifa.ac.il 2 Department of Statistics,

### THE SCHEDULING OF MAINTENANCE SERVICE

THE SCHEDULING OF MAINTENANCE SERVICE Shoshana Anily Celia A. Glass Refael Hassin Abstract We study a discrete problem of scheduling activities of several types under the constraint that at most a single

### CIS 700: algorithms for Big Data

CIS 700: algorithms for Big Data Lecture 6: Graph Sketching Slides at http://grigory.us/big-data-class.html Grigory Yaroslavtsev http://grigory.us Sketching Graphs? We know how to sketch vectors: v Mv

### JUST-IN-TIME SCHEDULING WITH PERIODIC TIME SLOTS. Received December May 12, 2003; revised February 5, 2004

Scientiae Mathematicae Japonicae Online, Vol. 10, (2004), 431 437 431 JUST-IN-TIME SCHEDULING WITH PERIODIC TIME SLOTS Ondřej Čepeka and Shao Chin Sung b Received December May 12, 2003; revised February

### Page 1. CSCE 310J Data Structures & Algorithms. CSCE 310J Data Structures & Algorithms. P, NP, and NP-Complete. Polynomial-Time Algorithms

CSCE 310J Data Structures & Algorithms P, NP, and NP-Complete Dr. Steve Goddard goddard@cse.unl.edu CSCE 310J Data Structures & Algorithms Giving credit where credit is due:» Most of the lecture notes

### Network File Storage with Graceful Performance Degradation

Network File Storage with Graceful Performance Degradation ANXIAO (ANDREW) JIANG California Institute of Technology and JEHOSHUA BRUCK California Institute of Technology A file storage scheme is proposed

### Scheduling Single Machine Scheduling. Tim Nieberg

Scheduling Single Machine Scheduling Tim Nieberg Single machine models Observation: for non-preemptive problems and regular objectives, a sequence in which the jobs are processed is sufficient to describe

### Key words. multi-objective optimization, approximate Pareto set, bi-objective shortest path

SMALL APPROXIMATE PARETO SETS FOR BI OBJECTIVE SHORTEST PATHS AND OTHER PROBLEMS ILIAS DIAKONIKOLAS AND MIHALIS YANNAKAKIS Abstract. We investigate the problem of computing a minimum set of solutions that

### Subsets of Euclidean domains possessing a unique division algorithm

Subsets of Euclidean domains possessing a unique division algorithm Andrew D. Lewis 2009/03/16 Abstract Subsets of a Euclidean domain are characterised with the following objectives: (1) ensuring uniqueness

### CAD Algorithms. P and NP

CAD Algorithms The Classes P and NP Mohammad Tehranipoor ECE Department 6 September 2010 1 P and NP P and NP are two families of problems. P is a class which contains all of the problems we solve using

### Load Balancing and Switch Scheduling

EE384Y Project Final Report Load Balancing and Switch Scheduling Xiangheng Liu Department of Electrical Engineering Stanford University, Stanford CA 94305 Email: liuxh@systems.stanford.edu Abstract Load

### Randomization Approaches for Network Revenue Management with Customer Choice Behavior

Randomization Approaches for Network Revenue Management with Customer Choice Behavior Sumit Kunnumkal Indian School of Business, Gachibowli, Hyderabad, 500032, India sumit kunnumkal@isb.edu March 9, 2011

### Distributed Computing over Communication Networks: Maximal Independent Set

Distributed Computing over Communication Networks: Maximal Independent Set What is a MIS? MIS An independent set (IS) of an undirected graph is a subset U of nodes such that no two nodes in U are adjacent.

### Even Faster Algorithm for Set Splitting!

Even Faster Algorithm for Set Splitting! Daniel Lokshtanov Saket Saurabh Abstract In the p-set Splitting problem we are given a universe U, a family F of subsets of U and a positive integer k and the objective

### The positive minimum degree game on sparse graphs

The positive minimum degree game on sparse graphs József Balogh Department of Mathematical Sciences University of Illinois, USA jobal@math.uiuc.edu András Pluhár Department of Computer Science University

### On the approximability of average completion time scheduling under precedence constraints

On the approximability of average completion time scheduling under precedence constraints Gerhard J. Woeginger Abstract We consider the scheduling problem of minimizing the average weighted job completion

### INTEGER PROGRAMMING. Integer Programming. Prototype example. BIP model. BIP models

Integer Programming INTEGER PROGRAMMING In many problems the decision variables must have integer values. Example: assign people, machines, and vehicles to activities in integer quantities. If this is

### All trees contain a large induced subgraph having all degrees 1 (mod k)

All trees contain a large induced subgraph having all degrees 1 (mod k) David M. Berman, A.J. Radcliffe, A.D. Scott, Hong Wang, and Larry Wargo *Department of Mathematics University of New Orleans New

Mechanisms for Fair Attribution Eric Balkanski Yaron Singer Abstract We propose a new framework for optimization under fairness constraints. The problems we consider model procurement where the goal is

### The Trip Scheduling Problem

The Trip Scheduling Problem Claudia Archetti Department of Quantitative Methods, University of Brescia Contrada Santa Chiara 50, 25122 Brescia, Italy Martin Savelsbergh School of Industrial and Systems

### 1 The Line vs Point Test

6.875 PCP and Hardness of Approximation MIT, Fall 2010 Lecture 5: Low Degree Testing Lecturer: Dana Moshkovitz Scribe: Gregory Minton and Dana Moshkovitz Having seen a probabilistic verifier for linearity

### Reconnect 04 Solving Integer Programs with Branch and Bound (and Branch and Cut)

Sandia is a ultiprogra laboratory operated by Sandia Corporation, a Lockheed Martin Copany, Reconnect 04 Solving Integer Progras with Branch and Bound (and Branch and Cut) Cynthia Phillips (Sandia National

### The Approximability of the Binary Paintshop Problem

The Approximability of the Binary Paintshop Problem Anupam Gupta 1, Satyen Kale 2, Viswanath Nagarajan 2, Rishi Saket 2, and Baruch Schieber 2 1 Dept. of Computer Science, Carnegie Mellon University, Pittsburgh