UNIVERSITA' DEGLI STUDI DI PADOVA

Size: px
Start display at page:

Download "UNIVERSITA' DEGLI STUDI DI PADOVA"

Transcription

1 UNIVERSITA' DEGLI STUDI DI PADOVA Sede Amministrativa: Università degli Studi di Padova Dipartimento di Scienze MM.FF.NN. SCUOLA DI DOTTORATO DI RICERCA IN SCIENZA ED INGEGNERIA DEI MATERIALI XX CICLO 6 GHz CAVITIES: A METHOD TO TEST A15 INTERMETALLIC COMPOUNDS rf PROPERTIES Direttore della Scuola : Ch.mo Prof. Gaetano Granozzi Supervisore : Ch.mo Prof. Vincenzo Palmieri Dottorando : Silvia Maria Deambrosis DATA CONSEGNA TESI: gennaio 2008

2 CONTENTS i Contents Abstract Estratto Introduction ix 0.1 Cavity research ix A frontier particle accelerators ix Superconducting cavities x Cavity performance limitations xi 0.2 Alternatives to bulk niobium xii GHz cavities xiv 0.4 Organization of the dissertation xiv 1 Superconducting Resonant Cavities Cavity fundamentals and cavity elds Radio-frequency elds in cavities The accelerating eld Peak surface elds Power dissipation and the cavity quality Superconductivity essentials Superconductor surface resistance Critical magnetic eld Alternative materials to solid niobium A15 Superconducting Compounds and their Potential Application to rf Resonant Cavities Introduction A15 compounds crystal structure A15 superconducting critical temperature Experimental results Phase diagrams and T c Theory of T c in A15 compounds A15 critical elds The chosen A15 compounds v vii

3 ii CONTENTS 3 Methods to measure superconductors surface resistance Surface impedance measurements of superconducting lms by a ring microstrip resonator technique A method of surface resistance measurement with a niobium triaxial cavity working at 2 K rf surface resistance measurements on superconducting samples with vacuum insulated thermometers An instrument to measure the surface resistance of superconducting samples at 400 MHz GHz Cavities GHz Cavity geometry GHz cryogenic infrastructure Measuring bench Fundamental equations for rf test RF system Cavity measurements procedure Software RF system upgrading Nb 3 Sn Chemical and physical properties Variation in lattice properties Electron-Phonon interaction as a function of atomic Sn content T c as a function of atomic Sn content Nb 3 Sn production methods and applications Multilament wire fabrication techniques Superconducting cavities fabrication techniques V 3 Si Chemical and physical properties V 3 Si production methods and applications Multilament wire fabrication techniques Electronic devices fabrication techniques Superconducting cavities fabrication techniques Nb 3 Sn: Production and Results Introduction Nb 3 Sn: The chosen production method The Nb 3 Sn phase formation Nb 3 Sn: experimental apparatus Nb 3 Sn: 6 GHz cavities stand Nb 3 Sn samples Nb 3 Sn samples: preliminary surface treatments Nb 3 Sn samples: production Nb 3 Sn samples: dierent production methods Nb 3 Sn samples: lms obtained Nb 3 Sn samples: post-process treatments

4 CONTENTS iii 7.5 Nb 3 Sn samples: analysis SEM XRD SIMS EMPA PPMS Nb 3 Sn 6 GHz cavities Nb 3 Sn 6 GHz cavities: preliminary surface treatments Nb 3 Sn 6 GHz cavities: production Nb 3 Sn 6 GHz cavities: lms obtained Nb 3 Sn 6 GHz cavities: analysis and rf test Nb 3 Sn 6 GHz cavities: analysis Nb 3 Sn 6 GHz cavities: rf test V 3 Si: Production and Results The Chosen Production Method The V 3 Si phase formation V 3 Si: experimental apparatus V 3 Si: experimental apparatus modications V 3 Si samples V 3 Si samples: preliminary surface treatments V 3 Si samples: production V 3 Si samples: lms obtained V 3 Si samples: analysis Optical microscope Proler SEM XRD PPMS V 3 Si 6 GHz cavities V 3 Si 6 GHz cavities: preliminary surface treatments V 3 Si 6 GHz cavities: production V 3 Si 6 GHz cavities: lms obtained V 3 Si 6 GHz cavities: analysis and rf test V 3 Si 6 GHz cavities: analysis V 3 Si 6 GHz cavities: rf test Discussion Nb 3 Sn Nb 6 GHz cavities Nb 3 Sn 6 GHz cavities V 3 Si V 6 GHz cavities V 3 Si 6 GHz cavities GHz cavities as a novel tool for rf testing A15 materials

5 iv CONTENTS 10 Future Developments Nb 3 Sn: future developments Nb 3 Sn: double furnace system Nb 3 Sn: post-process surface treatments V 3 Si: future developments The "Plasma" process V 3 Si: post-process surface treatments Conclusions GHz cavities Nb 3 Sn by Tin thermal Diusion V 3 Si by thermal diusion A Visual Basic code 217 List of Tables 223 List of Figures 225 BIBLIOGRAPHY 235

6 v Abstract Since the International Committee for Future Accelerators recommended that the Linear Collider design has to be based on the superconducting technology, the scientic world interest is now focused on further developments of new resonant cavities fabrication techniques and cost reduction. It is important to pursue research on new materials: the goal will be the achievement of superconducting cavities working better than the Nb ones at 4.2 K. For superconducting alloys and compounds, at a given operating temperature, the best rf performances (low surface resistance and λ, high relevant critical elds) are obtained for high T c and low ρ n materials. Among the possible candidates, A15 compounds appear to be the most promising. We needed a fast, easy and performing way to characterize A15 superconducting materials for their potential application to accelerating resonators. The idea is to build microcavities completely equal in shape to the real scale model. The rf characterization of samples is an useful diagnostic tool to accurately investigate local properties of superconducting materials. However, a common limitation of systems used for this, often consists in the diculty of scaling the measured results to the real resonator. In this work we will proof that 6 GHz resonators can simply become our cavity shaped samples. Our attention was focused on two materials: V 3 Si that has a really high RRR value and Nb 3 Sn that is the only A15 material already used for a resonant accelerating structure [1]. The process parameters optimization necessary to improve the A15 phase superconducting properties, crystal structure and morphology is going on through the small sample production: this is fundamental but still not enough. We are perfectly aware that having satisfactory results with A15 samples, doesn't mean obtaining good superconducting cavities with ease. Our solution is to work directly with cavities. Obviously using 1.5 GHz resonant structures would be time wasting and a cost limited approach. In the best situation, working very hard, one can produce and measure one resonator every two weeks. 6 GHz cavities are made from larger cavities fabrication remaining material, they don't

7 vi Abstract need welding (even for anges) and they can be directly measured inside a liquid helium dewar. Finally it is possible to perform more than one rf test per day!

8 vii Estratto Dal momento in cui la International Committee for Future Accelerators ha stabilito che il nuovo Linear Collider dovrà essere basato sulla tecnologia superconduttiva, l'interesse del mondo scientico si è spostato verso ulteriori sviluppi nell'ambito della fabbricazione di cavità e riduzione dei costi. E' estremamente importante promuovere la ricerca su nuovi materiali che possano fornire strutture risonanti con migliori prestazioni di quelle del niobio a 4.2 K. Nel caso di leghe e composti, le migliori performance in radio frequenza (bassa resistenza superciale e lunghezza di penetrazione del campo magnetico, alti campi critici), ad una data temperatura di lavoro, si ottengono nel caso in cui, non solo la temperatura critica sia elevata ma il comportamento sia metallico (bassa resistività in stato normale). Tra i possibili candidati, i composti A15 sembrano essere particolarmente promettenti. Avevamo bisogno di un modo facile e veloce di caratterizzare i materiali A15 vista la loro potenziale applicazione a strutture acceleranti superconducttive. Abbiamo deciso di costruire micro-cavità che siano esattamente identiche a quelle reali, solo più piccole. La caratterizzazione in radiofrequenza di piccoli campioni è un mezzo diagnostico accurato per investigare le proprietà locali dei materiali superconduttori. Una evidente limitazione di tali sistemi spesso consiste nelle dicoltà di risclare i risultati ottenuti ad una cavità reale. Mediante questo lavoro proveremo che le strutture risonanti a 6 GHz possono divenire i nostri "campioni a forma di cavità". Sono stati scelti due composti A15: il V 3 Si, che mostra elevati valori di RRR ed il Nb 3 Sn, ovvero il solo A15 già utilizzato per la costruzione di cavità acceleratrici. L'ottimizzazione dei parametri di processo, necessaria per migliorare le proprietà superconduttive della fase A15, la struttura cistallina e la morfologia viene condotta attraverso la produzione dei campioni: naturalmente questo punto è fondamentale ma non suciente. Siamo perfettamente consapevoli del fatto che ottenere risultati soddisfacenti con i campioni non signichi necessariamente ottenere facilmente buone cavità superconduttive. La nostra soluzione è quella di lavorare direttamente con le cavità. Per ovvi motivi non sarebbe possibile servirsi di strutture risonanti ad una frequenza pari a 1.5 GHz: sarebbe troppo dispendioso sia in termini di tempo che di costi. Anche nelle migliori condizioni e

9 viii Estratto lavorando molto è possibile produrre e misurare una cavità ogni due settimane. Le cavità 6 GHz vengono fatte tramite la tecnica dello spinning, con gli scarti di produzione delle cavità più grandi, non necessitano di saldature, nemmeno per le ange ed inoltre possono essere misurate una volta inserite in un semplice dewar di elio liquido. Vista la rapidità di rareddamento e lo scarso consumo di elio è plausibile eettuare più di un test rf al giorno!

10 ix Introduction 0.1 Cavity research A frontier particle accelerators In the past century, physicists have explored smaller and smaller scales, cataloguing and understanding the fundamental components of the universe, trying to explain the origin of mass and probing the theory of extra dimensions. And in recent years, experiments and observations have pointed to evidence that we can only account for a surprising ve percent of the universe. Scientists believe that the remaining 95 percent is a mysterious dark matter and dark energy, revealing a universe far stranger and more wonderful than they ever suspected. The global particle physics community agrees that a machine like the International Linear Collider will answer these questions about what the universe is made of and provide exciting new insights into how it works. Using unprecedented technology, discoveries are within reach. This could stretch our imagination with new forms of matter, new forces of nature, new dimensions of space and time and bring into focus Albert Einstein's vision of an ultimate unied theory. The International Linear Collider will give physicists a new cosmic doorway to explore energy regimes beyond the reach of today's accelerators. The proposed electron-positron collider (ILC) will complement the Large Hadron Collider, a proton-proton collider at the European Center for Nuclear Research (CERN) in Geneva, Switzerland, together unlocking some of the deepest mysteries in the universe. Consisting of two linear accelerators that face each other, the ILC will hurl some 10 billion electrons and their anti-particles, positrons, toward each other at nearly the speed of light. Accelerator cavities give the particles more and more energy until they smash in a blazing crossre at the center of the machine. Stretching approximately 35 kilometers in length, the beams collide 14,000 times every second at extremely high energies (500 billion-electron-volts(gev)). Each spectacular collision creates an array of new particles that could answer some of the most fundamental questions of all time. The current baseline design allows for an upgrade to a 50-kilometers, 1 trillion-electron-volt (TeV) machine during the second stage of the project. Planning, designing, funding and building the proposed International Linear Collider

11 x Introduction Figure 1: A photograph of a bulk niobium TESLA-type 9-cells cavity. will require global participation and global organization. An international team of more than 60 scientists and engineers leads the Global Design Eort (GDE) for the ILC. The GDE team sets the design and priorities for the work of scientists and engineers around the world. From the senior physicist to the undergraduate student, about 2000 people from more than 100 universities and laboratories in over two dozen countries are collaborating to build the ILC, the next-generation particle accelerator (http://www.linearcollider.org/cms/) Superconducting cavities Cavities are the devices used to provide energy to the particles. Radio frequency (rf) accelerating structures are the mostly employed and an example of them is shown in Figure 1. In the past, copper cavities were utilized for acceleration (e.g., at SLAC): however, over the last 20 years, superconducting bulk niobium technology has proven itself as the alternative. Although not completely loss free above T = 0 K, as in the dc case, superconducting cavities dissipate orders of magnitude less power than normal conducting accelerating structures. The dramatically reduced resistivity translates into a number of very important advantages. They include [2]: 1. Operating cost savings: Even when taking into account the cost of refrigerating superconducting cavities, their power demand in cw applications is more than two orders of magnitude less than that of equivalent copper cavities. 2. Capital cost savings: The reduced power requirements translate into capital cost

12 0.1 Cavity research xi savings, since fewer (and sometimes simpler) klystrons are needed. 3. High gradient: The relatively low power consumption also enables superconducting cavities to operate at high cw gradients. 4. Reduced impedance: The aperture of superconducting cavities is large, thereby minimizing disruptive interactions of the cavity with the beam, higher currents can therefore be accelerated. Superconducting bulk niobium resonant structures has been successfully used in many machines: among them HERA and TESLA (DESY, Hamburg, Germany), CEBAF (Thomas Jeerson Laboratories, Newport News, Virginia, USA), the KEK B-factory (KEK, Tzukuba, Japan), the LHC (CERN, Geneva, Switzerland). Superconductors have played a pioneering role at both the energy frontier and the high current one. Extensive research has therefore been performed to understand the performance limitations of superconducting cavities and to improve upon the achieved accelerating gradients. Going by these remarks the International Committee for Future Accelerators recommended that the Linear Collider design has to be based on the superconducting technology: the scientic world interest is now focused on further developments of new resonant cavities fabrication techniques and cost reduction Cavity performance limitations A limit on the maximum accelerating gradient of superconducting cavities is imposed by the superheating magnetic eld. At no point of the cavity surface may the magnetic eld exceed the superheating eld, otherwise the superconductor goes normal conducting ("quenches"). Niobium cavities (TESLA shape, se Figure 1), for example, are therefore limited to an accelerating gradient of about 50 MV/m. Though, for a number of reasons, such high accelerating gradients are dicult to achieve in practical cavities because of some limiting mechanisms as eld emission and thermal breakdown. In the presence of high surface electric eld, rf power is lost to electrons that tunnel out of the cavity wall at very localized points. The emitted electrons are accelerated by the electromagnetic elds and, upon impact, heat the cavity wall and produce X-rays. Field emission scales exponentially with the electric eld and is capable of consuming inordinate amounts of power. Thermal breakdown generally results when a highly resistive defect on the rf surface causes a large fraction of the cavity to quench. An abrupt reduction of the cavity quality results. Thermal breakdown can also be initiated by the heat from bombarding eld emission electrons. Even at low eld levels (below an accelerating gradient of a few MeV/m) all cavities

13 xii Introduction display losses higher than theoretically expected. The anomalous losses are attributed to a temperature independent residual resistance. Its sources are impurities on the rf surface, adsorbed gases and residual magnetic ux that is trapped in the superconductor as it is cooled through the transition temperature. The residual resistance (R 0 ) always dominates the rf surface resistance at low temperatures. Known that for well prepared niobium a R 0 value as low as 5 nω is possible, it is pointless the necessity to cool cavities to temperatures for which residual resistance is the most important term. At 1.5 GHz, for example, the niobium R 0 begins to dominate at T 1.8 K. It becomes mandatory to try to nd new materials behaving much better than niobium at 4.2 K: this will give us the opportunity to avoid the high cryogenic costs rising from the superuid helium utilization (i.e. below 2.2 K). 0.2 Alternatives to bulk niobium Besides the attempt to improve the Nb sputtered on Cu accelerating structures performance, it is important to pursue research on new materials. As mentioned in the goal will be the achievement of superconducting cavities working better than the Nb ones at 4.2 K. Selection criteria In the theoretical description of superconducting state (BCS theory) three main microscopy parameters need to be used [3]: g(ε F ): density of states at the Fermi energy l: electron mean free path (due to impurity scattering) V 0 : eective (phonon mediated) electron - electron interaction These represent the eective number of free electrons, their scattering rate, and their (phonon mediated) eective attraction respectively. They can be written in terms of directly measurable corresponding macroscopic parameters: γ: Sommerfeld constant = (π 2 /3) k 2 B g(ε F ) ρ n : residual resistivity (1/RRR) = e 2 /3 v F g(ε F ) T c : critical temperature = 1.14 Θ D exp[-1/(v 0 g(ε F ))] (being k B the Boltzmann constant, RRR the residual resistivity ratio, v F the Fermi velocity and Θ D the Deby temperature). In the same frame, for a type II superconductor in the dirty limit, the relevant quantities for rf applications can be in turn expressed in terms of

14 0.2 Alternatives to bulk niobium xiii the following macroscopic parameters (CGS units, T < T c /2): the BCS surface resistance (R BCS ), the penetration depth (λ), the critical elds (H c and H c1 ). ( ) 3 R BCS = R n ω 2 σ 1 = A ρ n 2 π σ n stc T e ( k B T 1 + e k B T ) 2 ω 2 ln ω (1) [ ] 1 ρn λ = B η T c (2) H c = C γ 1/2 η T c H c1 = D B η T c ρ n H sh = 0.75 H c (3) (being η = s/3.52 = strong coupling correction, A = , B = 10 2, C = 2.4, D = ) These approximated expressions clarify that for superconducting alloys and compounds, at a given operating temperature, the best rf performances (low surface resistance and λ, high relevant critical elds) are obtained for high T c and low ρ n materials [3]. Among the possible candidates, A15 compounds appear to be the most promising. Of course this is only a rst approximation approach since many other considerations come into play: the presence of the residual surface resistance and problems related to the preparation technique are the most important [3]. The A15 materials structure is classied as the W 3 O or Cr 3 Si and the stoichiometric composition is A 3 B: A is a transition metal, B can be a transition metal or not. B atoms forms a bcc crystal lattice, while A atoms arrange themselves in chains parallel to the three crystallographic directions [100], [010], [001]. Superconducting parameters of most A15 compounds are strongly inuenced by the Long-Range crystallographic Order (LRO) degree, especially when the B atom is not a transition metal. All what can aect the LRO must be carefully taken into account. Composition and strain (or lattice distortions) are strictly connected to the critical parameters of the A15 phase. Optimum properties are generally obtained in the stoichiometric strain free state. Just a few of them could have a practical interest for rf applications: Nb 3 Sn, Nb 3 Al, Nb 3 Ga, Nb 3 Ge, V 3 Ga, V 3 Si, the Mo-Re system. Of these, V 3 Si, V 3 Ga and Nb 3 Sn have ranges of homogeneity that include the A 3 B stoichiometric composition and the maximum T c is readily obtainable in bulk samples. Nb 3 Al and Nb 3 Ga include the ideal composition only at temperatures so high that thermal disorder is excessive. Nb 3 Ge does not exist in equilibrium at the stoichiometric ratio.

15 xiv Introduction Two of them were chosen for the preparation of this work: V 3 Si that has a really high RRR value and Nb 3 Sn that is the only A15 compound already used for a resonant accelerating structure [1] GHz cavities The rf characterization of the obtained A15 samples would be an useful diagnostic tool to accurately investigate local properties of the grown superconducting lms. However, a common limitation of systems used for this, often consists in the diculty of scaling the measured results to the real resonator. The rf performance testing of a sample and its extrapolation to the frequency of a cavity is and will always remain an indirect way of measuring superconducting rf properties. Obviously the most direct way to test rf properties would be the use of cavities but 1.5 GHz resonant structures would be too onerous both for the material cost and the cryogenic expense. The idea was to build microcavities completely equal in shape to the real scale model. They are produced by spinning and they don't need any electron beam welding (neither for anges). It becomes feasible to produce small resonators in a short period of time, with a negligible cost and in large quantity. Furthermore we developed the cryogenic infrastructure necessary for the 6 GHz rf tests: it can be directly inserted in a liquid helium dewar and it is easy to perform more then one measurement a day. The process parameters optimization necessary to improve the A15 phase superconducting properties, crystal structure and morphology can go on through the small samples production. This thesis fundamental message is we really need an easy and performing system to produce and test the A15 cavities: it consists in 6 GHz resonators that become our cavity shaped samples. 0.4 Organization of the dissertation The following section gives a brief outline of the electrodynamics of cavities. In the second part I shall introduce some qualitative features of rf superconductivity needed to understand intrinsic cavity characteristics such as the nite surface resistance. I am going to explain the fundamental magnetic eld limitation of superconducting cavities too. Chapter 2 expands upon the A15 materials properties and the reasons why some of them are promising for rf superconducting cavity application. I will also point out the problems in the preparation of such a kind of intermetallic compounds. Chapter 3 represents a brief review of some of the methods developed to measure superconductors surface resistance. Being them quite complicate, and in the most of the cases indirect we tried to nd an alternative. We are perfectly aware that having satisfactory results with A15 samples doesn't mean

16 0.4 Organization of the dissertation xv obtaining good superconducting cavities with ease. That's why we decided to look for the best way to overcome this problem. Our solution is to work directly with cavities. The idea is to build 6 GHz resonators (Chapter 4). The following parts are about the A15 materials we decided to study: Nb 3 Sn (Chapter 5 and 7) and V 3 Si (Chapter 6 and 8). I shall list the specic characteristics, I'll describe the way to produce them and the main results we gained. The methods we chose and the experimental apparatus built for our purpose have been chosen to guarantee us the possibility to process samples or 6 GHz cavities, introducing slight modications. Nb 3 Sn have been obtained using the liquid tin diusion process. A bulk Nb sample is introduced into molten Sn for a certain period of time. Here the diusion of Sn into bulk Nb begins to take place: it is extremely important, as shown by the Nb 3 Sn phase diagram, the temperature to be higher than 930 C, to avoid the formation of spurious low T c phases. After this rst step (dipping) it is necessary to perform the second one (annealing): it consists in a heat treatment outside the Sn bath. In this way the residual Sn, still wetting the substrate, is leaden to diuse completely. The idea is to obtain satisfactory superconducting properties (high critical temperature and a sharp transition curve), an homogeneous and compact lm and a sucient surface nishing (both in terms of composition and roughness). To reach this scope, we decided to modify progressively the experimental procedure trying to control the tin percentage of our lms. The so called "hybrid" process seems to be extremely promising: the sample annealing is partly performed in Sn vapor, partly in vacuum. At the same time we worked on the bulk Nb 6 GHz cavities internal surface polishing: they have to be free from defects, smooth and shining. In this way we eliminate all the possible error sources connected to the substrate preparation. The rst Nb 3 Sn 6 GHz resonators have been produced and tested. V 3 Si have been obtained through the high temperature V-Si interdiusion from gaseous SiH 4. Our bulk vanadium substrates are xed in the vacuum chamber: they are then heated at high T ( 800 C) using a set of lamps, left in a silane atmosphere for some hours and annealed in vacuum for a certain period of time (generally tens of hours). Part of our time has been dedicated to the V polishing in order to develop an eective recipe. Then the rst V 3 Si samples have been produced. SiH 4 pressure, process temperature and time have been progressively changed to get better superconducting properties. A special eort has been made to try to discriminate the experimental conditions necessary to avoid spurious phases formation (mainly V 5 Si 3 ) and the A15 compound growing supercially. The rst V 3 Si 6 GHz resonator has been produced and tested.

17 xvi Introduction

18 1 Chapter 1 Superconducting Resonant Cavities In this chapter we give an overview of the basics of superconducting cavities. We start by discussing the electrodynamics of radiofrequency (rf) cavities, the accelerating mode and the general expressions used to describe power dissipation. Although later we focus exclusively on superconducting cavities, this section apply equally well to both normal and superconducting resonant structures. In the second part we introduce the rudiments of supercoductivity. In particular, we will illustrate why superconducting cavities dissipate a small, but nite amount of power despite the fact that superconductors carry dc currents without losses. We will also explain the fundamental magnetic eld limitation of superconducting cavities. This chapter is not designed to give a deep description of the theory of cavities: we will just emphasize the aspects needed to understand this report. For further information the reader is referred to numerous texts that give an excellent review of the subject (see, for example [2, 4]). 1.1 Cavity fundamentals and cavity elds Radio-frequency elds in cavities The rf eld in cavities are derived from the eigenvalue equation ( ) (E ) c 2 t 2 H = 0 (1.1) which is obtained by combining Maxwell's equations [5]. It is subject to the boundary conditions n E = 0 (1.2) and n H = 0 (1.3) at the cavity walls. Here n is the unit normal to the rf surface, c is the speed of light and E and H are the electric and magnetic eld respectively. In cylindrically symmetric

19 2 Superconducting Resonant Cavities Figure 1.1: Schematic of a generic speed-of-light cavity. The electric eld is strongest near the symmetric axis, while the magnetic eld is concentrated in the equator region. cavities, such as the pillbox shape, the discrete mode spectrum given by 1.1 splits into two groups, transverse magnetic (TM) modes and transverse electric (TE) modes. For TM modes the magnetic eld is transverse to the cavity symmetry axis whereas for TE modes it is the electric one to be transverse. For accelerating cavities, therefore, only TM modes are useful. Modes are classied as T Mmnp, where integers m, n, and p count the number of sign changes of E z in the Φ, ϱ, and z directions respectively. Only T M 0np (n = 1, 2, 3...; p = 0, 1, 2...) modes have a non vanishing longitudinal electric eld on axis, and the TM 010 mode is used for acceleration in most cavities. The typical shape of speed of light cavities [2] is shown in Figure 1.1. The electric eld of the T M 010 mode is greatest at the irises and near the symmetry axis, while the magnetic led is concentrated in the equator region. The geometry of the cell and the addition of beam tubes make it very dicult to calculate the elds analytically, and one reverts to numerical simulations with codes such as SUPERFISH to obtain the eld proles [6]. Although TM modes acquire a nite H z due to the perturbative eect of the beam tubes, the main characteristic of the TM modes are preserved, and one still uses the T Mmnp classication scheme to identify modes The accelerating eld The accelerating voltage (V acc ) of a cavity is determined by considering the motion of a charged particle along the beam axis. For a charge q, by denition, V acc = 1 max energy gain possible during transit q (1.4)

20 1.1 Cavity fundamentals and cavity elds 3 We use 6 GHz speed of light structures in our tests, and the accelerating voltage is therefore given by V acc = z=d z=0 E z (ρ = 0, z)e iω 0 z c dz (1.5) where d is the length of the cavity and and ω 0 is the eigenfrequency of the cavity mode under consideration. Frequently, one quotes the accelerating eld E acc rather than V acc. The two are related by E acc = V acc d (1.6) With single cell cavities the choice of d is somewhat ambiguous, since the beam tubes can be made arbitrarily long. hence E acc is not uniquely dened. Frequently one therefore calculates E acc for an equivalent innite periodic structure and quotes its E acc for the single cell Peak surface elds When considering the practical limitations of superconducting cavities, two elds are of particular importance: the peak electric surface eld (E pk ) and the peak magnetic surface eld (H pk ). In most cases these elds determine the maximum achievable accelerating gradient in cavities. In the ones we have (6 GHz speed of light structures), the surface electric eld peaks near the irises, and the surface magnetic eld is at its maximum near the equator. To maximize the potential cavity performance, it is important that the ratios of E pk /E acc and H pk /E acc be minimized. In an ideal pillbox cavity, the ratios are given by E pk E acc = π 2 H pk E acc = 30.5 = 1.6 (1.7) Oe MV/m (1.8) The addition of beam tubes increases these values. For example, the ratios of monocell TESLA-type cavities are E pk E acc = 1.83 (1.9) H pk E acc = 45 Oe MV/m (1.10) These values were obtained by solving for the elds in the TM010 mode numerically with the code SUPERFISH ([6], Chapter 4).

Introduction to Superconducting RF (srf)

Introduction to Superconducting RF (srf) Introduction to Superconducting RF (srf) Training Course on Particle Accelerator Technology May 10.-11. 2007 Mol, Belgium Holger J. Podlech Institut für Angewandte Physik J.W.-Goethe-Universität, Frankfurt

More information

SUPERCONDUCTIVITY. PH 318- Introduction to superconductors 1

SUPERCONDUCTIVITY. PH 318- Introduction to superconductors 1 SUPERCONDUCTIVITY property of complete disappearance of electrical resistance in solids when they are cooled below a characteristic temperature. This temperature is called transition temperature or critical

More information

Electrical Conductivity

Electrical Conductivity Advanced Materials Science - Lab Intermediate Physics University of Ulm Solid State Physics Department Electrical Conductivity Translated by Michael-Stefan Rill January 20, 2003 CONTENTS 1 Contents 1 Introduction

More information

C.-K. Ng. Stanford Linear Accelerator Center. and. T. Weiland. University oftechnology. FB18, Schlossgartenstr. 8. D64289, Darmstadt, Germany.

C.-K. Ng. Stanford Linear Accelerator Center. and. T. Weiland. University oftechnology. FB18, Schlossgartenstr. 8. D64289, Darmstadt, Germany. SLAC-PUB-95-7005 September, 1995 Impedance of the PEP-II DIP Screen C.-K. Ng Stanford Linear Accelerator Center Stanford University, Stanford, CA 94309, USA and T. Weiland University oftechnology FB18,

More information

Vacuum Evaporation Recap

Vacuum Evaporation Recap Sputtering Vacuum Evaporation Recap Use high temperatures at high vacuum to evaporate (eject) atoms or molecules off a material surface. Use ballistic flow to transport them to a substrate and deposit.

More information

phys4.17 Page 1 - under normal conditions (pressure, temperature) graphite is the stable phase of crystalline carbon

phys4.17 Page 1 - under normal conditions (pressure, temperature) graphite is the stable phase of crystalline carbon Covalent Crystals - covalent bonding by shared electrons in common orbitals (as in molecules) - covalent bonds lead to the strongest bound crystals, e.g. diamond in the tetrahedral structure determined

More information

Rate Equations and Detailed Balance

Rate Equations and Detailed Balance Rate Equations and Detailed Balance Initial question: Last time we mentioned astrophysical masers. Why can they exist spontaneously? Could there be astrophysical lasers, i.e., ones that emit in the optical?

More information

Physics 9e/Cutnell. correlated to the. College Board AP Physics 1 Course Objectives

Physics 9e/Cutnell. correlated to the. College Board AP Physics 1 Course Objectives Physics 9e/Cutnell correlated to the College Board AP Physics 1 Course Objectives Big Idea 1: Objects and systems have properties such as mass and charge. Systems may have internal structure. Enduring

More information

Indiana's Academic Standards 2010 ICP Indiana's Academic Standards 2016 ICP. map) that describe the relationship acceleration, velocity and distance.

Indiana's Academic Standards 2010 ICP Indiana's Academic Standards 2016 ICP. map) that describe the relationship acceleration, velocity and distance. .1.1 Measure the motion of objects to understand.1.1 Develop graphical, the relationships among distance, velocity and mathematical, and pictorial acceleration. Develop deeper understanding through representations

More information

Boltzmann Distribution Law

Boltzmann Distribution Law Boltzmann Distribution Law The motion of molecules is extremely chaotic Any individual molecule is colliding with others at an enormous rate Typically at a rate of a billion times per second We introduce

More information

States of Matter and the Kinetic Molecular Theory - Gr10 [CAPS]

States of Matter and the Kinetic Molecular Theory - Gr10 [CAPS] OpenStax-CNX module: m38210 1 States of Matter and the Kinetic Molecular Theory - Gr10 [CAPS] Free High School Science Texts Project This work is produced by OpenStax-CNX and licensed under the Creative

More information

emission of light from atoms discrete line spectra - energy levels, Franck-Hertz experiment

emission of light from atoms discrete line spectra - energy levels, Franck-Hertz experiment Introduction Until the early 20 th century physicists used to explain the phenomena in the physical world around them using theories such a mechanics, electromagnetism, thermodynamics and statistical physics

More information

CLASSICAL CONCEPT REVIEW 8

CLASSICAL CONCEPT REVIEW 8 CLASSICAL CONCEPT REVIEW 8 Kinetic Theory Information concerning the initial motions of each of the atoms of macroscopic systems is not accessible, nor do we have the computational capability even with

More information

Introduction to superconductivity

Introduction to superconductivity Introduction to superconductivity Textbook: Introduction to superconductivity by A.C.Rose-Innes & E. H. Rhoderick 2 nd Ed. References: Introduction to superconductivity by M. Tinkham 2 nd Ed. superconductivity

More information

DO PHYSICS ONLINE FROM QUANTA TO QUARKS QUANTUM (WAVE) MECHANICS

DO PHYSICS ONLINE FROM QUANTA TO QUARKS QUANTUM (WAVE) MECHANICS DO PHYSICS ONLINE FROM QUANTA TO QUARKS QUANTUM (WAVE) MECHANICS Quantum Mechanics or wave mechanics is the best mathematical theory used today to describe and predict the behaviour of particles and waves.

More information

Eðlisfræði 2, vor 2007

Eðlisfræði 2, vor 2007 [ Assignment View ] [ Print ] Eðlisfræði 2, vor 2007 30. Inductance Assignment is due at 2:00am on Wednesday, March 14, 2007 Credit for problems submitted late will decrease to 0% after the deadline has

More information

A wave lab inside a coaxial cable

A wave lab inside a coaxial cable INSTITUTE OF PHYSICS PUBLISHING Eur. J. Phys. 25 (2004) 581 591 EUROPEAN JOURNAL OF PHYSICS PII: S0143-0807(04)76273-X A wave lab inside a coaxial cable JoãoMSerra,MiguelCBrito,JMaiaAlves and A M Vallera

More information

Lecture 6 Scanning Tunneling Microscopy (STM) General components of STM; Tunneling current; Feedback system; Tip --- the probe.

Lecture 6 Scanning Tunneling Microscopy (STM) General components of STM; Tunneling current; Feedback system; Tip --- the probe. Lecture 6 Scanning Tunneling Microscopy (STM) General components of STM; Tunneling current; Feedback system; Tip --- the probe. Brief Overview of STM Inventors of STM The Nobel Prize in Physics 1986 Nobel

More information

Properties of Solids

Properties of Solids Properties of Solids Condensed Matter Physics Condensed matter physics: The study of the electronic properties of solids. Crystal structure: The atoms are arranged in extremely regular, periodic patterns.

More information

New Method for Optimum Design of Pyramidal Horn Antennas

New Method for Optimum Design of Pyramidal Horn Antennas 66 New Method for Optimum Design of Pyramidal Horn Antennas Leandro de Paula Santos Pereira, Marco Antonio Brasil Terada Antenna Group, Electrical Engineering Dept., University of Brasilia - DF terada@unb.br

More information

Heating & Cooling in Molecular Clouds

Heating & Cooling in Molecular Clouds Lecture 8: Cloud Stability Heating & Cooling in Molecular Clouds Balance of heating and cooling processes helps to set the temperature in the gas. This then sets the minimum internal pressure in a core

More information

Steady Heat Conduction

Steady Heat Conduction Steady Heat Conduction In thermodynamics, we considered the amount of heat transfer as a system undergoes a process from one equilibrium state to another. hermodynamics gives no indication of how long

More information

Coating Technology: Evaporation Vs Sputtering

Coating Technology: Evaporation Vs Sputtering Satisloh Italy S.r.l. Coating Technology: Evaporation Vs Sputtering Gianni Monaco, PhD R&D project manager, Satisloh Italy 04.04.2016 V1 The aim of this document is to provide basic technical information

More information

Lecture 2: Semiconductors: Introduction

Lecture 2: Semiconductors: Introduction Lecture 2: Semiconductors: Introduction Contents 1 Introduction 1 2 Band formation in semiconductors 2 3 Classification of semiconductors 5 4 Electron effective mass 10 1 Introduction Metals have electrical

More information

Lecture 24 - Surface tension, viscous flow, thermodynamics

Lecture 24 - Surface tension, viscous flow, thermodynamics Lecture 24 - Surface tension, viscous flow, thermodynamics Surface tension, surface energy The atoms at the surface of a solid or liquid are not happy. Their bonding is less ideal than the bonding of atoms

More information

AP1 Electricity. 1. A student wearing shoes stands on a tile floor. The students shoes do not fall into the tile floor due to

AP1 Electricity. 1. A student wearing shoes stands on a tile floor. The students shoes do not fall into the tile floor due to 1. A student wearing shoes stands on a tile floor. The students shoes do not fall into the tile floor due to (A) a force of repulsion between the shoes and the floor due to macroscopic gravitational forces.

More information

When designing. Inductors at UHF: EM Simulation Guides Vector Network Analyzer. measurement. EM SIMULATION. There are times when it is

When designing. Inductors at UHF: EM Simulation Guides Vector Network Analyzer. measurement. EM SIMULATION. There are times when it is Inductors at UHF: EM Simulation Guides Vector Network Analyzer Measurements John B. Call Thales Communications Inc., USA When designing There are times when it is circuits for necessary to measure a operation

More information

Statistical Mechanics, Kinetic Theory Ideal Gas. 8.01t Nov 22, 2004

Statistical Mechanics, Kinetic Theory Ideal Gas. 8.01t Nov 22, 2004 Statistical Mechanics, Kinetic Theory Ideal Gas 8.01t Nov 22, 2004 Statistical Mechanics and Thermodynamics Thermodynamics Old & Fundamental Understanding of Heat (I.e. Steam) Engines Part of Physics Einstein

More information

Global Seasonal Phase Lag between Solar Heating and Surface Temperature

Global Seasonal Phase Lag between Solar Heating and Surface Temperature Global Seasonal Phase Lag between Solar Heating and Surface Temperature Summer REU Program Professor Tom Witten By Abstract There is a seasonal phase lag between solar heating from the sun and the surface

More information

Sputtering (cont.) and Other Plasma Processes

Sputtering (cont.) and Other Plasma Processes Sputtering (cont.) and Other Plasma Processes Sputtering Summary Create an ionic plasma by applying a high voltage to a glow tube. Ions bombard the target material at the cathode. Target atoms are ejected

More information

Chapter 8 Molecules. Some molecular bonds involve sharing of electrons between atoms. These are covalent bonds.

Chapter 8 Molecules. Some molecular bonds involve sharing of electrons between atoms. These are covalent bonds. Chapter 8 Molecules (We have only three days for chapter 8!) 8.1 The Molecular Bond A molecule is an electrically neutral group of atoms held together strongly enough to behave as a single particle. A

More information

Development of a Low Frequency Superconducting RF Electron Gun. September 2010

Development of a Low Frequency Superconducting RF Electron Gun. September 2010 Development of a Low Frequency Superconducting RF Electron Gun Contract DE-FG02-07ER84861 07ER84861 Terry Grimm September 2010 Outline Collaboration Concept Scientific justification Design electromagnetic

More information

Energy Transport. Focus on heat transfer. Heat Transfer Mechanisms: Conduction Radiation Convection (mass movement of fluids)

Energy Transport. Focus on heat transfer. Heat Transfer Mechanisms: Conduction Radiation Convection (mass movement of fluids) Energy Transport Focus on heat transfer Heat Transfer Mechanisms: Conduction Radiation Convection (mass movement of fluids) Conduction Conduction heat transfer occurs only when there is physical contact

More information

Defects Introduction. Bonding + Structure + Defects. Properties

Defects Introduction. Bonding + Structure + Defects. Properties Defects Introduction Bonding + Structure + Defects Properties The processing determines the defects Composition Bonding type Structure of Crystalline Processing factors Defects Microstructure Types of

More information

Free Electron Fermi Gas (Kittel Ch. 6)

Free Electron Fermi Gas (Kittel Ch. 6) Free Electron Fermi Gas (Kittel Ch. 6) Role of Electrons in Solids Electrons are responsible for binding of crystals -- they are the glue that hold the nuclei together Types of binding (see next slide)

More information

Resistivity. V A = R = L ρ (1)

Resistivity. V A = R = L ρ (1) Resistivity Electric resistance R of a conductor depends on its size and shape as well as on the conducting material. The size- and shape-dependence was discovered by Georg Simon Ohm and is often treated

More information

4. Thermodynamics of Polymer Blends

4. Thermodynamics of Polymer Blends 4. Thermodynamics of Polymer Blends Polymeric materials find growing applications in various fields of everyday life because they offer a wide range of application relevant properties. Blending of polymers

More information

White Dwarf Properties and the Degenerate Electron Gas

White Dwarf Properties and the Degenerate Electron Gas White Dwarf Properties and the Degenerate Electron Gas Nicholas Rowell April 10, 2008 Contents 1 Introduction 2 1.1 Discovery....................................... 2 1.2 Survey Techniques..................................

More information

Physical vapour deposition of thin lms for use in superconducting RF cavities

Physical vapour deposition of thin lms for use in superconducting RF cavities Loughborough University Institutional Repository Physical vapour deposition of thin lms for use in superconducting RF cavities This item was submitted to Loughborough University's Institutional Repository

More information

When the fluid velocity is zero, called the hydrostatic condition, the pressure variation is due only to the weight of the fluid.

When the fluid velocity is zero, called the hydrostatic condition, the pressure variation is due only to the weight of the fluid. Fluid Statics When the fluid velocity is zero, called the hydrostatic condition, the pressure variation is due only to the weight of the fluid. Consider a small wedge of fluid at rest of size Δx, Δz, Δs

More information

FCC 1309180800 JGU WBS_v0034.xlsm

FCC 1309180800 JGU WBS_v0034.xlsm 1 Accelerators 1.1 Hadron injectors 1.1.1 Overall design parameters 1.1.1.1 Performance and gap of existing injector chain 1.1.1.2 Performance and gap of existing injector chain 1.1.1.3 Baseline parameters

More information

Basic Concepts of Thermodynamics

Basic Concepts of Thermodynamics Basic Concepts of Thermodynamics Every science has its own unique vocabulary associated with it. recise definition of basic concepts forms a sound foundation for development of a science and prevents possible

More information

Development of Radiation Resistant Quadrupoles Based on High Temperature Superconductors for the Fragment Separator

Development of Radiation Resistant Quadrupoles Based on High Temperature Superconductors for the Fragment Separator Development of Radiation Resistant Quadrupoles Based on High Temperature Superconductors for the Fragment Separator R. Gupta and M.Harrison, Brookhaven National Laboratory A. Zeller, Michigan State University

More information

WJP, PHY381 (2015) Wabash Journal of Physics v4.3, p.1. Cloud Chamber. R.C. Dennis, Tuan Le, M.J. Madsen, and J. Brown

WJP, PHY381 (2015) Wabash Journal of Physics v4.3, p.1. Cloud Chamber. R.C. Dennis, Tuan Le, M.J. Madsen, and J. Brown WJP, PHY381 (2015) Wabash Journal of Physics v4.3, p.1 Cloud Chamber R.C. Dennis, Tuan Le, M.J. Madsen, and J. Brown Department of Physics, Wabash College, Crawfordsville, IN 47933 (Dated: May 7, 2015)

More information

Spatially separated excitons in 2D and 1D

Spatially separated excitons in 2D and 1D Spatially separated excitons in 2D and 1D David Abergel March 10th, 2015 D.S.L. Abergel 3/10/15 1 / 24 Outline 1 Introduction 2 Spatially separated excitons in 2D The role of disorder 3 Spatially separated

More information

The Kinetic Theory of Gases Sections Covered in the Text: Chapter 18

The Kinetic Theory of Gases Sections Covered in the Text: Chapter 18 The Kinetic Theory of Gases Sections Covered in the Text: Chapter 18 In Note 15 we reviewed macroscopic properties of matter, in particular, temperature and pressure. Here we see how the temperature and

More information

Applied Thermodynamics for Marine Systems Prof. P. K. Das Department of Mechanical Engineering Indian Institute of Technology, Kharagpur

Applied Thermodynamics for Marine Systems Prof. P. K. Das Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Applied Thermodynamics for Marine Systems Prof. P. K. Das Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Lecture - 7 Ideal Gas Laws, Different Processes Let us continue

More information

6 J - vector electric current density (A/m2 )

6 J - vector electric current density (A/m2 ) Determination of Antenna Radiation Fields Using Potential Functions Sources of Antenna Radiation Fields 6 J - vector electric current density (A/m2 ) M - vector magnetic current density (V/m 2 ) Some problems

More information

PS-6.2 Explain the factors that determine potential and kinetic energy and the transformation of one to the other.

PS-6.2 Explain the factors that determine potential and kinetic energy and the transformation of one to the other. PS-6.1 Explain how the law of conservation of energy applies to the transformation of various forms of energy (including mechanical energy, electrical energy, chemical energy, light energy, sound energy,

More information

MEASUREMENT SET-UP FOR TRAPS

MEASUREMENT SET-UP FOR TRAPS Completed on 26th of June, 2012 MEASUREMENT SET-UP FOR TRAPS AUTHOR: IW2FND Attolini Lucio Via XXV Aprile, 52/B 26037 San Giovanni in Croce (CR) - Italy iw2fnd@gmail.com Trappole_01_EN 1 1 DESCRIPTION...3

More information

Online Courses for High School Students 1-888-972-6237

Online Courses for High School Students 1-888-972-6237 Online Courses for High School Students 1-888-972-6237 PHYSICS Course Description: This course provides a comprehensive survey of all key areas: physical systems, measurement, kinematics, dynamics, momentum,

More information

Quantum Computing for Beginners: Building Qubits

Quantum Computing for Beginners: Building Qubits Quantum Computing for Beginners: Building Qubits Suzanne Gildert Condensed Matter Physics Research (Quantum Devices Group) University of Birmingham 28/03/2007 Overview of this presentation What is a Qubit?

More information

Modern Construction Materials Prof. Ravindra Gettu Department of Civil Engineering Indian Institute of Technology, Madras

Modern Construction Materials Prof. Ravindra Gettu Department of Civil Engineering Indian Institute of Technology, Madras Modern Construction Materials Prof. Ravindra Gettu Department of Civil Engineering Indian Institute of Technology, Madras Module - 2 Lecture - 2 Part 2 of 2 Review of Atomic Bonding II We will continue

More information

Edmund Li. Where is defined as the mutual inductance between and and has the SI units of Henries (H).

Edmund Li. Where is defined as the mutual inductance between and and has the SI units of Henries (H). INDUCTANCE MUTUAL INDUCTANCE If we consider two neighbouring closed loops and with bounding surfaces respectively then a current through will create a magnetic field which will link with as the flux passes

More information

FXA 2008. Candidates should be able to : Describe solids, liquids and gases in terms of the spacing, ordering and motion of atoms or molecules.

FXA 2008. Candidates should be able to : Describe solids, liquids and gases in terms of the spacing, ordering and motion of atoms or molecules. UNIT G484 Module 3 4.3.1 Solid, liquid and gas 1 Candidates should be able to : DESCRIPTION OF SOLIDS, LIQUIDS AND GASES Describe solids, liquids and gases in terms of the spacing, ordering and motion

More information

1. Photon Beam Damage and Charging at Solid Surfaces John H. Thomas III

1. Photon Beam Damage and Charging at Solid Surfaces John H. Thomas III 1. Photon Beam Damage and Charging at Solid Surfaces John H. Thomas III 1. Introduction............................. 2. Electrostatic Charging of Samples in Photoemission Experiments............................

More information

The Role of Electric Polarization in Nonlinear optics

The Role of Electric Polarization in Nonlinear optics The Role of Electric Polarization in Nonlinear optics Sumith Doluweera Department of Physics University of Cincinnati Cincinnati, Ohio 45221 Abstract Nonlinear optics became a very active field of research

More information

Study the following diagrams of the States of Matter. Label the names of the Changes of State between the different states.

Study the following diagrams of the States of Matter. Label the names of the Changes of State between the different states. Describe the strength of attractive forces between particles. Describe the amount of space between particles. Can the particles in this state be compressed? Do the particles in this state have a definite

More information

AP R Physics C Electricity and Magnetism Syllabus

AP R Physics C Electricity and Magnetism Syllabus AP R Physics C Electricity and Magnetism Syllabus 1 Prerequisites and Purposes of AP R C E & M AP R Physics C Electricity and Magnetism is the second course in a two-course sequence. It is offered in the

More information

Eðlisfræði 2, vor 2007

Eðlisfræði 2, vor 2007 [ Assignment View ] [ Pri Eðlisfræði 2, vor 2007 28. Sources of Magnetic Field Assignment is due at 2:00am on Wednesday, March 7, 2007 Credit for problems submitted late will decrease to 0% after the deadline

More information

Experimental Question 1: Levitation of Conductors in an Oscillating Magnetic Field SOLUTION ( )

Experimental Question 1: Levitation of Conductors in an Oscillating Magnetic Field SOLUTION ( ) a. Using Faraday s law: Experimental Question 1: Levitation of Conductors in an Oscillating Magnetic Field SOLUTION The overall sign will not be graded. For the current, we use the extensive hints in the

More information

The Basics of Scanning Electron Microscopy

The Basics of Scanning Electron Microscopy The Basics of Scanning Electron Microscopy The small scanning electron microscope is easy to use because almost every variable is pre-set: the acceleration voltage is always 15kV, it has only a single

More information

Kinetic Theory: Atomic and Molecular Explanation of Pressure and Temperature

Kinetic Theory: Atomic and Molecular Explanation of Pressure and Temperature OpenStax-CNX module: m42217 1 Kinetic Theory: Atomic and Molecular Explanation of Pressure and Temperature OpenStax College This work is produced by OpenStax-CNX and licensed under the Creative Commons

More information

Modern approaches to determination of toxic metals in marine environmental objects. Atomic absorption and inductively coupled plasma, advantages and

Modern approaches to determination of toxic metals in marine environmental objects. Atomic absorption and inductively coupled plasma, advantages and Modern approaches to determination of toxic metals in marine environmental objects. Atomic absorption and inductively coupled plasma, advantages and disadvantages Atomic spectroscopy Atomic spectroscopy

More information

The Maxwell-Boltzmann Distribution

The Maxwell-Boltzmann Distribution The Maxwell-Boltzmann Distribution Gases are composed of atoms or molecules. These atoms or molecules do not really interact with each other except through collisions. In many cases, we may think of a

More information

Crystal Structure of High Temperature Superconductors. Marie Nelson East Orange Campus High School NJIT Professor: Trevor Tyson

Crystal Structure of High Temperature Superconductors. Marie Nelson East Orange Campus High School NJIT Professor: Trevor Tyson Crystal Structure of High Temperature Superconductors Marie Nelson East Orange Campus High School NJIT Professor: Trevor Tyson Introduction History of Superconductors Superconductors are material which

More information

MASTER OF SCIENCE IN PHYSICS MASTER OF SCIENCES IN PHYSICS (MS PHYS) (LIST OF COURSES BY SEMESTER, THESIS OPTION)

MASTER OF SCIENCE IN PHYSICS MASTER OF SCIENCES IN PHYSICS (MS PHYS) (LIST OF COURSES BY SEMESTER, THESIS OPTION) MASTER OF SCIENCE IN PHYSICS Admission Requirements 1. Possession of a BS degree from a reputable institution or, for non-physics majors, a GPA of 2.5 or better in at least 15 units in the following advanced

More information

ON THE LOW-FIELD Q-SLOPE OF RF SUPERCONDUCTING NIOBIUM CAVITIES COOLED BY HELIUM-I

ON THE LOW-FIELD Q-SLOPE OF RF SUPERCONDUCTING NIOBIUM CAVITIES COOLED BY HELIUM-I ON THE LOW-FIELD Q-SLOPE OF RF SUPERCONDUCTING NIOBIUM CAVITIES COOLED BY HELIUM-I R. L. Geng y, H. Padamsee Laboratory of Nuclear Studies, Cornell University, Ithaca, NY 14850, USA SRF011212-10 Abstract

More information

Chapter 18 Temperature, Heat, and the First Law of Thermodynamics. Problems: 8, 11, 13, 17, 21, 27, 29, 37, 39, 41, 47, 51, 57

Chapter 18 Temperature, Heat, and the First Law of Thermodynamics. Problems: 8, 11, 13, 17, 21, 27, 29, 37, 39, 41, 47, 51, 57 Chapter 18 Temperature, Heat, and the First Law of Thermodynamics Problems: 8, 11, 13, 17, 21, 27, 29, 37, 39, 41, 47, 51, 57 Thermodynamics study and application of thermal energy temperature quantity

More information

= 1.038 atm. 760 mm Hg. = 0.989 atm. d. 767 torr = 767 mm Hg. = 1.01 atm

= 1.038 atm. 760 mm Hg. = 0.989 atm. d. 767 torr = 767 mm Hg. = 1.01 atm Chapter 13 Gases 1. Solids and liquids have essentially fixed volumes and are not able to be compressed easily. Gases have volumes that depend on their conditions, and can be compressed or expanded by

More information

Electrostatic Fields: Coulomb s Law & the Electric Field Intensity

Electrostatic Fields: Coulomb s Law & the Electric Field Intensity Electrostatic Fields: Coulomb s Law & the Electric Field Intensity EE 141 Lecture Notes Topic 1 Professor K. E. Oughstun School of Engineering College of Engineering & Mathematical Sciences University

More information

Measurement of Charge-to-Mass (e/m) Ratio for the Electron

Measurement of Charge-to-Mass (e/m) Ratio for the Electron Measurement of Charge-to-Mass (e/m) Ratio for the Electron Experiment objectives: measure the ratio of the electron charge-to-mass ratio e/m by studying the electron trajectories in a uniform magnetic

More information

The electrical field produces a force that acts

The electrical field produces a force that acts Physics Equipotential Lines and Electric Fields Plotting the Electric Field MATERIALS AND RESOURCES ABOUT THIS LESSON EACH GROUP 5 alligator clip leads 2 batteries, 9 V 2 binder clips, large computer LabQuest

More information

Basics of Superconducting Magnets

Basics of Superconducting Magnets Basics of Superconducting Magnets The most basic of superconducting magnets is a simple solenoid in which a wire form of superconducting material is wound around a coil form. Various configurations of

More information

Differential Relations for Fluid Flow. Acceleration field of a fluid. The differential equation of mass conservation

Differential Relations for Fluid Flow. Acceleration field of a fluid. The differential equation of mass conservation Differential Relations for Fluid Flow In this approach, we apply our four basic conservation laws to an infinitesimally small control volume. The differential approach provides point by point details of

More information

Electron Microscopy 3. SEM. Image formation, detection, resolution, signal to noise ratio, interaction volume, contrasts

Electron Microscopy 3. SEM. Image formation, detection, resolution, signal to noise ratio, interaction volume, contrasts Electron Microscopy 3. SEM Image formation, detection, resolution, signal to noise ratio, interaction volume, contrasts 3-1 SEM is easy! Just focus and shoot "Photo"!!! Please comment this picture... Any

More information

PHOTOELECTRIC EFFECT AND DUAL NATURE OF MATTER AND RADIATIONS

PHOTOELECTRIC EFFECT AND DUAL NATURE OF MATTER AND RADIATIONS PHOTOELECTRIC EFFECT AND DUAL NATURE OF MATTER AND RADIATIONS 1. Photons 2. Photoelectric Effect 3. Experimental Set-up to study Photoelectric Effect 4. Effect of Intensity, Frequency, Potential on P.E.

More information

E. K. A. ADVANCED PHYSICS LABORATORY PHYSICS 3081, 4051 NUCLEAR MAGNETIC RESONANCE

E. K. A. ADVANCED PHYSICS LABORATORY PHYSICS 3081, 4051 NUCLEAR MAGNETIC RESONANCE E. K. A. ADVANCED PHYSICS LABORATORY PHYSICS 3081, 4051 NUCLEAR MAGNETIC RESONANCE References for Nuclear Magnetic Resonance 1. Slichter, Principles of Magnetic Resonance, Harper and Row, 1963. chapter

More information

AP Physics 2 Sample Syllabus 3

AP Physics 2 Sample Syllabus 3 Syllabus 066439v Curricular Requirements CR CRa CRb CRc CRd CRe CRf CRg CR3 CR4 CR CR6a CR6b CR7 CR8 Students and teachers have access to college-level resources including college-level textbooks and reference

More information

Basic Principles of Magnetic Resonance

Basic Principles of Magnetic Resonance Basic Principles of Magnetic Resonance Contents: Jorge Jovicich jovicich@mit.edu I) Historical Background II) An MR experiment - Overview - Can we scan the subject? - The subject goes into the magnet -

More information

Nuclear Magnetic Resonance

Nuclear Magnetic Resonance Nuclear Magnetic Resonance NMR is probably the most useful and powerful technique for identifying and characterizing organic compounds. Felix Bloch and Edward Mills Purcell were awarded the 1952 Nobel

More information

Solid State Detectors = Semi-Conductor based Detectors

Solid State Detectors = Semi-Conductor based Detectors Solid State Detectors = Semi-Conductor based Detectors Materials and their properties Energy bands and electronic structure Charge transport and conductivity Boundaries: the p-n junction Charge collection

More information

Objectives 404 CHAPTER 9 RADIATION

Objectives 404 CHAPTER 9 RADIATION Objectives Explain the difference between isotopes of the same element. Describe the force that holds nucleons together. Explain the relationship between mass and energy according to Einstein s theory

More information

Theory of electrons and positrons

Theory of electrons and positrons P AUL A. M. DIRAC Theory of electrons and positrons Nobel Lecture, December 12, 1933 Matter has been found by experimental physicists to be made up of small particles of various kinds, the particles of

More information

On a Flat Expanding Universe

On a Flat Expanding Universe Adv. Studies Theor. Phys., Vol. 7, 2013, no. 4, 191-197 HIKARI Ltd, www.m-hikari.com On a Flat Expanding Universe Bo Lehnert Alfvén Laboratory Royal Institute of Technology, SE-10044 Stockholm, Sweden

More information

The Nature of Electromagnetic Radiation

The Nature of Electromagnetic Radiation II The Nature of Electromagnetic Radiation The Sun s energy has traveled across space as electromagnetic radiation, and that is the form in which it arrives on Earth. It is this radiation that determines

More information

3. What would you predict for the intensity and binding energy for the 3p orbital for that of sulfur?

3. What would you predict for the intensity and binding energy for the 3p orbital for that of sulfur? PSI AP Chemistry Periodic Trends MC Review Name Periodic Law and the Quantum Model Use the PES spectrum of Phosphorus below to answer questions 1-3. 1. Which peak corresponds to the 1s orbital? (A) 1.06

More information

Modification of Pd-H 2 and Pd-D 2 thin films processed by He-Ne laser

Modification of Pd-H 2 and Pd-D 2 thin films processed by He-Ne laser Modification of Pd-H 2 and Pd-D 2 thin films processed by He-Ne laser V.Nassisi #, G.Caretto #, A. Lorusso #, D.Manno %, L.Famà %, G.Buccolieri %, A.Buccolieri %, U.Mastromatteo* # Laboratory of Applied

More information

Objectives. Capacitors 262 CHAPTER 5 ENERGY

Objectives. Capacitors 262 CHAPTER 5 ENERGY Objectives Describe a capacitor. Explain how a capacitor stores energy. Define capacitance. Calculate the electrical energy stored in a capacitor. Describe an inductor. Explain how an inductor stores energy.

More information

Preface Light Microscopy X-ray Diffraction Methods

Preface Light Microscopy X-ray Diffraction Methods Preface xi 1 Light Microscopy 1 1.1 Optical Principles 1 1.1.1 Image Formation 1 1.1.2 Resolution 3 1.1.3 Depth of Field 5 1.1.4 Aberrations 6 1.2 Instrumentation 8 1.2.1 Illumination System 9 1.2.2 Objective

More information

AP CHEMISTRY CHAPTER REVIEW CHAPTER 6: ELECTRONIC STRUCTURE AND THE PERIODIC TABLE

AP CHEMISTRY CHAPTER REVIEW CHAPTER 6: ELECTRONIC STRUCTURE AND THE PERIODIC TABLE AP CHEMISTRY CHAPTER REVIEW CHAPTER 6: ELECTRONIC STRUCTURE AND THE PERIODIC TABLE You should be familiar with the wavelike properties of light: frequency ( ), wavelength ( ), and energy (E) as well as

More information

High Energy Physics. Lecture 4 More kinematics and a picture show of particle collisions

High Energy Physics. Lecture 4 More kinematics and a picture show of particle collisions High Energy Physics Lecture 4 More kinematics and a picture show of particle collisions 1 Recall from the previous lecture: the momentum of the scattered Particle in an elastic collision is given by p

More information

Exergy: the quality of energy N. Woudstra

Exergy: the quality of energy N. Woudstra Exergy: the quality of energy N. Woudstra Introduction Characteristic for our society is a massive consumption of goods and energy. Continuation of this way of life in the long term is only possible if

More information

TEACHER BACKGROUND INFORMATION THERMAL ENERGY

TEACHER BACKGROUND INFORMATION THERMAL ENERGY TEACHER BACKGROUND INFORMATION THERMAL ENERGY In general, when an object performs work on another object, it does not transfer all of its energy to that object. Some of the energy is lost as heat due to

More information

Science Standard Articulated by Grade Level Strand 5: Physical Science

Science Standard Articulated by Grade Level Strand 5: Physical Science Concept 1: Properties of Objects and Materials Classify objects and materials by their observable properties. Kindergarten Grade 1 Grade 2 Grade 3 Grade 4 PO 1. Identify the following observable properties

More information

Define the notations you are using properly. Present your arguments in details. Good luck!

Define the notations you are using properly. Present your arguments in details. Good luck! Umeå Universitet, Fysik Vitaly Bychkov Prov i fysik, Thermodynamics, 0-0-4, kl 9.00-5.00 jälpmedel: Students may use any book(s) including the textbook Thermal physics. Minor notes in the books are also

More information

Fundamentals of grain boundaries and grain boundary migration

Fundamentals of grain boundaries and grain boundary migration 1. Fundamentals of grain boundaries and grain boundary migration 1.1. Introduction The properties of crystalline metallic materials are determined by their deviation from a perfect crystal lattice, which

More information

Methods of plasma generation and plasma sources

Methods of plasma generation and plasma sources Methods of plasma generation and plasma sources PlasTEP trainings course and Summer school 2011 Warsaw/Szczecin Indrek Jõgi, University of Tartu Partfinanced by the European Union (European Regional Development

More information

Contents. Goldstone Bosons in 3He-A Soft Modes Dynamics and Lie Algebra of Group G:

Contents. Goldstone Bosons in 3He-A Soft Modes Dynamics and Lie Algebra of Group G: ... Vlll Contents 3. Textures and Supercurrents in Superfluid Phases of 3He 3.1. Textures, Gradient Energy and Rigidity 3.2. Why Superfuids are Superfluid 3.3. Superfluidity and Response to a Transverse

More information

Chapter 8. Low energy ion scattering study of Fe 4 N on Cu(100)

Chapter 8. Low energy ion scattering study of Fe 4 N on Cu(100) Low energy ion scattering study of 4 on Cu(1) Chapter 8. Low energy ion scattering study of 4 on Cu(1) 8.1. Introduction For a better understanding of the reconstructed 4 surfaces one would like to know

More information