Starless cores Shapes Density profiles Temperatures Velocity structure Magne8c fields Mass func8on. Molecular Cloud Cores

Size: px
Start display at page:

Download "Starless cores Shapes Density profiles Temperatures Velocity structure Magne8c fields Mass func8on. Molecular Cloud Cores"

Transcription

1 Starless cores Shapes Density profiles Temperatures Velocity structure Magne8c fields Mass func8on Molecular Cloud Cores

2 Molecular cloud cores Cores are the immediate loca8ons in which stars are born, and allow measurements of the ini8al condi8ons of star forma8on. Cores can be studied with tracers of dense gas (CS, HCO +, HCN, H 2 CO, NH 3 ), emission from warm dust (far- IR con8nuum), and dust ex8nc8on Early observa8ons with low resolu8on provided only average measurements of core- wide masses and densi8es IR and radio telescopes now have sufficient resolu8on and sensi8vity for studying the internal structure of cores Modern studies of cores ooen select their targets from the database of 264 cores mapped in NH 3 from Jijina et al. 1999, which includes posi8ons, N(NH 3 ), volume densi8es, line widths, T kin, sizes, and aspect ra8os.

3

4 Starless cores Spitzer (Young et al. 2004) >50% of cores are known to contain protostars. The remainder are called starless cores. Spitzer has provided much deeper mid- IR images of cores than were available from IRAS and ISO. In a few cores that were previously believed to be starless, Spitzer has detected very faint, embedded sources that could be protostellar brown dwarfs. CO ou`low (Bourke et al. 2005)

5 Shapes of cores Most cores are not spherical, and are typically ellip8cal with aspect ra8os of 2:1. Whether cores are prolate, oblate, or triaxial remains a subject of debate, but the lack of spherical symmetry indicates an asymmetrical force or the absence of perfect equilibrium. Myers et al. 1991

6 Density profiles of cores The density as a func8on of radius in cores has been measured with three methods that trace dust: 1) Near- IR ex8nc8on maps Depends on ex8nc8on law and A V /N H 2) Submm/mm dust con8nuum maps Depends on temperature and emissivity of dust 3) Absorp8on maps of mid- IR background emission Depends on uniformity of background emission and opacity/n H The density profiles produced by these methods agree qualita8vely between different cores, but no systema8c comparison has been made for the same cores observed with mul8ple techniques.

7 Bergin & Tafalla 2007

8 Density profiles of cores Density profiles flajen near the centers of cores, changing from r - 2 at large radii to r - 1 within 5000 AU. Some physical models for cores are inconsistent with these data and can be ruled out. The origin of these profiles is not fully understood yet. Galli et al. 2002

9 Dust temperature T dust is determined by hea8ng from the interstellar field and cooling from thermal emission. Based on far- IR/submm colors, T dust varies from 20 K in clouds to 10 K in cores. But this gradient is uncertain because the dust emissivity may change with density. TMC- 1C based on 450 and 850 μm maps from SCUBA (Schnee & Goodman 2005) Dust temperature for constant emissivity Dust emissivity for constant temperature

10 Gas temperature Gas in cores is heated by cosmic rays and cooled by CO CO and other molecules begin to freeze out onto dust grains at the high densi8es in cores, which reduces the gas cooling But because of the high densi8es, the T gas and T dust are coupled, and thermal radia8on of the dust keeps the gas at a low temperature NH 3 transi8ons near 1.3 cm provide the best measurements of gas temperatures in cores, producing values near 10 K However, because of the long wavelengths of the NH 3 lines, the spa8al resolu8on of the observa8ons is low, and few measurements of the radial profiles of T gas are available.

11 Velocity structure Clouds have supersonic line widths because of turbulence, but cores have much smaller line widths that are close to thermal, indica8ng slow internal mo8ons. The line width- size rela8on for clouds does not extend to cores. Below 0.1 pc, the nonthermal component of the line width is roughly constant. Thermal pressure rather than turbulence dominates the support of the core below this coherence scale. See data for the Pipe Nebula from Muench et al. 2007, Rathborne et al. 2008, Lada et al Goodman et al. 1998

12 Velocity structure Rota8on is expected for gravita8onally collapsing clouds However, cores rotate slowly; the ra8o of the rota8onal energy to gravita8onal energy is only a few percent Rota8on is not an important source of support The slow rota8on of cores requires a mechanism for removal of angular momentum; this may occur via magne8c coupling of the contrac8ng core and the ambient medium Cores have similar angular momenta as later stages of evolu8on (envelopes and disks of protostars and wide binaries) except for the last one (i.e., stars)

13 Velocity structure One of the primary predic8ons of models of star forma8on is the collapse of cores, which can be detected through the kinema8cs of tracers of dense gas like CS, H 2 CO, and HCO +. Low- excita8on foreground gas in the outer core produces absorp8on against the blue- shioed emission from the infalling central core. The resul8ng asymmetric line profile with red absorp8on is a signature of core infall. The inward veloci8es are typically 0.1 km/s. B335 Zhou et al. 1993

14 Velocity structure Evans et al. 1999

15 Velocity structure The Bok globule B68 exhibits an asymmetric velocity field with both inward and outward mo8ons, indica8ng the presence of non- radial oscilla8ons in the outer layers of the cloud. These oscilla8ons are consistent with hydrodynamic waves (i.e., sound waves). Life8mes of such oscilla8ons are predicted to be ~1 Myr. Lada et al. 2003

16 Magne8c fields in clouds and cores The magne8c field is one of the most difficult aspects of clouds and cores to study. A large amount of effort has produced only limited results. The direc8ons of magne8c fields have been mapped in a few nearby molecular clouds with polariza8on of background starlight. The fields are highly regular on scales of 10 pc and are not strongly correlated with filaments and other large- scale structures. Taurus Goodman et al. 1990

17 Magne8c fields in clouds and cores Zeeman splivng is the only diagnos8c of magne8c field strength (line- of- sight) in molecular clouds. It is difficult to detect and is applied to only a few isolated posi8ons in clouds; large- scale maps are not possible. The best species for Zeeman are H, OH, and CN. Because their transi8ons occur at long wavelengths, the spa8al resolu8on of the measurements is low (few arcmin; 0.1 pc). These species trace low- density gas, so they are not ideal for cores. When Zeeman is detected, field strengths are typically 10 μg. Based on the limited data, magne8c fields contribute non- negligible support to cores, but aren t strong enough to stabilize against gravity (cores are modestly supercri8cal rather than subcri8cal). See Crutcher et al. 1999, 2008, 2009.

18 Mass func8ons Over the last decade, there has been a great deal of interest in measuring core mass func8ons for comparison to the stellar IMF Submm/mm con8nuum maps of dust emission in the nearest molecular clouds have been used predominantly (Moje et al. 1998, 2001; Tes8 & Sargent 1998; Johnstone et al. 2000, 2001, 2006; Reid & Wilson 2005, 2006). More recently, ex8nc8on maps have proven valuable for this purpose as well (Alves et al. 2007; Rathborne et al. 2009).

19 Mass func8ons Cores have steeper mass func8ons than clumps, and are similar to the Salpeter slope for the IMF of stars. This implies that core fragmenta8on is responsible for the shape of the IMF. However, to be confident that the mass func8ons of cores and stars are truly connected, it would be helpful to detect addi8onal characteris8cs in common, such as the flajening of the stellar IMF at low masses. Moje et al. 1998

20 The Pipe Nebula B68

21 Mass func8ons The core mass func8on measured from the ex8nc8on map of the Pipe Nebula agrees with the stellar IMF both in its high- mass slope and the presence of a flajening at low masses. The factor of 3-5 offset between the core and stellar masses can be interpreted as a star forma8on efficiency of 20-30% for cores. Alves et al. 2007, Rathborne et al. 2009

IV. Molecular Clouds. 1. Molecular Cloud Spectra

IV. Molecular Clouds. 1. Molecular Cloud Spectra IV. Molecular Clouds Dark structures in the ISM emit molecular lines. Dense gas cools, Metals combine to form molecules, Molecular clouds form. 1. Molecular Cloud Spectra 1 Molecular Lines emerge in absorption:

More information

Heating & Cooling in Molecular Clouds

Heating & Cooling in Molecular Clouds Lecture 8: Cloud Stability Heating & Cooling in Molecular Clouds Balance of heating and cooling processes helps to set the temperature in the gas. This then sets the minimum internal pressure in a core

More information

8.1 Radio Emission from Solar System objects

8.1 Radio Emission from Solar System objects 8.1 Radio Emission from Solar System objects 8.1.1 Moon and Terrestrial planets At visible wavelengths all the emission seen from these objects is due to light reflected from the sun. However at radio

More information

Dinamica del Gas nelle Galassie II. Star formation

Dinamica del Gas nelle Galassie II. Star formation Dinamica del Gas nelle Galassie II. Star formation Overview on ISM Molecular clouds: composition and properties. Plasmas Charge neutrality, infinite conductivity; Field freezing; Euler equation with magnetic

More information

Lesson 3: Isothermal Hydrostatic Spheres. B68: a self-gravitating stable cloud. Hydrostatic self-gravitating spheres. P = "kt 2.

Lesson 3: Isothermal Hydrostatic Spheres. B68: a self-gravitating stable cloud. Hydrostatic self-gravitating spheres. P = kt 2. Lesson 3: Isothermal Hydrostatic Spheres B68: a self-gravitating stable cloud Bok Globule Relatively isolated, hence not many external disturbances Though not main mode of star formation, their isolation

More information

Class 2 Solar System Characteristics Formation Exosolar Planets

Class 2 Solar System Characteristics Formation Exosolar Planets Class 1 Introduction, Background History of Modern Astronomy The Night Sky, Eclipses and the Seasons Kepler's Laws Newtonian Gravity General Relativity Matter and Light Telescopes Class 2 Solar System

More information

YSO Orion Molecular Cloud Aims Of Stahler & Bakk.N.R.T.P.R.T.T.

YSO Orion Molecular Cloud Aims Of Stahler & Bakk.N.R.T.P.R.T.T. Protobinaries von Cornelia Weber, Bakk.rer.nat. Overview Motivation Molecular Clouds Young Stellar Objects Multiplicity of YSO Orion Molecular Cloud Aims of my thesis Motivation Binary and Multiple system

More information

Lecture 3 Properties and Evolution of Molecular Clouds. Spitzer space telescope image of Snake molecular cloud (IRDC G11.11-0.11

Lecture 3 Properties and Evolution of Molecular Clouds. Spitzer space telescope image of Snake molecular cloud (IRDC G11.11-0.11 Lecture 3 Properties and Evolution of Molecular Clouds Spitzer space telescope image of Snake molecular cloud (IRDC G11.11-0.11 From slide from Annie Hughes Review CO t in clouds HI: Atomic Hydrogen http://www.atnf.csiro.au/research/lvmeeting/magsys_pres/

More information

Lecture 7 Formation of the Solar System. Nebular Theory. Origin of the Solar System. Origin of the Solar System. The Solar Nebula

Lecture 7 Formation of the Solar System. Nebular Theory. Origin of the Solar System. Origin of the Solar System. The Solar Nebula Origin of the Solar System Lecture 7 Formation of the Solar System Reading: Chapter 9 Quiz#2 Today: Lecture 60 minutes, then quiz 20 minutes. Homework#1 will be returned on Thursday. Our theory must explain

More information

Ellipticals. Elliptical galaxies: Elliptical galaxies: Some ellipticals are not so simple M89 E0

Ellipticals. Elliptical galaxies: Elliptical galaxies: Some ellipticals are not so simple M89 E0 Elliptical galaxies: Ellipticals Old view (ellipticals are boring, simple systems)! Ellipticals contain no gas & dust! Ellipticals are composed of old stars! Ellipticals formed in a monolithic collapse,

More information

7. In which part of the electromagnetic spectrum are molecules most easily detected? A. visible light B. radio waves C. X rays D.

7. In which part of the electromagnetic spectrum are molecules most easily detected? A. visible light B. radio waves C. X rays D. 1. Most interstellar matter is too cold to be observed optically. Its radiation can be detected in which part of the electromagnetic spectrum? A. gamma ray B. ultraviolet C. infrared D. X ray 2. The space

More information

In studying the Milky Way, we have a classic problem of not being able to see the forest for the trees.

In studying the Milky Way, we have a classic problem of not being able to see the forest for the trees. In studying the Milky Way, we have a classic problem of not being able to see the forest for the trees. A panoramic painting of the Milky Way as seen from Earth, done by Knut Lundmark in the 1940 s. The

More information

Solar Nebula Theory. Basic properties of the Solar System that need to be explained:

Solar Nebula Theory. Basic properties of the Solar System that need to be explained: Solar Nebula Theory Basic properties of the Solar System that need to be explained: 1. All planets orbit the Sun in the same direction as the Sun s rotation 2. All planetary orbits are confined to the

More information

NGUYEN LUONG QUANG. Président du jury: J. Le Bourlot Rapporteurs: H. Beuther, T. Moore Examinateurs: I. Bonnell, F. Boulanger, F. Combes, F.

NGUYEN LUONG QUANG. Président du jury: J. Le Bourlot Rapporteurs: H. Beuther, T. Moore Examinateurs: I. Bonnell, F. Boulanger, F. Combes, F. NGUYEN LUONG QUANG Supervisors: Frédérique Motte (CEA Saclay) Marc Sauvage (CEA Saclay) Président du jury: J. Le Bourlot Rapporteurs: H. Beuther, T. Moore Examinateurs: I. Bonnell, F. Boulanger, F. Combes,

More information

Summary: Four Major Features of our Solar System

Summary: Four Major Features of our Solar System Summary: Four Major Features of our Solar System How did the solar system form? According to the nebular theory, our solar system formed from the gravitational collapse of a giant cloud of interstellar

More information

The Birth of the Universe Newcomer Academy High School Visualization One

The Birth of the Universe Newcomer Academy High School Visualization One The Birth of the Universe Newcomer Academy High School Visualization One Chapter Topic Key Points of Discussion Notes & Vocabulary 1 Birth of The Big Bang Theory Activity 4A the How and when did the universe

More information

COMPARISON OF GAS AND DUST COOLING RATES IN NEARBY GALAXIES

COMPARISON OF GAS AND DUST COOLING RATES IN NEARBY GALAXIES IC 10 Henize 2-10 NGC 253 COMPARISON OF GAS AND DUST COOLING RATES IN NEARBY GALAXIES E.Bayet: LRA-LERMA-ENS (Paris) Antennae IC 342 M 83 NGC 6946 INTRODUCTION : OBJECTS : warm and dense molecular clouds

More information

Star Formation in the Large Magellanic Cloud: Tracing an Evolution of Giant Molecular Clouds

Star Formation in the Large Magellanic Cloud: Tracing an Evolution of Giant Molecular Clouds Star Formation in the Large Magellanic Cloud: Tracing an Evolution of Giant Molecular Clouds Toshikazu Onishi Osaka Prefecture University Yasuo Fukui; Akiko Kawamura; Norikazu Mizuno; Tetsuhiro Minamidani;

More information

L3: The formation of the Solar System

L3: The formation of the Solar System credit: NASA L3: The formation of the Solar System UCL Certificate of astronomy Dr. Ingo Waldmann A stable home The presence of life forms elsewhere in the Universe requires a stable environment where

More information

A Star and Gas Surface Density Correlation within Nearby Molecular Clouds

A Star and Gas Surface Density Correlation within Nearby Molecular Clouds A Star and Gas Surface Density Correlation within Nearby Molecular Clouds Rob Gutermuth Five College Astronomy Dept. Fellow in Research & Teaching Smith College & UMass Amherst MonR2 Giant Molecular Cloud

More information

The Chemical Composition of a Molecular Cloud at the Outer Edge of the Galaxy

The Chemical Composition of a Molecular Cloud at the Outer Edge of the Galaxy Carnegie Observatories Astrophysics Series, Vol. 4: Origin and Evolution of the Elements, 2003 ed. A. McWilliam and M. Rauch (Pasadena: Carnegie Observatories, http://www.ociw.edu/ociw/symposia/series/symposium4/proceedings.html)

More information

MAGNETIC FIELDS IN MOLECULAR CLOUD CORES

MAGNETIC FIELDS IN MOLECULAR CLOUD CORES MAGNETIC FIELDS IN MOLECULAR CLOUD CORES SHANTANU BASU Department of Physics and Astronomy, University of Western Ontario, London, Ontario N6A 3K7, Canada Observations of magnetic field strengths imply

More information

Lecture 19: Planet Formation I. Clues from the Solar System

Lecture 19: Planet Formation I. Clues from the Solar System Lecture 19: Planet Formation I. Clues from the Solar System 1 Outline The Solar System:! Terrestrial planets! Jovian planets! Asteroid belt, Kuiper belt, Oort cloud Condensation and growth of solid bodies

More information

Highlights from the VLA/ANGST Survey

Highlights from the VLA/ANGST Survey Highlights from the VLA/ANGST Survey Evan Skillman U. Minnesota Gas in Galaxies 2011: From Cosmic Web to Molecular Clouds Kloster Seeon, Germany 16/06/2011 VLA/ANGST The ANGST HST Treasury Project allowed

More information

Astronomy of Planets

Astronomy of Planets McDonald Press Releases: Triumphs and Ques7ons Globular Clusters Rotate at Heart Astronomers Discover Ancient Solar System with Five Earth- sized Planets Black Hole Chokes on a Swallowed Star Astronomers

More information

The Expanding Universe

The Expanding Universe Stars, Galaxies, Guided Reading and Study This section explains how astronomers think the universe and the solar system formed. Use Target Reading Skills As you read about the evidence that supports the

More information

CRM simula+ons with parameterized large- scale dynamics using +me- dependent forcings from observa+ons

CRM simula+ons with parameterized large- scale dynamics using +me- dependent forcings from observa+ons CRM simula+ons with parameterized large- scale dynamics using +me- dependent forcings from observa+ons Shuguang Wang, Adam Sobel, Zhiming Kuang Zhiming & Kerry s workshop Harvard, March 2012 In tropical

More information

Resultados Concurso Apex 2007

Resultados Concurso Apex 2007 Resultados Concurso Apex 2007 Propuesta: CC-07-03 Investigador Principal: Leonardo Bronfman Título: ATLASGAL: APEX Telescope Large Area Survey of the Galaxy Resumen: The location of the APEX telescope

More information

165 points. Name Date Period. Column B a. Cepheid variables b. luminosity c. RR Lyrae variables d. Sagittarius e. variable stars

165 points. Name Date Period. Column B a. Cepheid variables b. luminosity c. RR Lyrae variables d. Sagittarius e. variable stars Name Date Period 30 GALAXIES AND THE UNIVERSE SECTION 30.1 The Milky Way Galaxy In your textbook, read about discovering the Milky Way. (20 points) For each item in Column A, write the letter of the matching

More information

Observations of DCO + : Tracing the abundance of CO and N 2 in prestellar. cores. Laurent Pagani LERMA, UMR8112 du CNRS, Observatoire de Paris

Observations of DCO + : Tracing the abundance of CO and N 2 in prestellar. cores. Laurent Pagani LERMA, UMR8112 du CNRS, Observatoire de Paris Observations of DCO + : Laurent Pagani LERMA, UMR8112 du CNRS, Observatoire de Paris Tracing the abundance of CO and N 2 in prestellar L183 - Spitzer/IRAC4-8 µm cores with the contribution of A. Bourgoin

More information

UNIT V. Earth and Space. Earth and the Solar System

UNIT V. Earth and Space. Earth and the Solar System UNIT V Earth and Space Chapter 9 Earth and the Solar System EARTH AND OTHER PLANETS A solar system contains planets, moons, and other objects that orbit around a star or the star system. The solar system

More information

Initial Highlights from the Gould Belt Survey

Initial Highlights from the Gould Belt Survey Initial Highlights from the Gould Belt Survey Philippe André, CEA/SAp Saclay A.Men shchikov, S.Bontemps, V. Könyves, F. Motte, N. Schneider, P. Didelon, V. Minier, P. Saraceno, D.Ward- Thompson, J. Di

More information

Nuclear fusion in stars. Collapse of primordial density fluctuations into galaxies and stars, nucleosynthesis in stars

Nuclear fusion in stars. Collapse of primordial density fluctuations into galaxies and stars, nucleosynthesis in stars Nuclear fusion in stars Collapse of primordial density fluctuations into galaxies and stars, nucleosynthesis in stars The origin of structure in the Universe Until the time of formation of protogalaxies,

More information

Lecture 10 Formation of the Solar System January 6c, 2014

Lecture 10 Formation of the Solar System January 6c, 2014 1 Lecture 10 Formation of the Solar System January 6c, 2014 2 Orbits of the Planets 3 Clues for the Formation of the SS All planets orbit in roughly the same plane about the Sun. All planets orbit in the

More information

Modeling Galaxy Formation

Modeling Galaxy Formation Galaxy Evolution is the study of how galaxies form and how they change over time. As was the case with we can not observe an individual galaxy evolve but we can observe different galaxies at various stages

More information

The Layout of the Solar System

The Layout of the Solar System The Layout of the Solar System Planets fall into two main categories Terrestrial (i.e. Earth-like) Jovian (i.e. Jupiter-like or gaseous) [~5000 kg/m 3 ] [~1300 kg/m 3 ] What is density? Average density

More information

Solar Ast ro p h y s ics

Solar Ast ro p h y s ics Peter V. Foukal Solar Ast ro p h y s ics Second, Revised Edition WI LEY- VCH WILEY-VCH Verlag Co. KCaA Contents Preface 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.1.1 2.1.2 2.2 2.2.1 2.2.2 2.2.3 2.3

More information

WHERE DID ALL THE ELEMENTS COME FROM??

WHERE DID ALL THE ELEMENTS COME FROM?? WHERE DID ALL THE ELEMENTS COME FROM?? In the very beginning, both space and time were created in the Big Bang. It happened 13.7 billion years ago. Afterwards, the universe was a very hot, expanding soup

More information

Solar System science with the IRAM interferometer. Recent Solar System science with the IRAM Plateau de Bure interferometer

Solar System science with the IRAM interferometer. Recent Solar System science with the IRAM Plateau de Bure interferometer Recent Solar System science with the IRAM Plateau de Bure interferometer J. Boissier (Institut de radioastronomie millimétrique) Contact: boissier@iram.fr Outline Planet moons Io Titan Planets Mars Comets

More information

Stellar Evolution. The Basic Scheme

Stellar Evolution. The Basic Scheme Stellar Evolution The Basic Scheme Stars live for a very long time compared to human lifetimes. Even though stellar life-spans are enormous, we know how stars are born, live, and die. All stars follow

More information

Schmidt s Conjecture and Star Formation in Giant Molecular Clouds and Galaxies. João Alves, University of Vienna

Schmidt s Conjecture and Star Formation in Giant Molecular Clouds and Galaxies. João Alves, University of Vienna Schmidt s Conjecture and Star Formation in Giant Molecular Clouds and Galaxies João Alves, University of Vienna Schmidt s Conjecture and Star Formation in Giant Molecular Clouds and Galaxies With: Charles

More information

Science Standard 4 Earth in Space Grade Level Expectations

Science Standard 4 Earth in Space Grade Level Expectations Science Standard 4 Earth in Space Grade Level Expectations Science Standard 4 Earth in Space Our Solar System is a collection of gravitationally interacting bodies that include Earth and the Moon. Universal

More information

Faber-Jackson relation: Fundamental Plane: Faber-Jackson Relation

Faber-Jackson relation: Fundamental Plane: Faber-Jackson Relation Faber-Jackson relation: Faber-Jackson Relation In 1976, Faber & Jackson found that: Roughly, L! " 4 More luminous galaxies have deeper potentials Can show that this follows from the Virial Theorem Why

More information

Solar System Formation

Solar System Formation Solar System Formation Solar System Formation Question: How did our solar system and other planetary systems form? Comparative planetology has helped us understand Compare the differences and similarities

More information

Herschel far- infrared surveys of nearby galaxy clusters Jon Davies and the HeViCS team. Scan maps at: 100μm 160μm 250μm 350μm 500μm

Herschel far- infrared surveys of nearby galaxy clusters Jon Davies and the HeViCS team. Scan maps at: 100μm 160μm 250μm 350μm 500μm Herschel far- infrared surveys of nearby galaxy clusters Jon Davies and the HeViCS team Scan maps at: 100μm 160μm 250μm 350μm 500μm HeViCS consor-um Members Davies, J. I.; Baes, M.; Bendo, G. J.; Bianchi,

More information

DE2410: Learning Objectives. SOLAR SYSTEM Formation, Evolution and Death. Solar System: To Size Scale. Learning Objectives : This Lecture

DE2410: Learning Objectives. SOLAR SYSTEM Formation, Evolution and Death. Solar System: To Size Scale. Learning Objectives : This Lecture DE2410: Learning Objectives SOLAR SYSTEM Formation, Evolution and Death To become aware of our planet, solar system, and the Universe To know about how these objects and structures were formed, are evolving

More information

Resultados Concurso Apex 2014-A

Resultados Concurso Apex 2014-A Resultados Concurso Apex 2014-A Propuesta: 2014A/04 Investigador Principal: Guido Garay, Universidad de Chila Título: SuperMALT: determining the physical and chemical evolution of high-mass starforming

More information

The kinematics of NGC1333-IRAS2A a true Class 0 protostar

The kinematics of NGC1333-IRAS2A a true Class 0 protostar Chapter 6 The kinematics of NGC1333-IRASA a true Class protostar Abstract Low-mass star formation is described by gravitational collapse of dense cores of gas and dust. At some point during the collapse,

More information

IRAS 11590 6452 in BHR 71 a binary protostellar system?

IRAS 11590 6452 in BHR 71 a binary protostellar system? 2001 June 10 ApJ, 554, 91L IRAS 11590 6452 in BHR 71 a binary protostellar system? Tyler L. Bourke Harvard-Smithsonian Center for Astrophysics, 60 Garden Street MS 42, Cambridge MA 02138, USA ABSTRACT

More information

The Solar Journey: Modeling Features of the Local Bubble and Galactic Environment of the Sun

The Solar Journey: Modeling Features of the Local Bubble and Galactic Environment of the Sun The Solar Journey: Modeling Features of the Local Bubble and Galactic Environment of the Sun P.C. Frisch and A.J. Hanson Department of Astronomy and Astrophysics University of Chicago and Computer Science

More information

Chapter 15.3 Galaxy Evolution

Chapter 15.3 Galaxy Evolution Chapter 15.3 Galaxy Evolution Elliptical Galaxies Spiral Galaxies Irregular Galaxies Are there any connections between the three types of galaxies? How do galaxies form? How do galaxies evolve? P.S. You

More information

Debris disks at high resolution. Mark Wyatt Rachel Smith Institute of Astronomy, Cambridge

Debris disks at high resolution. Mark Wyatt Rachel Smith Institute of Astronomy, Cambridge Debris disks at high resolution Mark Wyatt Rachel Smith Institute of Astronomy, Cambridge Debris disk overview Debris disks are remnants of planet formation, planetesimals which failed to grow into planets;

More information

Constraints on the explosion mechanism and progenitors of Type Ia supernovae

Constraints on the explosion mechanism and progenitors of Type Ia supernovae Constraints on the explosion mechanism and progenitors of Type Ia supernovae Stéphane Blondin Laboratoire d Astrophysique de Marseille Luc Dessart Observatoire de la Côte d Azur John Hillier University

More information

Searching for young proto-planetary disks from ALMA archival data Final presentation

Searching for young proto-planetary disks from ALMA archival data Final presentation Searching for young proto-planetary disks from ALMA archival data Final presentation Speaker: Pou Ieng Cheong( 張 寶 瑩 ) 1 Supervisor: Shih Ping Lai( 賴 詩 萍 ) 2,3 1 Department of electrophysics, NCTU 2 Department

More information

Sound. References: L.D. Landau & E.M. Lifshitz: Fluid Mechanics, Chapter VIII F. Shu: The Physics of Astrophysics, Vol. 2, Gas Dynamics, Chapter 8

Sound. References: L.D. Landau & E.M. Lifshitz: Fluid Mechanics, Chapter VIII F. Shu: The Physics of Astrophysics, Vol. 2, Gas Dynamics, Chapter 8 References: Sound L.D. Landau & E.M. Lifshitz: Fluid Mechanics, Chapter VIII F. Shu: The Physics of Astrophysics, Vol., Gas Dynamics, Chapter 8 1 Speed of sound The phenomenon of sound waves is one that

More information

Schmidt s Conjecture and Star Formation in Giant Molecular Clouds and Galaxies

Schmidt s Conjecture and Star Formation in Giant Molecular Clouds and Galaxies Schmidt s Conjecture and Star Formation in Giant Molecular Clouds and Galaxies With: Marco Lombardi, University of Milan Joao Alves, University of Vienna Jan Forbrich, University of Vienna Carlos Roman-Zuniga,

More information

Answers for the Student Worksheet for the Hubble Space Telescope Scavenger Hunt

Answers for the Student Worksheet for the Hubble Space Telescope Scavenger Hunt Instructions: Answers are typed in blue. Answers for the Student Worksheet for the Hubble Space Telescope Scavenger Hunt Crab Nebula What is embedded in the center of the nebula? Neutron star Who first

More information

Populations and Components of the Milky Way

Populations and Components of the Milky Way Chapter 2 Populations and Components of the Milky Way Our perspective from within the Milky Way gives us an opportunity to study a disk galaxy in detail. At the same time, it s not always easy to relate

More information

Zeeman observations: Measuring magnetic fields in the atomic and molecular ISM.

Zeeman observations: Measuring magnetic fields in the atomic and molecular ISM. Spanish SKA White Book, 2015 146 Zeeman observations Zeeman observations: Measuring magnetic fields in the atomic and molecular ISM. Girart, J.M. 1 1 Institut de Ciències de l Espai (CSIC-IEEC). Campus

More information

Lecture 14. Introduction to the Sun

Lecture 14. Introduction to the Sun Lecture 14 Introduction to the Sun ALMA discovers planets forming in a protoplanetary disc. Open Q: what physics do we learn about the Sun? 1. Energy - nuclear energy - magnetic energy 2. Radiation - continuum

More information

Class #14/15 14/16 October 2008

Class #14/15 14/16 October 2008 Class #14/15 14/16 October 2008 Thursday, Oct 23 in class You ll be given equations and constants Bring a calculator, paper Closed book/notes Topics Stellar evolution/hr-diagram/manipulate the IMF ISM

More information

A Universe of Galaxies

A Universe of Galaxies A Universe of Galaxies Today s Lecture: Other Galaxies (Chapter 16, pages 366-397) Types of Galaxies Habitats of Galaxies Dark Matter Other Galaxies Originally called spiral nebulae because of their shape.

More information

1 A Solar System Is Born

1 A Solar System Is Born CHAPTER 3 1 A Solar System Is Born SECTION Formation of the Solar System BEFORE YOU READ After you read this section, you should be able to answer these questions: What is a nebula? How did our solar system

More information

Astronomy & Physics Resources for Middle & High School Teachers

Astronomy & Physics Resources for Middle & High School Teachers Astronomy & Physics Resources for Middle & High School Teachers Gillian Wilson http://www.faculty.ucr.edu/~gillianw/k12 A cosmologist is.... an astronomer who studies the formation and evolution of the

More information

Name Class Date. true

Name Class Date. true Exercises 131 The Falling Apple (page 233) 1 Describe the legend of Newton s discovery that gravity extends throughout the universe According to legend, Newton saw an apple fall from a tree and realized

More information

The Interstellar Medium Astronomy 216 Spring 2005

The Interstellar Medium Astronomy 216 Spring 2005 The Interstellar Medium Astronomy 216 Spring 2005 Al Glassgold & James Graham University of California, Berkeley The Interstellar Medium/Media (ISM) What is the ISM? Just what it says: The stuff between

More information

39th International Physics Olympiad - Hanoi - Vietnam - 2008. Theoretical Problem No. 3

39th International Physics Olympiad - Hanoi - Vietnam - 2008. Theoretical Problem No. 3 CHANGE OF AIR TEMPERATURE WITH ALTITUDE, ATMOSPHERIC STABILITY AND AIR POLLUTION Vertical motion of air governs many atmospheric processes, such as the formation of clouds and precipitation and the dispersal

More information

Cosmic Journey: Teacher Packet

Cosmic Journey: Teacher Packet Cosmic Journey: Teacher Packet Compiled by: Morehead State University Star Theatre with help from Bethany DeMoss Table of Contents Table of Contents 1 Corresponding Standards 2 Vocabulary 4 Sizing up the

More information

FXA 2008. UNIT G485 Module 5 5.5.1 Structure of the Universe. Δλ = v λ c CONTENTS OF THE UNIVERSE. Candidates should be able to :

FXA 2008. UNIT G485 Module 5 5.5.1 Structure of the Universe. Δλ = v λ c CONTENTS OF THE UNIVERSE. Candidates should be able to : 1 Candidates should be able to : CONTENTS OF THE UNIVERSE Describe the principal contents of the universe, including stars, galaxies and radiation. Describe the solar system in terms of the Sun, planets,

More information

How To Understand The Physics Of Electromagnetic Radiation

How To Understand The Physics Of Electromagnetic Radiation Ay 122 - Fall 2004 Electromagnetic Radiation And Its Interactions With Matter (This version has many of the figures missing, in order to keep the pdf file reasonably small) Radiation Processes: An Overview

More information

Ay 20 - Lecture 9 Post-Main Sequence Stellar Evolution. This file has many figures missing, in order to keep it a reasonable size.

Ay 20 - Lecture 9 Post-Main Sequence Stellar Evolution. This file has many figures missing, in order to keep it a reasonable size. Ay 20 - Lecture 9 Post-Main Sequence Stellar Evolution This file has many figures missing, in order to keep it a reasonable size. Main Sequence and the Range of Stellar Masses MS is defined as the locus

More information

Lesson 6: Earth and the Moon

Lesson 6: Earth and the Moon Lesson 6: Earth and the Moon Reading Assignment Chapter 7.1: Overall Structure of Planet Earth Chapter 7.3: Earth s Interior More Precisely 7-2: Radioactive Dating Chapter 7.5: Earth s Magnetosphere Chapter

More information

8 Radiative Cooling and Heating

8 Radiative Cooling and Heating 8 Radiative Cooling and Heating Reading: Katz et al. 1996, ApJ Supp, 105, 19, section 3 Thoul & Weinberg, 1995, ApJ, 442, 480 Optional reading: Thoul & Weinberg, 1996, ApJ, 465, 608 Weinberg et al., 1997,

More information

Top 10 Discoveries by ESO Telescopes

Top 10 Discoveries by ESO Telescopes Top 10 Discoveries by ESO Telescopes European Southern Observatory reaching new heights in astronomy Exploring the Universe from the Atacama Desert, in Chile since 1964 ESO is the most productive astronomical

More information

Elliptical Galaxies. Old view: ellipticals are boring, simple systems

Elliptical Galaxies. Old view: ellipticals are boring, simple systems Eliptical Galaxies Elliptical Galaxies Old view: ellipticals are boring, simple systems Ellipticals contain no gas & dust Ellipticals are composed of old stars Ellipticals formed in a monolithic collapse,

More information

Gravitational instabilities in protostellar discs and the formation of planetesimals

Gravitational instabilities in protostellar discs and the formation of planetesimals Gravitational instabilities in protostellar discs and the formation of planetesimals Giuseppe Lodato - Università degli Studi di Milano 17 February 2011 - Bologna Gravitational instabilities in protostellar

More information

CONTAM 02 Observa4ons in Rivers and Urban Streams: San Joaquin River Mixing Dynamics and Mass Balances

CONTAM 02 Observa4ons in Rivers and Urban Streams: San Joaquin River Mixing Dynamics and Mass Balances CONTAM 02 Observa4ons in Rivers and Urban Streams: San Joaquin River Mixing Dynamics and Mass Balances CONTAM 02.1 People Principal Inves:gators: Thomas Harmon (UC Merced), William Kaiser (UCLA) Faculty:

More information

1.1 A Modern View of the Universe" Our goals for learning: What is our place in the universe?"

1.1 A Modern View of the Universe Our goals for learning: What is our place in the universe? Chapter 1 Our Place in the Universe 1.1 A Modern View of the Universe What is our place in the universe? What is our place in the universe? How did we come to be? How can we know what the universe was

More information

MY FIRST STEPS IN SLIT SPECTROSCOPY

MY FIRST STEPS IN SLIT SPECTROSCOPY MY FIRST STEPS IN SLIT SPECTROSCOPY Andrew Wilson BAAVSS Spectroscopy Workshop Norman Lockyer Observatory October 2015 Overview My choice of spectrograph, camera and telescope Getting started and basic

More information

This paper is also taken for the relevant Examination for the Associateship. For Second Year Physics Students Wednesday, 4th June 2008: 14:00 to 16:00

This paper is also taken for the relevant Examination for the Associateship. For Second Year Physics Students Wednesday, 4th June 2008: 14:00 to 16:00 Imperial College London BSc/MSci EXAMINATION June 2008 This paper is also taken for the relevant Examination for the Associateship SUN, STARS, PLANETS For Second Year Physics Students Wednesday, 4th June

More information

Test 2 --- Natural Sciences 102, Professors Rieke --- VERSION B March 3, 2010

Test 2 --- Natural Sciences 102, Professors Rieke --- VERSION B March 3, 2010 Enter your answers on the form provided. Be sure to write your name and student ID number on the first blank at the bottom of the form. Please mark the version (B) in the Key ID space at the top of the

More information

Astronomy 110 Homework #04 Assigned: 02/06/2007 Due: 02/13/2007. Name:

Astronomy 110 Homework #04 Assigned: 02/06/2007 Due: 02/13/2007. Name: Astronomy 110 Homework #04 Assigned: 02/06/2007 Due: 02/13/2007 Name: Directions: Listed below are twenty (20) multiple-choice questions based on the material covered by the lectures this past week. Choose

More information

8. The evolution of stars a more detailed picture

8. The evolution of stars a more detailed picture 8. The evolution of stars a more detailed picture 8.1Pre Main-Sequence Evolution Evolution onto the main sequence begins with a cloud of cold gas which contracts under self-gravity. Potential Energy is

More information

Solar System Fundamentals. What is a Planet? Planetary orbits Planetary temperatures Planetary Atmospheres Origin of the Solar System

Solar System Fundamentals. What is a Planet? Planetary orbits Planetary temperatures Planetary Atmospheres Origin of the Solar System Solar System Fundamentals What is a Planet? Planetary orbits Planetary temperatures Planetary Atmospheres Origin of the Solar System Properties of Planets What is a planet? Defined finally in August 2006!

More information

Cloud Formation, Evolution and Destruction

Cloud Formation, Evolution and Destruction Chapter 4 Cloud Formation, Evolution and Destruction We now begin to trace the journey towards a star. How long does this take? The answer is surprisingly short: a good many clouds already contain new

More information

TRANSITING EXOPLANETS

TRANSITING EXOPLANETS TRANSITING EXOPLANETS Introduction 11 Chapter 1 Our Solar System from afar 13 Introduction 13 1.1 Direct imaging 20 1.1.1 Coronagraphy 24 1.1.2 Angular difference imaging 25 1.2 Astrometry 26 1.3 Radial

More information

Be Stars. By Carla Morton

Be Stars. By Carla Morton Be Stars By Carla Morton Index 1. Stars 2. Spectral types 3. B Stars 4. Be stars 5. Bibliography How stars are formed Stars are composed of gas Hydrogen is the main component of stars. Stars are formed

More information

Homework #4 Solutions ASTR100: Introduction to Astronomy Fall 2009: Dr. Stacy McGaugh

Homework #4 Solutions ASTR100: Introduction to Astronomy Fall 2009: Dr. Stacy McGaugh Homework #4 Solutions ASTR100: Introduction to Astronomy Fall 2009: Dr. Stacy McGaugh Chapter 5: #50 Hotter Sun: Suppose the surface temperature of the Sun were about 12,000K, rather than 6000K. a. How

More information

Observing the Universe

Observing the Universe Observing the Universe Stars & Galaxies Telescopes Any questions for next Monday? Light Doppler effect Doppler shift Doppler shift Spectra Doppler effect Spectra Stars Star and planet formation Sun Low-mass

More information

How To Understand The Origin Of Star Formation

How To Understand The Origin Of Star Formation Resultados Concurso Apex 2013-B Propuesta: 2013B-05 Investigador Principal: Mónica Rubio, Universidad de Chile Título: Dust, Molecules, and Star Formation at Low Metallicity Resumen: Dust affects the cooling

More information

Explorations of the Outer Solar System. B. Scott Gaudi Harvard-Smithsonian Center for Astrophysics

Explorations of the Outer Solar System. B. Scott Gaudi Harvard-Smithsonian Center for Astrophysics Explorations of the Outer Solar System B. Scott Gaudi Harvard-Smithsonian Center for Astrophysics The Known Solar System How big is the solar system? a tidal R 0 M Sun M Galaxy 1/3 200,000AU How big is

More information

From lowest energy to highest energy, which of the following correctly orders the different categories of electromagnetic radiation?

From lowest energy to highest energy, which of the following correctly orders the different categories of electromagnetic radiation? From lowest energy to highest energy, which of the following correctly orders the different categories of electromagnetic radiation? From lowest energy to highest energy, which of the following correctly

More information

a) species of plants that require a relatively cool, moist environment tend to grow on poleward-facing slopes.

a) species of plants that require a relatively cool, moist environment tend to grow on poleward-facing slopes. J.D. McAlpine ATMS 611 HMWK #8 a) species of plants that require a relatively cool, moist environment tend to grow on poleward-facing slopes. These sides of the slopes will tend to have less average solar

More information

Study Guide: Solar System

Study Guide: Solar System Study Guide: Solar System 1. How many planets are there in the solar system? 2. What is the correct order of all the planets in the solar system? 3. Where can a comet be located in the solar system? 4.

More information

The Evolution of GMCs in Global Galaxy Simulations

The Evolution of GMCs in Global Galaxy Simulations The Evolution of GMCs in Global Galaxy Simulations image from Britton Smith Elizabeth Tasker (CITA NF @ McMaster) Jonathan Tan (U. Florida) Simulation properties We use the AMR code, Enzo, to model a 3D

More information

AMBIPOLAR DIFFUSION REVISITED

AMBIPOLAR DIFFUSION REVISITED RevMexAA (Serie de Conferencias), 36, 73 8 (29) AMBIPOLAR DIFFUSION REVISITED F. C. Adams,2 29: Instituto de Astronomía, UNAM - Magnetic Fields in the Universe II: From Laboratory and Stars to the Primordial

More information

Introduction to the Solar System

Introduction to the Solar System Introduction to the Solar System Lesson Objectives Describe some early ideas about our solar system. Name the planets, and describe their motion around the Sun. Explain how the solar system formed. Introduction

More information

Week 1-2: Overview of the Universe & the View from the Earth

Week 1-2: Overview of the Universe & the View from the Earth Week 1-2: Overview of the Universe & the View from the Earth Hassen M. Yesuf (hyesuf@ucsc.edu) September 29, 2011 1 Lecture summary Protein molecules, the building blocks of a living organism, are made

More information

Related Standards and Background Information

Related Standards and Background Information Related Standards and Background Information Earth Patterns, Cycles and Changes This strand focuses on student understanding of patterns in nature, natural cycles, and changes that occur both quickly and

More information

CO isotopologues in the Perseus Molecular Cloud Complex: the X-factor and regional variations

CO isotopologues in the Perseus Molecular Cloud Complex: the X-factor and regional variations CO isotopologues in the Perseus Molecular Cloud Complex: the X-factor and regional variations Jaime E. Pineda Harvard-Smithsonian Center for Astrophysics, 6 Garden St., MS-1, Cambridge, MA 2138, USA jpineda@cfa.harvard.edu

More information