MATH 103: Contemporary Mathematics Study Guide for Chapter 5: Euler Circuits

Size: px
Start display at page:

Download "MATH 103: Contemporary Mathematics Study Guide for Chapter 5: Euler Circuits"

Transcription

1 MTH 103: ontemporary Mathematics Study Guide for hapter 5: Euler ircuits 1. Use the graphs below to practice the following: (a) etermine which ones have Euler ircuits, and which ones have Euler Paths. (b) For the graphs which have an Euler ircuit or an Euler Path, use Fleury s lgorithm to find such ircuit or Path. O W P Y R Q V X Y S T U Z W G M N O F E R Q P 2. Read Sect. 5.1 and 5.2. Pay particular attention to the notation. We defined many terms in class, use your class notes to review them and then read the book, which gives careful definition of each term. Write the meaning of the following words: vertex: edge: loop: adjacent vertices: path: connected graph: components of a graph: Euler path: degree of a vertex: circuit: disconnected graph: bridge: Euler circuit:

2 3. Try problems 5, 8, 11 at page The most important stepin constructing a graph model of a certain situation is to identify two types of elements: objects and relationships between pairs of objects. Objects are modelled by vertices, while relationships are modelled by edges. Practice problems 15, 17, 19, 20 on page 187, focusing the construction of graph models for different situations. 5. Explain the difference between a path and a circuit. 6. What determines whether a given circuit in a graph is an Euler circuit? 7. You will now be asked to give examples of graphs with certain properties. You can look at the examples in your book and notes, but you must come up with your own graph (be creative!). (Note that every edge must terminate in TWO vertices) (a) Give an example of a graph in which all the vertices have even degree. (b) Give an example of disconnected graph. (c) Give an example of a graph with at least one bridge. Indicate a bridge by highlighting it. (d) Give an example of a graph in which no edge is a bridge. (e) raw a graph in which every edge is a bridge. (f) Use Euler s results to provide an example of a graph which has no Euler circuit.

3 (g) Read Euler s First Theorem and then provide an example of a graph which has an Euler path, but no Euler circuit. (h) Read Euler s Second Theorem and then provide an example of a graph which has no Euler circuit and no Euler path. 8. State here the famous (and useful!) Handshaking Theorem. o you remember what reasoning we used to justify it? Review class notes for our discussion and then do problems 45, 53, 54 (somewhat challenging). 9. If the Handshaking Theorem is clear, complete the following sentences: (a) graph with 33 edges has a total degree of (b) In a graph with 94 vertices of which TWO vertices have degree 2 and all others have degree 1, there are edges. (c) Statement: Each of the 7 vertices of a given graph has odd degree. This statement is (Justify) 10. Practice problems p 190. When the book talks about unicursal tracing, it simply means tracing the line drawing without skipping or retracing lines, that means finding an Euler circuit or an Euler path in the graph. 11. Use Fleury s algorithm to find an Euler circuit for the graph below. You may demonstrate that you found an Euler s circuit by either (a) numbering the edges in the order in which you travel along them, or (b) listing the vertices in the order in which you travel through them. E F G

4 12. In Fleury s algorithm for finding an Euler circuit or Euler path, we do not travel an edge which is a bridge for the untravelled portion of the graph. (a) What would happen if we travelled such an edge? Why do we avoid travelling such an edge? (b) If we travelled such an edge, would we be cut off from the starting vertex? (careful, the correct answer requires some thinking and maybe an example). Explain carefully. (c) Think about the difference in the phrases bridge for the graph and bridge for the untravelled portion of the graph. The word untravelled in the second phrase is very important in Fleury s algorithm. 13. Euler s results discuss graphs which have two or more odd degree vertices. (a) What about graphs with no vertices of odd degree? o they have Euler paths? (b) What about graphs with exactly one odd degree vertex? Is there any such graph? If so, give an example. If not, explain why. 14. Practice Eulerization. Remember that when you duplicate existing edges, duplication must be interpreted as travelling twice along an edge of the graph given initially. You will find carefully worked out examples of Eulerization on page 180. Good problems to practice are 41 and 42 on p n Eulerization is called optimal if it is achieved with the least number of duplications. (a) Suppose a given graph has some vertices of odd degree and some of even degree. We count 24 odd degree vertices and we proceed to find its Eulerization. If, to do that, we have to duplicate 12 edges, is our Eulerization optimal? Explain. (b) Produce two different Eulerizations of the graph from problem 44 (a): one optimal Eulerization and one non-optimal Eulerization. Make sure you understand the difference between the two.

5 16. raw the graph appearing in problem 44 (a) p. 190 again. uplicate enough edges so that all of the vertices UT 2 are even. This procedure is called semi-eulerization and produces a graph which has an Euler path (it provides models for those problems in which the preferred route does not need to return to the start vertex) 17. raw two copies of the graph in problem 42 (a) p. 188 below: (a) Find an optimal semi-eulerization of this graph. Show your work on one of the copies. (b) Label each vertex of the semi-eulerized graph. Then find an Euler path using Fleury s algorithm. Write the Euler path below as a list of vertices. (c) The Euler path you found is one that retraces the least number of edges of the original graph. Make sure you understand this interpretation. (d) How many edges will be retraced in this optimal route? (e) If the original graph represents a city neighborhood and it takes a police patrol 10 minutes to walk along each street block (i.e. each edge of the graph), how long will it take him to walk an optimal route?

Euler Paths and Euler Circuits

Euler Paths and Euler Circuits Euler Paths and Euler Circuits An Euler path is a path that uses every edge of a graph exactly once. An Euler circuit is a circuit that uses every edge of a graph exactly once. An Euler path starts and

More information

Graph Theory Origin and Seven Bridges of Königsberg -Rhishikesh

Graph Theory Origin and Seven Bridges of Königsberg -Rhishikesh Graph Theory Origin and Seven Bridges of Königsberg -Rhishikesh Graph Theory: Graph theory can be defined as the study of graphs; Graphs are mathematical structures used to model pair-wise relations between

More information

Chapter 6: Graph Theory

Chapter 6: Graph Theory Chapter 6: Graph Theory Graph theory deals with routing and network problems and if it is possible to find a best route, whether that means the least expensive, least amount of time or the least distance.

More information

Graph Theory Lecture 3: Sum of Degrees Formulas, Planar Graphs, and Euler s Theorem Spring 2014 Morgan Schreffler Office: POT 902

Graph Theory Lecture 3: Sum of Degrees Formulas, Planar Graphs, and Euler s Theorem Spring 2014 Morgan Schreffler Office: POT 902 Graph Theory Lecture 3: Sum of Degrees Formulas, Planar Graphs, and Euler s Theorem Spring 2014 Morgan Schreffler Office: POT 902 http://www.ms.uky.edu/~mschreffler Different Graphs, Similar Properties

More information

V. Adamchik 1. Graph Theory. Victor Adamchik. Fall of 2005

V. Adamchik 1. Graph Theory. Victor Adamchik. Fall of 2005 V. Adamchik 1 Graph Theory Victor Adamchik Fall of 2005 Plan 1. Basic Vocabulary 2. Regular graph 3. Connectivity 4. Representing Graphs Introduction A.Aho and J.Ulman acknowledge that Fundamentally, computer

More information

Class One: Degree Sequences

Class One: Degree Sequences Class One: Degree Sequences For our purposes a graph is a just a bunch of points, called vertices, together with lines or curves, called edges, joining certain pairs of vertices. Three small examples of

More information

Sum of Degrees of Vertices Theorem

Sum of Degrees of Vertices Theorem Sum of Degrees of Vertices Theorem Theorem (Sum of Degrees of Vertices Theorem) Suppose a graph has n vertices with degrees d 1, d 2, d 3,...,d n. Add together all degrees to get a new number d 1 + d 2

More information

Chinese postman problem

Chinese postman problem PTR hinese postman problem Learning objectives fter studying this chapter, you should be able to: understand the hinese postman problem apply an algorithm to solve the problem understand the importance

More information

Networks and Paths. The study of networks in mathematics began in the middle 1700 s with a famous puzzle called the Seven Bridges of Konigsburg.

Networks and Paths. The study of networks in mathematics began in the middle 1700 s with a famous puzzle called the Seven Bridges of Konigsburg. ame: Day: etworks and Paths Try This: For each figure,, and, draw a path that traces every line and curve exactly once, without lifting your pencil.... Figures,, and above are examples of ETWORKS. network

More information

CMPSCI611: Approximating MAX-CUT Lecture 20

CMPSCI611: Approximating MAX-CUT Lecture 20 CMPSCI611: Approximating MAX-CUT Lecture 20 For the next two lectures we ll be seeing examples of approximation algorithms for interesting NP-hard problems. Today we consider MAX-CUT, which we proved to

More information

136 CHAPTER 4. INDUCTION, GRAPHS AND TREES

136 CHAPTER 4. INDUCTION, GRAPHS AND TREES 136 TER 4. INDUCTION, GRHS ND TREES 4.3 Graphs In this chapter we introduce a fundamental structural idea of discrete mathematics, that of a graph. Many situations in the applications of discrete mathematics

More information

Social Media Mining. Graph Essentials

Social Media Mining. Graph Essentials Graph Essentials Graph Basics Measures Graph and Essentials Metrics 2 2 Nodes and Edges A network is a graph nodes, actors, or vertices (plural of vertex) Connections, edges or ties Edge Node Measures

More information

Introduction to Graph Theory

Introduction to Graph Theory Introduction to Graph Theory Allen Dickson October 2006 1 The Königsberg Bridge Problem The city of Königsberg was located on the Pregel river in Prussia. The river divided the city into four separate

More information

Discrete Mathematics & Mathematical Reasoning Chapter 10: Graphs

Discrete Mathematics & Mathematical Reasoning Chapter 10: Graphs Discrete Mathematics & Mathematical Reasoning Chapter 10: Graphs Kousha Etessami U. of Edinburgh, UK Kousha Etessami (U. of Edinburgh, UK) Discrete Mathematics (Chapter 6) 1 / 13 Overview Graphs and Graph

More information

CS311H. Prof: Peter Stone. Department of Computer Science The University of Texas at Austin

CS311H. Prof: Peter Stone. Department of Computer Science The University of Texas at Austin CS311H Prof: Department of Computer Science The University of Texas at Austin Good Morning, Colleagues Good Morning, Colleagues Are there any questions? Logistics Class survey Logistics Class survey Homework

More information

3. Eulerian and Hamiltonian Graphs

3. Eulerian and Hamiltonian Graphs 3. Eulerian and Hamiltonian Graphs There are many games and puzzles which can be analysed by graph theoretic concepts. In fact, the two early discoveries which led to the existence of graphs arose from

More information

Simple Graphs Degrees, Isomorphism, Paths

Simple Graphs Degrees, Isomorphism, Paths Mathematics for Computer Science MIT 6.042J/18.062J Simple Graphs Degrees, Isomorphism, Types of Graphs Simple Graph this week Multi-Graph Directed Graph next week Albert R Meyer, March 10, 2010 lec 6W.1

More information

Data Structures and Algorithms Written Examination

Data Structures and Algorithms Written Examination Data Structures and Algorithms Written Examination 22 February 2013 FIRST NAME STUDENT NUMBER LAST NAME SIGNATURE Instructions for students: Write First Name, Last Name, Student Number and Signature where

More information

Midterm Practice Problems

Midterm Practice Problems 6.042/8.062J Mathematics for Computer Science October 2, 200 Tom Leighton, Marten van Dijk, and Brooke Cowan Midterm Practice Problems Problem. [0 points] In problem set you showed that the nand operator

More information

Graph Theory Problems and Solutions

Graph Theory Problems and Solutions raph Theory Problems and Solutions Tom Davis tomrdavis@earthlink.net http://www.geometer.org/mathcircles November, 005 Problems. Prove that the sum of the degrees of the vertices of any finite graph is

More information

WOLLONGONG COLLEGE AUSTRALIA. Diploma in Information Technology

WOLLONGONG COLLEGE AUSTRALIA. Diploma in Information Technology First Name: Family Name: Student Number: Class/Tutorial: WOLLONGONG COLLEGE AUSTRALIA A College of the University of Wollongong Diploma in Information Technology Final Examination Spring Session 2008 WUCT121

More information

A permutation can also be represented by describing its cycles. What do you suppose is meant by this?

A permutation can also be represented by describing its cycles. What do you suppose is meant by this? Shuffling, Cycles, and Matrices Warm up problem. Eight people stand in a line. From left to right their positions are numbered,,,... 8. The eight people then change places according to THE RULE which directs

More information

Zachary Monaco Georgia College Olympic Coloring: Go For The Gold

Zachary Monaco Georgia College Olympic Coloring: Go For The Gold Zachary Monaco Georgia College Olympic Coloring: Go For The Gold Coloring the vertices or edges of a graph leads to a variety of interesting applications in graph theory These applications include various

More information

WRITING PROOFS. Christopher Heil Georgia Institute of Technology

WRITING PROOFS. Christopher Heil Georgia Institute of Technology WRITING PROOFS Christopher Heil Georgia Institute of Technology A theorem is just a statement of fact A proof of the theorem is a logical explanation of why the theorem is true Many theorems have this

More information

Connectivity and cuts

Connectivity and cuts Math 104, Graph Theory February 19, 2013 Measure of connectivity How connected are each of these graphs? > increasing connectivity > I G 1 is a tree, so it is a connected graph w/minimum # of edges. Every

More information

Handout #Ch7 San Skulrattanakulchai Gustavus Adolphus College Dec 6, 2010. Chapter 7: Digraphs

Handout #Ch7 San Skulrattanakulchai Gustavus Adolphus College Dec 6, 2010. Chapter 7: Digraphs MCS-236: Graph Theory Handout #Ch7 San Skulrattanakulchai Gustavus Adolphus College Dec 6, 2010 Chapter 7: Digraphs Strong Digraphs Definitions. A digraph is an ordered pair (V, E), where V is the set

More information

Lecture 7: NP-Complete Problems

Lecture 7: NP-Complete Problems IAS/PCMI Summer Session 2000 Clay Mathematics Undergraduate Program Basic Course on Computational Complexity Lecture 7: NP-Complete Problems David Mix Barrington and Alexis Maciel July 25, 2000 1. Circuit

More information

SOME APPLICATIONS OF EULERIAN GRAPHS

SOME APPLICATIONS OF EULERIAN GRAPHS Sutra: International Journal of Mathematical Science Education Technomathematics Research Foundation Vol. 2, No. 2, 1 10, 2009 SOME APPLICATIONS OF EULERIAN GRAPHS Abdul Samad Ismail, Roslan Hasni and

More information

IE 680 Special Topics in Production Systems: Networks, Routing and Logistics*

IE 680 Special Topics in Production Systems: Networks, Routing and Logistics* IE 680 Special Topics in Production Systems: Networks, Routing and Logistics* Rakesh Nagi Department of Industrial Engineering University at Buffalo (SUNY) *Lecture notes from Network Flows by Ahuja, Magnanti

More information

Asking Hard Graph Questions. Paul Burkhardt. February 3, 2014

Asking Hard Graph Questions. Paul Burkhardt. February 3, 2014 Beyond Watson: Predictive Analytics and Big Data U.S. National Security Agency Research Directorate - R6 Technical Report February 3, 2014 300 years before Watson there was Euler! The first (Jeopardy!)

More information

Network Flow I. Lecture 16. 16.1 Overview. 16.2 The Network Flow Problem

Network Flow I. Lecture 16. 16.1 Overview. 16.2 The Network Flow Problem Lecture 6 Network Flow I 6. Overview In these next two lectures we are going to talk about an important algorithmic problem called the Network Flow Problem. Network flow is important because it can be

More information

Lecture 15 An Arithmetic Circuit Lowerbound and Flows in Graphs

Lecture 15 An Arithmetic Circuit Lowerbound and Flows in Graphs CSE599s: Extremal Combinatorics November 21, 2011 Lecture 15 An Arithmetic Circuit Lowerbound and Flows in Graphs Lecturer: Anup Rao 1 An Arithmetic Circuit Lower Bound An arithmetic circuit is just like

More information

. 0 1 10 2 100 11 1000 3 20 1 2 3 4 5 6 7 8 9

. 0 1 10 2 100 11 1000 3 20 1 2 3 4 5 6 7 8 9 Introduction The purpose of this note is to find and study a method for determining and counting all the positive integer divisors of a positive integer Let N be a given positive integer We say d is a

More information

Mathematical Induction. Mary Barnes Sue Gordon

Mathematical Induction. Mary Barnes Sue Gordon Mathematics Learning Centre Mathematical Induction Mary Barnes Sue Gordon c 1987 University of Sydney Contents 1 Mathematical Induction 1 1.1 Why do we need proof by induction?.... 1 1. What is proof by

More information

Acquisition Lesson Planning Form Key Standards addressed in this Lesson: MM2A3d,e Time allotted for this Lesson: 4 Hours

Acquisition Lesson Planning Form Key Standards addressed in this Lesson: MM2A3d,e Time allotted for this Lesson: 4 Hours Acquisition Lesson Planning Form Key Standards addressed in this Lesson: MM2A3d,e Time allotted for this Lesson: 4 Hours Essential Question: LESSON 4 FINITE ARITHMETIC SERIES AND RELATIONSHIP TO QUADRATIC

More information

Extremal Wiener Index of Trees with All Degrees Odd

Extremal Wiener Index of Trees with All Degrees Odd MATCH Communications in Mathematical and in Computer Chemistry MATCH Commun. Math. Comput. Chem. 70 (2013) 287-292 ISSN 0340-6253 Extremal Wiener Index of Trees with All Degrees Odd Hong Lin School of

More information

BOUNDARY EDGE DOMINATION IN GRAPHS

BOUNDARY EDGE DOMINATION IN GRAPHS BULLETIN OF THE INTERNATIONAL MATHEMATICAL VIRTUAL INSTITUTE ISSN (p) 0-4874, ISSN (o) 0-4955 www.imvibl.org /JOURNALS / BULLETIN Vol. 5(015), 197-04 Former BULLETIN OF THE SOCIETY OF MATHEMATICIANS BANJA

More information

Just the Factors, Ma am

Just the Factors, Ma am 1 Introduction Just the Factors, Ma am The purpose of this note is to find and study a method for determining and counting all the positive integer divisors of a positive integer Let N be a given positive

More information

Arrangements And Duality

Arrangements And Duality Arrangements And Duality 3.1 Introduction 3 Point configurations are tbe most basic structure we study in computational geometry. But what about configurations of more complicated shapes? For example,

More information

The number of marks is given in brackets [ ] at the end of each question or part question. The total number of marks for this paper is 72.

The number of marks is given in brackets [ ] at the end of each question or part question. The total number of marks for this paper is 72. ADVANCED SUBSIDIARY GCE UNIT 4736/01 MATHEMATICS Decision Mathematics 1 THURSDAY 14 JUNE 2007 Afternoon Additional Materials: Answer Booklet (8 pages) List of Formulae (MF1) Time: 1 hour 30 minutes INSTRUCTIONS

More information

2. (a) Explain the strassen s matrix multiplication. (b) Write deletion algorithm, of Binary search tree. [8+8]

2. (a) Explain the strassen s matrix multiplication. (b) Write deletion algorithm, of Binary search tree. [8+8] Code No: R05220502 Set No. 1 1. (a) Describe the performance analysis in detail. (b) Show that f 1 (n)+f 2 (n) = 0(max(g 1 (n), g 2 (n)) where f 1 (n) = 0(g 1 (n)) and f 2 (n) = 0(g 2 (n)). [8+8] 2. (a)

More information

Cpt S 223. School of EECS, WSU

Cpt S 223. School of EECS, WSU The Shortest Path Problem 1 Shortest-Path Algorithms Find the shortest path from point A to point B Shortest in time, distance, cost, Numerous applications Map navigation Flight itineraries Circuit wiring

More information

On the Unique Games Conjecture

On the Unique Games Conjecture On the Unique Games Conjecture Antonios Angelakis National Technical University of Athens June 16, 2015 Antonios Angelakis (NTUA) Theory of Computation June 16, 2015 1 / 20 Overview 1 Introduction 2 Preliminary

More information

Practical Graph Mining with R. 5. Link Analysis

Practical Graph Mining with R. 5. Link Analysis Practical Graph Mining with R 5. Link Analysis Outline Link Analysis Concepts Metrics for Analyzing Networks PageRank HITS Link Prediction 2 Link Analysis Concepts Link A relationship between two entities

More information

Outline. NP-completeness. When is a problem easy? When is a problem hard? Today. Euler Circuits

Outline. NP-completeness. When is a problem easy? When is a problem hard? Today. Euler Circuits Outline NP-completeness Examples of Easy vs. Hard problems Euler circuit vs. Hamiltonian circuit Shortest Path vs. Longest Path 2-pairs sum vs. general Subset Sum Reducing one problem to another Clique

More information

Max Flow, Min Cut, and Matchings (Solution)

Max Flow, Min Cut, and Matchings (Solution) Max Flow, Min Cut, and Matchings (Solution) 1. The figure below shows a flow network on which an s-t flow is shown. The capacity of each edge appears as a label next to the edge, and the numbers in boxes

More information

TU e. Advanced Algorithms: experimentation project. The problem: load balancing with bounded look-ahead. Input: integer m 2: number of machines

TU e. Advanced Algorithms: experimentation project. The problem: load balancing with bounded look-ahead. Input: integer m 2: number of machines The problem: load balancing with bounded look-ahead Input: integer m 2: number of machines integer k 0: the look-ahead numbers t 1,..., t n : the job sizes Problem: assign jobs to machines machine to which

More information

Finding and counting given length cycles

Finding and counting given length cycles Finding and counting given length cycles Noga Alon Raphael Yuster Uri Zwick Abstract We present an assortment of methods for finding and counting simple cycles of a given length in directed and undirected

More information

A NOTE ON OFF-DIAGONAL SMALL ON-LINE RAMSEY NUMBERS FOR PATHS

A NOTE ON OFF-DIAGONAL SMALL ON-LINE RAMSEY NUMBERS FOR PATHS A NOTE ON OFF-DIAGONAL SMALL ON-LINE RAMSEY NUMBERS FOR PATHS PAWE L PRA LAT Abstract. In this note we consider the on-line Ramsey numbers R(P n, P m ) for paths. Using a high performance computing clusters,

More information

Answer: (a) Since we cannot repeat men on the committee, and the order we select them in does not matter, ( )

Answer: (a) Since we cannot repeat men on the committee, and the order we select them in does not matter, ( ) 1. (Chapter 1 supplementary, problem 7): There are 12 men at a dance. (a) In how many ways can eight of them be selected to form a cleanup crew? (b) How many ways are there to pair off eight women at the

More information

Optimized e-transportation System customized to user need

Optimized e-transportation System customized to user need Optimized e-transportation System customized to user need 1 Ankita Bihani, 2 Pooja Kabra, 3 Supriya Moond 1 School of Computing Sciences and Engineering, VIT University 2 School of Computing Sciences and

More information

Discrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 2

Discrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 2 CS 70 Discrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 2 Proofs Intuitively, the concept of proof should already be familiar We all like to assert things, and few of us

More information

DATA ANALYSIS II. Matrix Algorithms

DATA ANALYSIS II. Matrix Algorithms DATA ANALYSIS II Matrix Algorithms Similarity Matrix Given a dataset D = {x i }, i=1,..,n consisting of n points in R d, let A denote the n n symmetric similarity matrix between the points, given as where

More information

Properties of Real Numbers

Properties of Real Numbers 16 Chapter P Prerequisites P.2 Properties of Real Numbers What you should learn: Identify and use the basic properties of real numbers Develop and use additional properties of real numbers Why you should

More information

Every tree contains a large induced subgraph with all degrees odd

Every tree contains a large induced subgraph with all degrees odd Every tree contains a large induced subgraph with all degrees odd A.J. Radcliffe Carnegie Mellon University, Pittsburgh, PA A.D. Scott Department of Pure Mathematics and Mathematical Statistics University

More information

EdExcel Decision Mathematics 1

EdExcel Decision Mathematics 1 EdExcel Decision Mathematics 1 Linear Programming Section 1: Formulating and solving graphically Notes and Examples These notes contain subsections on: Formulating LP problems Solving LP problems Minimisation

More information

Chapter 11 Number Theory

Chapter 11 Number Theory Chapter 11 Number Theory Number theory is one of the oldest branches of mathematics. For many years people who studied number theory delighted in its pure nature because there were few practical applications

More information

Graph Theory and Complex Networks: An Introduction. Chapter 06: Network analysis. Contents. Introduction. Maarten van Steen. Version: April 28, 2014

Graph Theory and Complex Networks: An Introduction. Chapter 06: Network analysis. Contents. Introduction. Maarten van Steen. Version: April 28, 2014 Graph Theory and Complex Networks: An Introduction Maarten van Steen VU Amsterdam, Dept. Computer Science Room R.0, steen@cs.vu.nl Chapter 0: Version: April 8, 0 / Contents Chapter Description 0: Introduction

More information

Degree Hypergroupoids Associated with Hypergraphs

Degree Hypergroupoids Associated with Hypergraphs Filomat 8:1 (014), 119 19 DOI 10.98/FIL1401119F Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat Degree Hypergroupoids Associated

More information

Discrete Mathematics Problems

Discrete Mathematics Problems Discrete Mathematics Problems William F. Klostermeyer School of Computing University of North Florida Jacksonville, FL 32224 E-mail: wkloster@unf.edu Contents 0 Preface 3 1 Logic 5 1.1 Basics...............................

More information

Algebra Bridge Project Cell Phone Plans

Algebra Bridge Project Cell Phone Plans Algebra Bridge Project Cell Phone Plans Name Teacher Part I: Two Cell Phone Plans You are in the market for a new cell phone, and you have narrowed your search to two different cell phone companies --

More information

Why? A central concept in Computer Science. Algorithms are ubiquitous.

Why? A central concept in Computer Science. Algorithms are ubiquitous. Analysis of Algorithms: A Brief Introduction Why? A central concept in Computer Science. Algorithms are ubiquitous. Using the Internet (sending email, transferring files, use of search engines, online

More information

Universality in the theory of algorithms and computer science

Universality in the theory of algorithms and computer science Universality in the theory of algorithms and computer science Alexander Shen Computational models The notion of computable function was introduced in 1930ies. Simplifying (a rather interesting and puzzling)

More information

Graph Theory and Complex Networks: An Introduction. Chapter 06: Network analysis

Graph Theory and Complex Networks: An Introduction. Chapter 06: Network analysis Graph Theory and Complex Networks: An Introduction Maarten van Steen VU Amsterdam, Dept. Computer Science Room R4.0, steen@cs.vu.nl Chapter 06: Network analysis Version: April 8, 04 / 3 Contents Chapter

More information

A Review And Evaluations Of Shortest Path Algorithms

A Review And Evaluations Of Shortest Path Algorithms A Review And Evaluations Of Shortest Path Algorithms Kairanbay Magzhan, Hajar Mat Jani Abstract: Nowadays, in computer networks, the routing is based on the shortest path problem. This will help in minimizing

More information

each college c i C has a capacity q i - the maximum number of students it will admit

each college c i C has a capacity q i - the maximum number of students it will admit n colleges in a set C, m applicants in a set A, where m is much larger than n. each college c i C has a capacity q i - the maximum number of students it will admit each college c i has a strict order i

More information

Lecture 1: Course overview, circuits, and formulas

Lecture 1: Course overview, circuits, and formulas Lecture 1: Course overview, circuits, and formulas Topics in Complexity Theory and Pseudorandomness (Spring 2013) Rutgers University Swastik Kopparty Scribes: John Kim, Ben Lund 1 Course Information Swastik

More information

SPERNER S LEMMA AND BROUWER S FIXED POINT THEOREM

SPERNER S LEMMA AND BROUWER S FIXED POINT THEOREM SPERNER S LEMMA AND BROUWER S FIXED POINT THEOREM ALEX WRIGHT 1. Intoduction A fixed point of a function f from a set X into itself is a point x 0 satisfying f(x 0 ) = x 0. Theorems which establish the

More information

1. Write the number of the left-hand item next to the item on the right that corresponds to it.

1. Write the number of the left-hand item next to the item on the right that corresponds to it. 1. Write the number of the left-hand item next to the item on the right that corresponds to it. 1. Stanford prison experiment 2. Friendster 3. neuron 4. router 5. tipping 6. small worlds 7. job-hunting

More information

Euler, Mei-Ko Kwan, Königsberg, and a Chinese Postman

Euler, Mei-Ko Kwan, Königsberg, and a Chinese Postman Documenta Math. 43 Euler, Mei-Ko Kwan, Königsberg, and a Chinese Postman Martin Grötschel and Ya-xiang Yuan 2010 Mathematics Subject Classification: 00-02, 01A05, 05C38, 90-03 Keywords and Phrases: Eulerian

More information

Problem of the Month: Cutting a Cube

Problem of the Month: Cutting a Cube Problem of the Month: The Problems of the Month (POM) are used in a variety of ways to promote problem solving and to foster the first standard of mathematical practice from the Common Core State Standards:

More information

2) Write in detail the issues in the design of code generator.

2) Write in detail the issues in the design of code generator. COMPUTER SCIENCE AND ENGINEERING VI SEM CSE Principles of Compiler Design Unit-IV Question and answers UNIT IV CODE GENERATION 9 Issues in the design of code generator The target machine Runtime Storage

More information

Algebra I Notes Relations and Functions Unit 03a

Algebra I Notes Relations and Functions Unit 03a OBJECTIVES: F.IF.A.1 Understand the concept of a function and use function notation. Understand that a function from one set (called the domain) to another set (called the range) assigns to each element

More information

Formal Languages and Automata Theory - Regular Expressions and Finite Automata -

Formal Languages and Automata Theory - Regular Expressions and Finite Automata - Formal Languages and Automata Theory - Regular Expressions and Finite Automata - Samarjit Chakraborty Computer Engineering and Networks Laboratory Swiss Federal Institute of Technology (ETH) Zürich March

More information

Solving Quadratic Equations

Solving Quadratic Equations 9.3 Solving Quadratic Equations by Using the Quadratic Formula 9.3 OBJECTIVES 1. Solve a quadratic equation by using the quadratic formula 2. Determine the nature of the solutions of a quadratic equation

More information

The Triangle and its Properties

The Triangle and its Properties THE TRINGLE ND ITS PROPERTIES 113 The Triangle and its Properties Chapter 6 6.1 INTRODUCTION triangle, you have seen, is a simple closed curve made of three line segments. It has three vertices, three

More information

SEQUENCES OF MAXIMAL DEGREE VERTICES IN GRAPHS. Nickolay Khadzhiivanov, Nedyalko Nenov

SEQUENCES OF MAXIMAL DEGREE VERTICES IN GRAPHS. Nickolay Khadzhiivanov, Nedyalko Nenov Serdica Math. J. 30 (2004), 95 102 SEQUENCES OF MAXIMAL DEGREE VERTICES IN GRAPHS Nickolay Khadzhiivanov, Nedyalko Nenov Communicated by V. Drensky Abstract. Let Γ(M) where M V (G) be the set of all vertices

More information

Decision Mathematics 1 TUESDAY 22 JANUARY 2008

Decision Mathematics 1 TUESDAY 22 JANUARY 2008 ADVANCED SUBSIDIARY GCE 4736/01 MATHEMATICS Decision Mathematics 1 TUESDAY 22 JANUARY 2008 Additional materials: Answer Booklet (8 pages) Graph paper Insert for Questions 3 and 4 List of Formulae (MF1)

More information

Your logbook. Choosing a topic

Your logbook. Choosing a topic This booklet contains information that will be used to complete a science fair project for the César Chávez science fair. It is designed to help participants to successfully complete a project. This booklet

More information

The Clar Structure of Fullerenes

The Clar Structure of Fullerenes The Clar Structure of Fullerenes Liz Hartung Massachusetts College of Liberal Arts June 12, 2013 Liz Hartung (Massachusetts College of Liberal Arts) The Clar Structure of Fullerenes June 12, 2013 1 / 25

More information

Graph Theory: Penn State Math 485 Lecture Notes. Christopher Griffin 2011-2012

Graph Theory: Penn State Math 485 Lecture Notes. Christopher Griffin 2011-2012 Graph Theory: Penn State Math 485 Lecture Notes Version 1.4..1 Christopher Griffin 011-01 Licensed under a Creative Commons Attribution-Noncommercial-Share Alike.0 United States License With Contributions

More information

Analysis of Algorithms, I

Analysis of Algorithms, I Analysis of Algorithms, I CSOR W4231.002 Eleni Drinea Computer Science Department Columbia University Thursday, February 26, 2015 Outline 1 Recap 2 Representing graphs 3 Breadth-first search (BFS) 4 Applications

More information

Graphing Parabolas With Microsoft Excel

Graphing Parabolas With Microsoft Excel Graphing Parabolas With Microsoft Excel Mr. Clausen Algebra 2 California State Standard for Algebra 2 #10.0: Students graph quadratic functions and determine the maxima, minima, and zeros of the function.

More information

6.3 Conditional Probability and Independence

6.3 Conditional Probability and Independence 222 CHAPTER 6. PROBABILITY 6.3 Conditional Probability and Independence Conditional Probability Two cubical dice each have a triangle painted on one side, a circle painted on two sides and a square painted

More information

DISTANCE TIME GRAPHS. Edexcel GCSE Mathematics (Linear) 1MA0

DISTANCE TIME GRAPHS. Edexcel GCSE Mathematics (Linear) 1MA0 Edexcel GCSE Mathematics (Linear) 1MA0 DISTANCE TIME GRAPHS Materials required for examination Ruler graduated in centimetres and millimetres, protractor, compasses, pen, HB pencil, eraser. Tracing paper

More information

3.1 Solving Systems Using Tables and Graphs

3.1 Solving Systems Using Tables and Graphs Algebra 2 Chapter 3 3.1 Solve Systems Using Tables & Graphs 3.1 Solving Systems Using Tables and Graphs A solution to a system of linear equations is an that makes all of the equations. To solve a system

More information

LECTURE 5: DUALITY AND SENSITIVITY ANALYSIS. 1. Dual linear program 2. Duality theory 3. Sensitivity analysis 4. Dual simplex method

LECTURE 5: DUALITY AND SENSITIVITY ANALYSIS. 1. Dual linear program 2. Duality theory 3. Sensitivity analysis 4. Dual simplex method LECTURE 5: DUALITY AND SENSITIVITY ANALYSIS 1. Dual linear program 2. Duality theory 3. Sensitivity analysis 4. Dual simplex method Introduction to dual linear program Given a constraint matrix A, right

More information

E XPLORING QUADRILATERALS

E XPLORING QUADRILATERALS E XPLORING QUADRILATERALS E 1 Geometry State Goal 9: Use geometric methods to analyze, categorize and draw conclusions about points, lines, planes and space. Statement of Purpose: The activities in this

More information

Near Optimal Solutions

Near Optimal Solutions Near Optimal Solutions Many important optimization problems are lacking efficient solutions. NP-Complete problems unlikely to have polynomial time solutions. Good heuristics important for such problems.

More information

Graph Theory Techniques in Model-Based Testing

Graph Theory Techniques in Model-Based Testing Presented at the 1999 International Conference on Testing Computer Software Graph Theory Techniques in Model-Based Testing Harry Robinson Semantic Platforms Test Group Microsoft Corporation harryr@microsoft.com

More information

Binary Search Trees CMPSC 122

Binary Search Trees CMPSC 122 Binary Search Trees CMPSC 122 Note: This notes packet has significant overlap with the first set of trees notes I do in CMPSC 360, but goes into much greater depth on turning BSTs into pseudocode than

More information

DC mesh current analysis

DC mesh current analysis DC mesh current analysis This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/,

More information

4.2 Euclid s Classification of Pythagorean Triples

4.2 Euclid s Classification of Pythagorean Triples 178 4. Number Theory: Fermat s Last Theorem Exercise 4.7: A primitive Pythagorean triple is one in which any two of the three numbers are relatively prime. Show that every multiple of a Pythagorean triple

More information

UPPER BOUNDS ON THE L(2, 1)-LABELING NUMBER OF GRAPHS WITH MAXIMUM DEGREE

UPPER BOUNDS ON THE L(2, 1)-LABELING NUMBER OF GRAPHS WITH MAXIMUM DEGREE UPPER BOUNDS ON THE L(2, 1)-LABELING NUMBER OF GRAPHS WITH MAXIMUM DEGREE ANDREW LUM ADVISOR: DAVID GUICHARD ABSTRACT. L(2,1)-labeling was first defined by Jerrold Griggs [Gr, 1992] as a way to use graphs

More information

Any two nodes which are connected by an edge in a graph are called adjacent node.

Any two nodes which are connected by an edge in a graph are called adjacent node. . iscuss following. Graph graph G consist of a non empty set V called the set of nodes (points, vertices) of the graph, a set which is the set of edges and a mapping from the set of edges to a set of pairs

More information

The Half-Circle Protractor

The Half-Circle Protractor The Half-ircle Protractor Objectives To guide students as they classify angles as acute, right, obtuse, straight, and reflex; and to provide practice using a half-circle protractor to measure and draw

More information

Support Materials for Core Content for Assessment. Mathematics

Support Materials for Core Content for Assessment. Mathematics Support Materials for Core Content for Assessment Version 4.1 Mathematics August 2007 Kentucky Department of Education Introduction to Depth of Knowledge (DOK) - Based on Norman Webb s Model (Karin Hess,

More information

Types of Degrees in Bipolar Fuzzy Graphs

Types of Degrees in Bipolar Fuzzy Graphs pplied Mathematical Sciences, Vol. 7, 2013, no. 98, 4857-4866 HIKRI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2013.37389 Types of Degrees in Bipolar Fuzzy Graphs Basheer hamed Mohideen Department

More information

2. Select Point B and rotate it by 15 degrees. A new Point B' appears. 3. Drag each of the three points in turn.

2. Select Point B and rotate it by 15 degrees. A new Point B' appears. 3. Drag each of the three points in turn. In this activity you will use Sketchpad s Iterate command (on the Transform menu) to produce a spiral design. You ll also learn how to use parameters, and how to create animation action buttons for parameters.

More information

Network Design with Coverage Costs

Network Design with Coverage Costs Network Design with Coverage Costs Siddharth Barman 1 Shuchi Chawla 2 Seeun William Umboh 2 1 Caltech 2 University of Wisconsin-Madison APPROX-RANDOM 2014 Motivation Physical Flow vs Data Flow vs. Commodity

More information